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We study the moments of even order of the generating function 0≤r<n (1 -e(2 r x)) of the Thue-Morse sequence and we present several conjectures related to these moments.

Introduction

For any nonnegative integer m we denote by s(m) the number of distinct powers of 2 in the binary representation of m. Then the Thue-Morse sequence (or Prouhet-Thue-Morse sequence) is the sequence ((-1) s(m) ) m∈N . This sequence occurs in many questions related to combinatorics, algebra, number theory, harmonic analysis, geometry, dynamical systems, ergodic theory, etc. (see for example [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF] or [START_REF] Mauduit | Multiplicative properties of the Thue-Morse sequence[END_REF]). Mahler introduced it for the first time in the context of harmonic analysis in [START_REF] Mahler | The Spectrum of an Array and Its Application to the Study of the Translation Properties of a Simple Class of Arithmetical Functions. II: On the Translation Properties of a Simple Class of Arithmetical Functions[END_REF] in order to illustrate the results obtained by Wiener [START_REF] Wiener | The Spectrum of an Array and Its Applications to the Study of the Translation Properties of a Simple Class of Arithmetical Functions. I: The Spectrum of an Array[END_REF]. He showed in particular that for any k ∈ N the sequence 1 N m<N (-1) s(m) (-1) s(m+k) N ∈N converges, and that the limit is nonzero for infinitely many integers k. This can be interpreted as the fact that the correlation measure of the symbolic dynamical system associated to the Thue-Morse sequence is the Riesz product r≥0 (1 -cos 2 r t) (see [START_REF] Keane | Generalized Morse sequences[END_REF]). It follows from the definition of s that for |z| < 1 we have

∞ r=0 1 -z 2 r = ∞ m=0 (-1) s(m) z m .
For any n ∈ N we consider the function T n defined for x ∈ R by (1.1) T n (x) = 0≤r<n

(1 -e(2 r x)) = 0≤m<2 n (-1) s(m) e(mx),

where e(θ) = e 2πiθ . The study of the values of T n p , 1 ≤ p ≤ +∞ plays an important role in many problems. In particular, sharp estimates for T n 1 and T n ∞ allowed Mauduit and Rivat to prove a Prime Number Theorem for the sum-of-digits function in [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] (see [START_REF] Mauduit | La somme des chiffres des carrés[END_REF] and [START_REF] Drmota | The sum-of-digits function of polynomial sequences[END_REF] for the study of the sumof-digits function along polynomial sequences) and the study of the ratios T n+1 p / T n p (for p an even integer) allowed Kurths, Pikowsky, and Zaks to compute the generalized dimension for the Fourier spectrum of the Thue-Morse sequence in [START_REF] Zaks | On the generalized dimensions for the Fourier spectrum of the Thue-Morse sequence[END_REF] (see also [START_REF] Zaks | On the correlation dimension of the spectral measure for the Thue-Morse sequence[END_REF]).

Here we consider the moments

(1.2) M k (n) = 1 0 |T n (x)| 2k dx
for positive integers k, which turn out to have some interesting and unexpected properties. By Parseval's identity it is clear that M k (n) is an integer, and that M 1 (n) = 2 n . We show that for any fixed k, the sequence of moments M k (n) satisfies a linear recurrence of order k.

Theorem 1. For positive integers k let A k = [a ij ] be the k × k matrix with integral entries

(1.3) a ij = (-1) i 2 2k-2i-1 j + k -i i j + k j + k -i (0 ≤ i, j < k),
and let

(1.4) p k (z) = det(zI -A k ) = z k -c k-1,k z k-1 -• • • -c 0,k ∈ Z[z]
be the characteristic polynomial of A k . Then

(1.5) M k (n) = c k-1,k M k (n -1) + • • • + c 0,k M k (n -k)
for all integers n ≥ k.

The fact that the a ij are integers is not immediately clear from (1.3), but their integrality will be established in the course of the proof of Theorem 1.

Theorem 2. For all positive integers k, there exists a C k > 0 such that for n → +∞,

(1.6) M k (n) = C k ρ(A k ) n (1 + o(1))
where ρ(A k ) denotes the spectral radius of A k . The next theorem gives a better upper bound for ρ(A k ).

