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An algorithm for the reconstruction of unknown magnetization in an iron sheet is proposed. The magnetization distribution is 

reconstructed from magnetic measurements made on sensors placed in the surrounded air region. The problem is solved thanks to the 

inversion of an integral formulation, based on the face interpolation of the flux density in the sheet and leading to a linear matrix system. 

The final system is solved with a balanced singular value decomposition in order to stabilize the solution. The efficiency of the method is 

demonstrated with both numerical and experimental test cases. 

 
Index Terms— magnetization identification, magnetostatic inverse problem, volume integral method, thin magnetic shell. 

I. INTRODUCTION 

magnetic ferromagnetic sheet has two kinds of 

magnetization. The induced one is the reversible magnetic 

reaction of the material to an inductor field (i.e. the earth 

magnetic field) and can easily be computed. The case of the 

permanent one, which depends on the magnetic history of the 

sheet, is more problematic. Its determination needs the use of 

external magnetic measurement made on sensors in the 

surrounding air region and the solving of an inverse problem. 

Different algorithms have already been proposed in the 

literature for volume region [1]-[2]. In this paper, we focus on 

a new method, dedicated to the sheet geometry and more robust 

and accurate than our previous works presented few years ago 

[3]. It can be applied to the evaluation of magnetic anomaly 

created by navy ships or submarines in order to reduce the risk 

of detection or destruction by magnetic mines. 

II. FORWARD INTEGRAL FORMULATION 

Let us consider a ferromagnetic thin region Ω  with a 

reversible linear reluctivity  ν  placed in a low level inductor 

magnetic field 𝑯𝟎 (the earth magnetic field for instance). We 

consider that the magnetic material has a permanent magnetic 

state which can be represented by a coercive field 𝑯𝒄 such as: 

𝑯 =  𝜈𝑩 − 𝑯𝑪                                          (1) 

where 𝑯 is the total magnetic field and 𝑩 is the induction. The 

total magnetic field is the sum of the inductor field and the field 

created by the total magnetization of the shell. The problem is 

governed by the magnetostatic integral equation with 𝑩  as a 

state variable [4]:  

𝜈𝑩 + 𝛁 ∫(𝜈0 − 𝜈)𝑩.

 

Ω

∇G dΩ = 𝑯𝟎 + 𝑯𝑪              (2) 

where G is the standard 3D Green’s function (i.e. the inverse of 

the distance between the point where the induction is expressed 

and the integration point). For magnetic sheets, the 

approximation of thin element simplifies a volume problem to 

a surface one by considering that the magnetic induction in the 

active region is uniform according to the thickness and is 

tangential to the sheet. In [4], it has been shown that it is 

appropriate to interpolate 𝑩  with Withney 2-form shape 

functions (also known as face shape functions) and expressed 

by a linear combination of magnetic flux ΦB flowing through 

the equivalent faces of the meshed surface Ω𝑠 (i.e the edge of 

the mesh elements in our case). In order to ensure the free-

divergence of the flux, the resolution is performed in the basis 

of independent fluxes ΦBI  [5]. Applying a Galerkin method, a 

linear system is obtained:  

MΦBI = SH0
+ SH𝐶                                                    

(3) 

where,   M ∈ ℝNBI×NBI , ΦBI ∈ ℝNBI×1, SH0
∈ ℝNBI×1 and  SH𝐶

∈

ℝNBI×1, NBI being the number of independent fluxes. The ex-

pression for each matrix can be found in [4]. 

In a classical forward problem, coercive and inductor fields 

are known as well as the reversible reluctivity of the material. 

However, in the context of an inverse problem, the point of 

view is different. The inductor field as well as the reversible 

reaction to it are known but the magnetic state in a null inductor 

field is unknown. In other words 𝑯𝒄 has to be determined for 

each element of the mesh. This is why magnetic external meas-

urements have to be added in order to provide additional infor-

mation. 

III. INVERSE PROBLEM FORMULATION 

An equation linking the flux distribution in the shell to the 

induction measured on external magnetic sensors has to be 

added. The magnetic field in air is expressed with the following 

integral expression [5]: 

𝑩𝒎𝒆𝒔 = ∇ ∫(1 − 𝜈/𝜈0)∇𝑆𝑩.

 

Ω𝑠

G 𝑑Ω𝑠 − 𝑩𝟎         (4) 

where 𝑩𝒎𝒆𝒔 is the induction measured on a magnetic sensor lo-

cated in the vicinity of the ferromagnetic body. Equation (4) can 

also be discretized considering the independent fluxes flowing 

in the shell as unknowns and leading to the following matrix 

system: 

Bmes = A ΦBI                                         (5) 

where Bmes ∈ ℝNBmes×1 and A ∈ ℝNBmes×NBI and NBmes being 

the number of measurements. Let us remember that in context 

of an inverse problem, 𝐇𝐜 is an unknown of the problem and 

has to be identified. To determine it numerically, an interpo-

lated function space has to be selected. A good choice can be 

also the face shape functions. Thus, the last term in (3) can be 
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replaced by a matrix N product keeping unknowns ΦHc associ-

ated to 𝑯𝒄 explicit, which leads to a new matrix system: 

 MΦBI − N ΦHc = SH0                            (6) 

