14^{e} colloque de l'Association Française d'Halieutique Université de Caen Normandie 26 au 28 juin 2019

Recherche halieutique

 et développement durableAvec le soutien

http://www.assocation-francaise-halieutique.fr/

Contribution of catastrophic events to stochasticity of the recruitment process: an application to Atlantic Salmon

Lebot Clément ${ }^{1 \mathrm{a}}$, Arago Marie-Andrée ${ }^{2}$, Beaulaton Laurent ${ }^{2}$, Germis Gaëlle ${ }^{3}$, Nevoux Marie ${ }^{1 b}$, Rivot Etienne ${ }^{1 b}$, Prévost Etienne ${ }^{1 a}$
1 Institut National de la Recherche Agronomique (INRA), a UMR EcoBiop, Route départementale D918, 64310 Saint-Pée sur Nivelle, France. b UMR ESE, 65 Rue de Saint-Brieux, 35000 Rennes, France.
2. Agence Française pour la Biodiversité (AFB), Pôle Gest' aqua, 65 Rue de Saint-Brieux, 35000 Rennes, France.
3. Bretagne Grands Migrateurs (BGM), 9 Rue Louis Kerautret Botmel, 35000 Rennes, France

"Catastrophic" events are one of the major threats to the conservation of populations, yet rarely considered in population models. We propose a mixture distribution for taking account of "catastrophic" events in environmental stochasticity. The mixture results from the combination of two distributions. A regular distribution, representing the most frequent regime of random process error and a "catastrophic" distribution, representing the random process error for rare events with strong negative effects on populations. A Bernoulli draw with a catastrophe probability indicates whether the process error associated to a given event results from the regular or the "catastrophic" distribution. The mixture distribution modelling is applied to the recruitment process of Atlantic salmon (Salmo Salar) which fishery scientists rely on to provide management advice. Stock-recruitment (SR) relationships, relating the number of eggs produced by pre-spawning females (stock) to the abundance of the resulting young-of-the-year juveniles (recruitment) are adjusted for the 18 main salmon populations of Brittany (France). A Bayesian hierarchical model, based on a Beverton-Holt type relationship is used for the joint analysis of all populations.
We estimate the probability of a catastrophe at 10%, that is, a catastrophic recruitment occurs one year out of ten whatever the population. During a catastrophic event, recruitment is estimated to be reduced by two thirds on average. The mixture distribution provides a better fit to the data than standard single lognormal distribution: to account for catastrophic events the later assumes relatively high probability of extreme positive error that are never observed. Our approach constitutes an additional step toward a better accounting of uncertainty as recommended in the precautionary approach adopted by the North Atlantic Salmon Conservation Organization (NASCO) for the management of Atlantic salmon populations.

