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ON THE DIGITS OF SUMSETS

CHRISTIAN MAUDUIT, JOËL RIVAT, AND ANDRÁS SÁRKÖZY

Abstract. Let A, B be large subsets of {1, . . . , N}. We study the number of pairs (a, b) ∈ A×B
such that the sum of binary digits of a + b is fixed.

1. Introduction

Throughout this paper we will use the following notations: N, N0, R and C denote the set of
positive integers, non-negative integers, real numbers, resp. complex numbers, and ‖x‖ denotes the
distance from x to the nearest integer. We will denote the sum of digits of an integer n > 0 written
in base g by sg(n) and will write s2(n) = s(n).

There are more than 40 papers in which arithmetic properties of sumsets of “dense” sets of
positive integers have been studied (most of these papers appeared in the last 40 years). A list
of these papers is presented in [2]. In particular, in [16] the first and third authors studied the
arithmetic structure of the set

(1.1) Ur(N) = {n : n ∈ N, n 6 N, sg(n) ≡ r mod m}
(for fixed g, r, m and large N), and among others they showed that these sets contain “many” sums
a+ b with a ∈ A, b ∈ B where A, B are “dense” subsets of {1, . . . , N}:
Theorem A. If g ∈ N, g > 2, m ∈ N, (m, g − 1) = 1, r ∈ Z and A,B ⊂ {1, . . . , N}, then we have

(1.2)

∣∣∣∣|{(a, b) ∈ A× B, sg(a+ b) ≡ r mod m}| − |A| |B|
m

∣∣∣∣ 6 2γNλ(|A| |B|)1/2

where λ = λ(g,m) and γ = γ(g,m) are defined by

λ =
1

2 log g
log

g sin(π/2m)

sin(π/2mg)
(< 1),

γ = γ(g,m) =
g2

gλ − 1
.

so that if (|A| |B|)1/2 � Nλ, then the set of the numbers sg(a+ b) meets every residue class modulo

m, and if (|A| |B|)1/2N−λ → +∞, then the numbers sg(a+ b) are well distributed modulo m.
The study of the arithmetic structure of the set (1.1) was relatively easy since this set is “dense”:

for fixed g, r, m, it contains a positive proportion of the integers up to N . Thus the first and third
authors wrote in [17] “Since the integers characterized by a simple digit property have a very specific
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structure and they can be studied very efficiently by the generating function principle, one expects
that it can be proved that much “thinner” sets of this type all have a nice arithmetic structure. The
most natural way to construct “thin” sets of this type is to consider the sets

(1.3) Vk = {n : n ∈ N, n 6 N, sg(n) = k}

where k ∈ N, 0 6 k 6 (g − 1)
(

logN
log g + 1

)
”. Indeed, we showed in [17] that for every k we have

|Vk| �g N(logN)−1/2

so that these sets are much thinner than the set in (1.1). Motivated by this consideration our goal
was in [17] to study the arithmetic structure of the sets Vk in (1.3). We succeded in proving some
results similar to the ones proved in the easier situation studied in [16]. However, as we wrote in
[17] (here we change the notation slightly): “. . . one would like to prove the Vk analogue of our result
Theorem A. Unfortunately, we have not been able to prove such a theorem. . . . Thus, in particular,
we have not been able to prove the following conjecture:

Conjecture 1. If ε > 0, N > N0(ε), A,B ⊂ {1, 2, . . . , N} and |A| , |B| > εN , then there are
integers a, b such that a ∈ A, b ∈ B and

sg(a+ b) = b(g − 1)ν/2c

where ν = ν(N) ∈ N is defined by gν 6 N 6 gν+1 − 1. ”

The set of the integers n such that sg(n) =
⌊
g−1

2

⌊
logn
log g

⌋⌋
can be generated by an infinite au-

tomaton (or an infinite substitution of constant length g) on the alphabet {0, . . . , g−1} (see [10] for
a precise definition of infinite automata and infinite substitutions). Fouvry and Mauduit described
in [6] the statistical properties of this set and the goal of this paper is to study more deeply the
statistical properties in order to be able to understand how it intersects sumsets.

The paper [17] appeared in 1997, and since that no advance has been made towards this con-
jecture. However, since that many papers have been published on integers characterized by digit
properties [6, 12, 13, 14, 15, 4, 5, 3, 8, 19, 9, 11]. In some of these papers (mostly in [6], [8] and [12])
there are new ideas, methods and results which can be used for attacking Conjecture 1. Indeed, by
adapting, extending and combining these ideas we have been able to prove the conjecture. In order
to shorten the discussion here we will restrict ourselves to the g = 2 special case. (The case g > 2
could be handled similarly, however, there are certain technical difficulties, thus we expect that the
proof would be much longer.) In this paper our goal is to present the proof of the following slightly
more general form of the g = 2 case of the conjecture:

Theorem 1. For any L > 0 and ε > 0 there is a number N0 = N0(L, ε) such that if N ∈ N,
N > N0, k ∈ N,

(1.4)

∣∣∣∣k − logN

2 log 2

∣∣∣∣ < L(logN)1/4,

and

(1.5) A,B ⊂ {1, 2, . . . , N},
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then, writing ρ =
(

log 2
8

)1/2

, we have∣∣∣∣∣|{(a, b) : a ∈ A, b ∈ B, s(a+ b) = k}| −
(

log 4

π

)1/2 |A| |B|
(logN)1/2

∣∣∣∣∣(1.6)

<
N

(logN)1/2 exp
(
(ρ− ε)(log logN)1/2

) (|A| |B|)1/2.