It is well known that T n ∞ ≤ 2 × 3 (n-
Theorem 3. We have

ρ(A k ) ≤ 1 2 (3 k + 4 2k/3 ) = 3 k 2 (1 + o(1)).
The method used in the proof of Theorem 2 yields better upper bounds for ρ(A k ) for small values of k. For example it leads to ρ(A 2 ) ≤ 4 √ 2 and ρ(A 3 ) ≤ 16, while in fact numerical computation gives ρ(A 2 ) = 5.1231 and ρ(A 4 ) = 14.2191 and we conjecture that ρ(A k ) ∼ 1 2 3 k (see section 7). It would be nice to have more explicit formulas for the c j,k defined by (1.4). In this direction, we determine the trace and determinant of A k , which yields c k-1,k and c 0,k . Theorem 4. With the matrix A k defined as in (1.3), (1.7) tr

A k = 3 k-1 + (-1) k-1 ,
and

(1.8) det A k = ε k 2 k 2
where ε k = 1 if k ≡ 0 or 1 (mod 4), and

ε k = -1 if k ≡ 2 or 3 (mod 4).
From (1.7) it follows that if t k = tr A k , then (1.9)

t k = 2t k-1 + 3t k-2 .
Since c 0,k = 0, the linear recurrence (1.5) is genuinely of order k (not less). However, it could still be the case that M k satisfies a linear recurrence of lower order-in which case the polynomial p k would be reducible. Numerical experimentation suggests that the p k are all irreducible, but this is far from proven. Indeed, numerical experimentation suggests that the eigenvalues of the A k , and the coefficients of p k have many striking properties. Our conjectures on this issue are collected in §7.

The authors are happy to thank Dick Askey for helpful comments, particularly relating to the identities in §2.

A combinatorial identity

In the course of proving Theorem 1, we encounter the following combinatorial sum, which can be written in closed form. Lemma 1. For integers i and n with 0 ≤ i < n,

(2.1) s 0 (n, i) := i≤m≤n/2 n 2m m i = 2 n-2i-1 n -i i n n -i .
This formula is asserted as item (3.120) in Gould [9, p. 36], but with no indication as to where a proof might be found. A complicated proof can be pieced together by combining several exercises from various chapters of Riordan [START_REF] Riordan | Combinatorial identities[END_REF]. A machine proof might be constructed using an implementation of Zeilberger's algorithm, but we have not achieved that. In fact, the formula is ancient, as it is a special case of a formula known to Chu in the thirteenth century (see Askey [START_REF] Askey | Orthogonal Polynomials and Special Functions[END_REF]Chapter 7]).

Proof. Let r = m -i. Then s 0 (n, i) = n 2i n/2-i r=0 n 2r + 2i r + i i n 2i = n 2i n/2-i r=0 a r ,
say. By simple algebra we see that

a r+1 a r = (r + i -n/2)(r + i -(n -1)/2) (r + 1)(r + i + 1/2) .
Since a 0 = 1, it follows that

s 0 (n, i) = n 2i n/2-i r=0 (i -n/2) r (i -(n -1)/2) r (i + 1/2) r r! (2.2) = n 2i 2 F 1 i -n/2 , i -(n -1)/2 i + 1/2 1 .
Here

(x) r = x(x + 1)(x + 2) • • • (x + r -1) is the Pochhammer symbol.
The Chu-Vandermonde identity asserts that if s is a nonnegative integer, then

(2.3) s r=0 (-s) r (a) r (c) r r! = (c -a) s (c) s
for arbitrary a and c. In Andrews-Askey-Roy [3, Corollary 2.2.3] this arises as a special case of a hypergeometric identity due to Gauss [START_REF] Gauss | Disquisitiones generales circa seriem infinitam[END_REF].

Suppose that n is even, say n = 2t. In (2.3) we take s = t -i, a = i -t + 1/2, and c = i + 1/2 to see that

s 0 (n, i) = n 2i (t) t-i (i + 1/2) t-i . Now (a + 1/2) m = (2a + 1) 2m / 2 2m (a + 1) m , so that s 0 (n, i) = 2 2t-2i n 2i (t) t-i (i + 1) t-i (2i + 1) 2t-2i .
As (t) t-i = (n -i -1)!/(t -1)!, (i + 1) t-i = t!/i!, and (2i + 1) 2t-2i = n!/(2i)!, we get

s 0 (n, i) = 2 n-2i (n -i -1)! t i!(n -2i)! = 2 n-2i-1 n -i i n n -i ,
as was to be shown. Suppose that n is odd, say n = 2t + 1. In (2.3) we take s = t -i, a = i -t -1/2, and c = i + 1/2 to see that

s 0 (n, i) = n 2i (t + 1) t-i (i + 1/2) t-i = 2 2t-2i n 2i (t + 1) t-i (i + 1) t-i (2i + 1) 2t-2i = 2 n-2i-1 n(2t -i)! i!(n -2i)! = 2 n-2i-1 n -i i n n -i ,
which completes the proof.