By combining (5) and (6) after some algebra, the final matrix 

system with ΦHc as unknown is obtained: 

−𝐴 M
−1NΦHc = 𝐵𝑚𝑒𝑠 − 𝐴 M

−1𝑆𝐻0                (7) 

To solve (7), a classical balanced singular values decompo-

sition (SVD) is used to improve the condition number of the 

final matrix system. Let us notice that the solution of the prob-

lem is not unique and the use of the SVD leads to the solution 

with the minimal norm. However, we have to notice that to min-

imize 𝑯𝑪 fluxes flowing through the shell does not make sense 

physically. It is more consistent to favour a solution which en-

sures the flux regularity. This is why it is preferable to replace 

the problem unknowns by a fictive scalar distribution which is 

the surface divergence of 𝑯𝑪. This resolution leads to a regular 

and physical distribution. 

IV. RESULTS 

A. Numerical validation 

In order to validate the algorithm, a test configuration is 

proposed. A square ferromagnetic plate with a linear 

anhysteretic reluctivity 𝜈𝑎 and a null coercive field is placed in 

a homogenous inductor field. Its magnetic state (𝑯, 𝑩)  is 

computed by solving (3). Then, for each element, equation (1) 

is solved locally, considering now the reversible reluctivity ν in 

order to compute the distribution 𝑯𝒄  in each element of the 

plate. In a second step, (3) is solved again with a new inductor 

field in order to get a complex magnetic state mixing permanent 

and reversible magnetizations. The numerical measurements 

are generated with (4) on four tri-axis sensors. The inverse 

problem is then solved and the identified coercive field is 

compared to the initial one (Fig.1). Both distributions are 

coherent and the extrapolated signature very accurate (Table 1). 
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Fig 1: Iron sheet mesh and inversion test configuration (dimensions: 1m², 

number of elements: 440, number of unknowns: 760, thickness: 2 mm, 4 tri-axis 

sensors at 5 cm from the sheet). Left: mesh and sensors location. Middle: 

reference Hc. Right: Identified Hc. The same range is provided for both Hc. 

 

Induction components Bx By Bz 

Mean error % 0,49 1,35 0,54 

Max error % 2 2,03 1,42 

Table 1 : Error computed between the reference and the identified state on a 

computation line located at 0.5 meter from the sheet. 

 

B. Test of the algorithm with experimental data 

An experimental set-up (Fig. 2.) has been developed. It is 

based on a hollow cylinder which is filled by oil and can be 

pressurized thanks to a pump. The algorithm can be used in 

order to study magneto-elastic effects i.e. the variation of the 

permanent magnetization versus the combined effect of a low 

magnetic inductor field and a high-pressure acting on the shell 

[6]. This study would be relevant to predict magnetic anomaly 

created by submerged submarines for instance. Eight tri-axes 

fluxgate magnetic sensors are placed around the device for the 

external magnetic field measurement. 

 
 

Fig 2: Plans of the experimental set up (left), pressurized cylinder (right). 

 

The cylinder is initially demagnetized. Then it is placed in an 

axial uniform inductor magnetic field of 40 μT and an applied 

internal pressure of 10 MPa. After such a process, it gets a per-

manent magnetization which can be determined using our algo-

rithm (Fig.3.). In order to check if the state of the shell has been 

correctly identified, the magnetic field is then computed on a 

line and compared with others measurements. Both curves 

match, the error being less than 1%. It demonstrates the effi-

ciency of the method. 
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Fig 3: Distribution of magnetic coercive field on the cylinder (top), vertical 

magnetic induction on a line under the device (blue -- predicted / red measured) 
(bottom). 

REFERENCES 

[1] Bruckner, F., Abert, C., Wautischer, G., Huber, C., Vogler, C., Hinze, M., 

& Suess, D. (2017). Solving large-scale inverse magnetostatic problems 

using the adjoint method. Scientific reports, 7, 40816. 
[2] Arbenz, L., Chadebec, O., Espanet, C., Rtimi, Y., & Cauffet, G. (2017). 

Characterization of permanent magnet magnetization. IEEE Transactions 

on Magnetics, 53(11). 
[3] Chadebec, O., Coulomb, J. L., Bongiraud, J. P., Cauffet, G., & Le Thiec, 

P. (2002). Recent improvements for solving inverse magnetostatic prob-

lem applied to thin shells. IEEE transactions on magnetics, 38(2), 1005-
1008. 

[4] Le-Van, V., Meunier, G., Chadebec, O., & Guichon, J. M. (2015). A vol-
ume integral formulation based on facet elements for nonlinear magneto-

static problems. IEEE Transactions on Magnetics, 51(7). 

[5] Chavin-Collin G., Chadebec O., Meunier G., Cavallera D., Galopin N. et 
al. An Integral Face Formulation for Thin Non Conductive Magnetic Re-

gions, Proceeding of CEFC 2018, Oct 2018, Hangzhou, China. 

[6] Viana, A., Rouve, L. L., Cauffet, G., & Coulomb, J. L. (2011). Analytical 
model for external induction variations of a ferromagnetic cylinder under-

going high mechanical stresses in a low magnetic field of any orientation. 

IEEE Transactions on Magnetics, 47(5), 1366-1369. 


