A weak solution theory for stochastic Volterra equations of convolution type - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2021

A weak solution theory for stochastic Volterra equations of convolution type

Résumé

We obtain general weak existence and stability results for stochastic convolution equations with jumps under mild regularity assumptions, allowing for non-Lipschitz coefficients and singular kernels. Our approach relies on weak convergence in $L^p$ spaces. The main tools are new a priori estimates on Sobolev--Slobodeckij norms of the solution, as well as a novel martingale problem that is equivalent to the original equation. This leads to generic approximation and stability theorems in the spirit of classical martingale problem theory. We also prove uniqueness and path regularity of solutions under additional hypotheses. To illustrate the applicability of our results, we consider scaling limits of nonlinear Hawkes processes and approximations of stochastic Volterra processes by Markovian semimartingales.
Fichier principal
Vignette du fichier
Stoch_Volterra_Eqns.pdf (455.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02279033 , version 1 (04-09-2019)
hal-02279033 , version 2 (29-10-2019)
hal-02279033 , version 3 (31-01-2022)

Identifiants

Citer

Eduardo Abi Jaber, Christa Cuchiero, Martin Larsson, Sergio Pulido. A weak solution theory for stochastic Volterra equations of convolution type. The Annals of Applied Probability, 2021, 31 (6), pp.2924-2952. ⟨10.1214/21-AAP1667⟩. ⟨hal-02279033v3⟩
210 Consultations
329 Téléchargements

Altmetric

Partager

More