The sum s 0 (n, i) has a companion, namely (2.4)

s 1 (n, i) := i≤m≤(n-1)/2 n 2m + 1 m i = 2 n-2i-1 n -i -1 i .
This evaluation in closed form is also an easy consequence of the Chu-Vandermonde identity (2.3). By using familiar properties of binomial coefficients it is easy to show that (2.5)

s 0 (n + 1, i) = s 0 (n, i) + s 1 (n, i) + s 1 (n, i -1), s 1 (n + 1, i) = s 1 (n, i) + s 0 (n, i) .
These identities make it possible to prove (2.1) and (2.4) simultaneously by a double induction. This is a little tedious, since various bases of induction need to be checked. In addition, this ignores the fact that both (2.1) and (2.4) are simple consequences of an ancient formula.

Proof of Theorem 1

Following Fouvry & Mauduit [START_REF] Fouvry | Sommes des chiffres et nombres presque premiers[END_REF], for f ∈ L 2 (T) we define the operators

P k f (x) = 1 2 (2 sin πx/2) 2k f (x/2) + 1 2 (2 cos πx/2) 2k f ((x + 1)/2), (3.1) Q k f (x) = (2 sin πx) 2k f (2x). (3.2) Thus (3.3) M k (n) = 1 0 Q n k 1 dx .
For f, g ∈ L 2 (T) we note that

Q k f, g = 1 0 (2 sin πx) 2k f (2x)g(x) dx = 1 2 2 0 (2 sin πu/2) 2k f (u)g(u/2) du = 1 2 1 0 f (u) (2 sin πu/2) 2k g(u/2) + (2 cos πu/2) 2k g((u + 1)/2) du = f, P k g . Thus P k is the adjoint of Q k , P k = Q * k . In particular, (3.4) M k (n) = Q n k 1, 1 = 1, P n k 1 = 1 0 P n k 1 dx .
Let E k denote the vector space of even trigonometric polynomials with period 1 and degree < k.

Of course cos 2πjx for 0 ≤ j < k is a basis for E k , but we note that

(3.5) sin 2j πx = (-1) j 2 -2j j n=-j (-1) n 2j j -n e(nx)
is an even trigonometric polynomial with period 1 and degree j, so 1, sin 2 πx, sin 4 πx, . . ., sin 2(k-1) πx is also a basis for E k . Suppose that 0 ≤ j < k. Then

P k sin 2j πx = 2 2k-1 sin 2(j+k) πx 2 + 2 2k-1 cos 2(j+k) πx 2 .
By the half angle formulae this is

= 2 2k-1 1 -cos πx 2 j+k + 2 2k-1 1 + cos πx 2 j+k .
By the binomial theorem this is

= 2 k-j 0≤m≤(j+k)/2 j + k 2m cos 2m πx, (3.6)
which is an even trigonometric polynomial with period 1 and degree [(j + k)/2] < k. Thus P k maps E k to itself. Let P k denote the restriction of P k to E k . Continuing from (3.6), we find that

P k sin 2j πx = 2 k-j 0≤m≤(j+k)/2 j + k 2m (1 -sin 2 πx) m = 2 k-j 0≤m≤(j+k)/2 j + k 2m m i=0 (-1) i m i sin 2i πx = 2 k-j 0≤i≤(j+k)/2 (-1) i sin 2i πx i≤m≤(j+k)/2 j + k 2m m i .
Here it is clear that the coefficient of sin 2i πx is an integer. From Lemma 1 with n = j + k, we see that

P k sin 2j πx = k-1 i=0 a ij sin 2i πx
with the a ij defined in (1.3). Let p k be the characteristic polynomial of the matrix A k = [a ij ], as defined in (1.4). By the Cayley-Hamilton theorem we know that p k (A k ) = 0. Thus

A n k = c k-1,k A n-1 k + c k-2,k A n-2 k + • • • + c 0,k A n-k k
for n ≥ k, and hence

P k n = c k-1,k P k n-1 + c k-2,k A P k n-2 + • • • + c 0,k P k n-k . Thus M k (n) = 1 0 P k n 1 dx = 1 0 c k-1,k P k n-1 1 + • • • + c 0,k P k n-k 1 dx = c k-1,k M k (n -1) + c k-2,k M k (n -2) + • • • + c 0,k M k (n -k),
which completes the proof.