Note that if ν is defined as in conjecture 1 (with g = 2), then we have logN
2 log 2 = ν

2 +O(1) so that

(1.4) holds with
⌊
ν
2

⌋
in place of k. It follows from Theorem 1 that if

(|A| |B|)1/2 >

(
π

log 4

)1/2
N

exp
(
(ρ− ε)(log logN)1/2

) ,
then there are a ∈ A, b ∈ B with

(1.7) s(a+ b) = bν/2c ,

and, indeed (applying Theorem 1 with ε
2 in place of ε) it also follows that the number of solutions

of (1.7) in a and b is about as large as expected:

|{(a, b) : a ∈ A, b ∈ B, s(a+ b) = k}| = (1 + o(1))

(
log 4

π

)1/2 |A| |B|
(logN)1/2

.

In section 6 we will also present an estimate from the opposite side.

2. Structure of the proof of the Theorem

We will use the circle method. Define the positive integer ν by

(2.1) 2ν−1 6 2N < 2ν ,

define now Vk by

(2.2) {n : n 6 2ν − 1, s(n) = k},

for α ∈ R write

(2.3) F (α) =
∑
n∈Vk

e(nα),

G(α) =
∑
a∈A

e(aα)

and

H(α) =
∑
b∈B

e(bα),

and consider the integral

(2.4) J =

∫ 1/2

−1/2

G(α)H(α)F (−α)dα.
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Then

J =

∫ 1/2

−1/2

∑
a∈A

∑
b∈B

∑
n∈Vk

e((a+ b− n)α)dα(2.5)

=
∑

a+b−n=0
a∈A, b∈B, n∈Vk

1 =
∑

a∈A, b∈B
s(a+b)=k

1

= |{(a, b) : a ∈ A, b ∈ B, s(a+ b) = k}| .

Thus it suffices to estimate the integral J . In order to do this first we will estimate F (α) defined
in (2.3) for “large” ‖α‖ in section 3, next we will estimate it for “small” ‖α‖ in section 4, finally, we
will complete the proof of the theorem by using these estimates in section 5.

3. Estimate of F (α) for large ‖α‖

The study of the trigonometric product
∏ν−1
j=0

∣∣sinπ2j ad
∣∣ for (d, a, ν) ∈ N×N2

0 plays an important

role in many works concerning the sum of digits function. For example the main results from [7]

and [18] are based on the fact that this trigonometric product is uniformly bounded by
(√

3
2

)ν−1

.

Results from [16], [17] and [12] are based on upper bounds uniform in a of the kind e−cν/ log d with
c > 0 and those from [11] on the upper bound on average

1

d

∑
06a<d

∑
06j<ν

∣∣∣sinπ2j
a

d

∣∣∣ 6 (√3

2

)ν √
3

dlog(3/2)/ log 2
.

The situation becomes much more complicated to handle when the rational number a/d is replaced
by a real number α. In Lemma 4 we give an explicit upper bound for the trigonometric product

ν−1∏
j=0

∣∣cosπ
(
θ + 2jα

)∣∣ = 2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣

with (θ, α) ∈ R2 depending on ‖θ‖ and on the first non zero digit in the dyadic expansion of the
real number α and in Lemma 6 we give a L1 estimate for this trigonometric product.

Lemma 1. For (θ, α) ∈ R2 we have

(3.1) ‖θ + α‖2 + ‖θ + 2α‖2 > 1
5 ‖θ‖

2

and

(3.2) |1 + e(θ + α)| · |1 + e(θ + 2α)| 6 4 e−2c‖θ‖2

with

(3.3) c = π2/20.

Remark: Taking α = −3θ/5 we observe that (3.1) is optimal and (3.3) is also optimal (compare
Taylor expansions in (3.2) when α = −3θ/5).