Proof of Theorem 2

The operator P k that we introduced in (3.1) is a special case of positive quasi-compact transfer operators that have been studied by many authors in ergodic theory (see in particular [START_REF] Conze | Fonctions harmoniques pour un opérateur de transition et applications Bull[END_REF][START_REF] Hervé | Etude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert[END_REF][START_REF] Hervé | Construction et régularité des fonctions d'échelle[END_REF]).

When the transfer function is a trigonometric polynomial (in our case (2 sin πx) 2k ) the quasicompactness of P k is trivial. Indeed, as we saw in §3 the operator P k acts on the k dimensional vector space E k and A k is the matrix of P k in the basis (1, sin 2 πx, sin 4 πx,. . ., sin 2(k-1) πx).

Proposition 1. The spectral radius of P k is equal to

(4.1) ρ(A k ) = lim n→+∞ P n k 1 1/n
∞ and is the only eigenvalue of P k with modulus ρ(A k ). The eigenfunction ψ k associated to ρ(A k ) is strictly positive on [0, 1]. We have the following spectral decomposition of P k :

(4.2) E k = ker(P k -ρ(A k )Id) ⊕ F k ,
where F k is a subspace of E k stabilized by P k and such that the spectral radius of the restriction of P k to F k is strictly less than ρ(A k ). Moreover for any x ∈ [0, 1] we have

(4.3) ρ(A k ) = lim n→+∞ P n+1 k 1(x) P n k 1(x)
.

Proof. Proposition 1 follows from the study made by Hervé in [START_REF] Hervé | Construction et régularité des fonctions d'échelle[END_REF] in the context of wavelet theory (see in particular Théorème 3.1 and Théorème 4.2 from [START_REF] Hervé | Construction et régularité des fonctions d'échelle[END_REF]). In order to apply the results from [START_REF] Hervé | Construction et régularité des fonctions d'échelle[END_REF]) it is enough to check that the function (2 sin πx) 2k does not admit any invariant periodic cycle (i.e. there exists no positive integer Q such that ∀q ∈ {1, . . . , Q}, ∀ ∈ {0, . . . , 2 q -1}, sin π

2 q -1 + 1 2 = 0),
The fact that ψ k is stricly positive is a consequence of the study by Conze and Raugi in [START_REF] Conze | Fonctions harmoniques pour un opérateur de transition et applications Bull[END_REF] on the invariant compact sets associated to the transformations x → x 2 and x → x+1 2 of the interval [0, 1] and the description by Hervé in [START_REF] Hervé | Etude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert[END_REF] of the zeros of the eigenvalues of this class of operators. Moreover the fact that ρ(A k ) is the only eigenvalue of P k with modulus ρ(A k ) follows from the proof of Théorème 4.2 in [START_REF] Hervé | Construction et régularité des fonctions d'échelle[END_REF].

Writing the function 1 according to (4.2), it follows that

1 = α k ψ k + f k , with α k ∈ R (α k = 0 because of (4.1)) and f k ∈ F k .
This implies that

M k (n) = 1 0 P n k 1 dx = α k ρ(A k ) n 1 0 ψ k (x)dx(1 + O(θ -n k )),
where θ k > 1 is the ratio of ρ(A k ) to the spectral radius of the restriction of P k to F k .

Proof of Theorem 3

Applying the method of [17, Lemma pages 72-73] or [6, page 583] we have for all integer n ≥ 2

T n (x) = 0≤r<n |2 sin(π2 r x)| ≤ 2 0≤r<n-1 u(2 r x), where u(x) = 2 |sin(πx)| 2/3 |sin(2πx)| 1/3 . It follows that M k (n) ≤ 4 k I k (n -1)
where for n ≥ 0,

I k (n) = 1 0 0≤r<n u(2 r x) 2k dx
(with the convention that an empty product is equal to 1, so that I k (0) = 1). We have for n ≥ 1

I k (n) = 1/2 0 u(x) 2k 1≤r<n u(2 r x) 2k dx + 1 1/2 u(x) 2k 1≤r<n u(2 r x) 2k dx = 1 0 1 2 u(x/2) 2k + 1 2 u((x + 1)/2) 2k 0≤r<n-1 u(2 r x) 2k dx ≤ w k I k (n -1),
where

w k = max x∈R 1 2 u(x/2) 2k + u((x + 1)/2) 2k . By induction we get I k (n) ≤ w n k I k (0) = w n k .
For all x ∈ R we have u(x/2) 3 + u((x + 1)/2) 3 = 8 |sin πx| ≤ 8, so that min(u(x/2), u((x + 1)/2)) ≤ 4 1/3 . Furthermore for all x ∈ R we have u(x) ≤ u(1/3) = √ 3, hence

w k ≤ 1 2 (3 k + 4 2k/3 ). It follows that M k (n) ≤ 4 k I k (n -1) ≤ 4 k w n-1 k
and from (1.6) we deduce that

ρ(A k ) ≤ w k ,
which completes the proof of Theorem 3.

Proof of Theorem 4

From the definition (1.3) of the a ij it is clear that tr

A k = k-1 i=0 a ii = 1 k k-1 i=0 (-1) i 2 2k-2i-1 k i (k + i) = k-1 i=0 (-1) i 2 2k-2i-1 k i + k-1 i=0 (-1) i 2 2k-2i-1 k -1 i -1 = 1 2 (4 -1) k -(-1) k - 1 2 (4 -1) k-1 -(-1) k-1 = 3 k-1 + (-1) k-1 .
As for the second assertion of Theorem 4, let

B k = [b ijk ] be the k × k matrix with entries b ijk = j + k -i i + j + k -i -1 i -1 = j + k -i i j + k j + k -i (0 ≤ j, k < k). Thus det A k = det B k × k-1 i=0 (-1) i 2 2k-2i-1 = ε k 2 k 2 det B k ,
so it suffices to show that det B k = 1. We induct on k. We know that B

1 = [1], so det B 1 = 1. Let b 0 k , . . . , b k-1 k denote the columns of B k . Our first task is to show that if 0 < j < k, then (6.1) b j k -b j-1 k = 0 b j-1 k-1 .
To this end we note first that b 0 j k = 1 for all j, so that b 0 j k -b 0 j-1 k = 0 for 0 Thus det B k = det B k-1 , so the induction is complete.

< j < k. If 2i ≤ j + k -1, then b i j k -b i j-1 k = j + k -i i + j + k -i -1 i -1 - j + k -i -1 i -1 - j + k -i -2 i -2 = b i-1 j-1 k-1 . If 2i = j + k, then b i j-1,k = 0, and so b i j k -b i j-1 k = b i j k = 2 = b i-1 j-1 k-1 . If 2i > j + k, then b i j k = b i j-1 k = b i-1 j-1 k-1 = 0.

Conjectures and Questions

Based on some experimentation with the matrices A k and B k , their characteristic polynomials and their eigenvalues, we propose the following: Numerical computations suggest the stronger conjecture that ρ(A k ) = 1 2 3 k + O(k 2 ).

  Thus we have (6.1). We now operate on B k as follows: We subtract column b k-2 k from b k-1 k , then subtract b k-3 k from b k-2 k , and so on, until finally we subtract b 0 k from b 1 k . The result is a matrix of the form 1 0 * B k-1.

Conjecture 1 .Conjecture 2 .Conjecture 3 .Conjecture 4 .Conjecture 5 . 1 . 6 .Conjecture 7 .Conjecture 8 . 2 ( 1 +

 12345167821 All eigenvalues of A k are real. If k = 2r, then A k has r positive eigenvalues, and r negative eigenvalues. If k = 2r + 1, then A k has r + 1 positive eigenvalues, and r negative eigenvalues. If the negative eigenvalues of A k are replaced by their negatives, then the resulting numbers interlace with the positive eigenvalues, e.g., when k = 5, the eigenvalues are 122.32, 37.02, 6.14, -18.59, -64.91. For each k, the characteristic polynomial p k is irreducible over Q. With c k-r,k defined in Theorem 1 and ε r defined in Theorem 4, sgn c k-r,k = ε r-Conjecture The zeros of p k interlace with those of p k+1 . Let B k be defined as in the Proof of Theorem 4. The eigenvalues of B k are all positive real. The spectral radius of A k satisfies ρ(A k ) = 3 k o(1)).
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