Proof. We want to determine the minimum mθ of α 7→ ‖θ + α‖2 + ‖θ + 2α‖2 when α runs over
R. By symmetry and periodicity we may assume that 0 6 θ 6 1/2. Put t = θ + α and g(t) =

‖t‖2 + ‖2t− θ‖2. We have mθ = g(t0) for some t0 ∈ [−1/2, 1/2]. Since mθ 6 g(θ/2) = θ2/4 we may
assume that both t0 ∈ [−θ/2, θ/2] and ‖2t0 − θ‖ 6 θ/2. For t ∈ [−1/2, (2θ− 1)/4] we have −3/2 6
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2t−θ 6 −1/2, thus g(t) = t2 +(2t−θ+1)2, so that in this interval g(t) > g(2(θ−1)/5) = (1−θ)2/5.
For t ∈ [(2θ−1)/4, θ/2] we have g(t) = t2 +(2t−θ)2, so that in that interval g(t) > g(2θ/5) = θ2/5.
Observing that θ2 6 (1− θ)2 we conclude that the minimum is reached for t0 = 2θ/5 and get (3.1).

For x ∈ [−1/2, 1/2], we have

0 6 cos(πx) 6 1− π2x2

2
+
π4x4

24
6 1− π2x2

2
+
π4x4

8
− π6x6

48
6 e−

π2x2

2 .

Observing that |1 + e(u)| = 2 cos(π ‖u‖) we deduce from the inequality above that

|1 + e(θ + α)| · |1 + e(θ + 2α)| 6 4 e−
π2

2 (‖θ+α‖2+‖θ+2α‖2),

and applying (3.1) we get (3.2). �

Lemma 2. For (θ, α) ∈ R2, ν ∈ N and c defined by (3.3) we have

(3.4) 2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ 6 e−c‖θ‖2(ν−2‖ν/2‖) 6 ec/4e−c‖θ‖

2ν .

Proof. Notice that ν − 2 ‖ν/2‖ is an even integer 2ν′ with 2ν′ 6 ν 6 2ν′ + 1. Hence

2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ 6 2−2ν′

ν′−1∏
j=0

∣∣1 + e(θ + 22jα)
∣∣ ∣∣1 + e(θ + 22j+1α)

∣∣
and applying Lemma 1 with α replaced by 2jα for j = 0, . . . , ν′ − 1 we get the result. �

Lemma 3. For 0 6 θ0 6 1
2 , α ∈ R, ν ∈ N and c defined by (3.3) we have

(3.5) 2−ν
∫
‖θ‖>θ0

ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ dθ 6 √π ec/4 e−cθ20ν√

cν
.

Proof. By (3.4) it is enough to observe that∫
‖θ‖>θ0

e−c‖θ‖
2νdθ = 2 e−cθ

2
0ν

∫ 1/2

θ0

e−c(θ
2−θ20)νdθ

and writing θ = θ0 + t we have∫ 1/2

θ0

e−c(θ
2−θ20)νdθ 6

∫ +∞

0

e−c(t
2+2θ0t)νdt 6

∫ +∞

0

e−ct
2νdt =

√
π

2
√
cν
,

which gives (3.5). �

Lemma 4. Let ν1 ∈ N, (θ, α) ∈ R2 such that ‖θ‖ < 1
4 and 2−ν1 6 ‖α‖ < 21−ν1 . For ν > ν1 and c

defined by (3.3) we have

(3.6) 2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣� ‖θ‖ e−c‖θ‖2ν + 2ν1−ν + exp

(
−σ(θ)

√
ν − ν1

)
,

where σ(θ) =
√
− 1

2 (log 2) log
(
sinπ(‖θ‖+ 1

4 )
)
.



6 CHRISTIAN MAUDUIT, JOËL RIVAT, AND ANDRÁS SÁRKÖZY

Proof. If ν1 = 1, i.e. ‖α‖ = 1/2 then for j = 0 we observe that 1
2

∣∣1 + e
(
θ + 1

2

)∣∣ = |sinπθ| 6 π ‖θ‖
and for 1 6 j 6 ν − 1 we have 1

2

∣∣1 + e(θ + 2jα)
∣∣ = 1

2 |1 + e(θ)| 6 e−c‖θ‖
2

(using (3.2) with α = 0)
and we obtain that (3.6) is satisfied. Therefore we can assume that ν1 > 2.

By periodicity we may assume that −1/2 < α < 1/2. Then if −1/2 < α < 0, observing that∣∣1 + e(θ + 2jα)
∣∣ =

∣∣1 + e(−θ − 2jα)
∣∣ we may replace (θ, α) by (−θ,−α), so that we can assume

that 0 6 α < 1/2. We can write

α =

∞∑
i=1

ai2
−i

with a1 = · · · = aν1−1 = 0, aν1 = 1 and ai ∈ {0, 1} for i > ν1 + 1.
In the word a1 · · · aν+1 let us consider the length `1 of the largest subword of the shape 01 · · · 1.

That means that `1 is the greatest element of {2, . . . , ν−ν1+3} with the property that there exist an
integer j0 with 0 6 ν1−2 6 j0 6 ν+1−`1 6 ν−1 such that aj0+1 = 0 and aj0+2 = · · · = aj0+`1 = 1
(taking j0 = ν1− 2 and `1 = 2 show that the set of such `1’s is not empty). Under these conditions
we have ∥∥2j0α− 1

2

∥∥ =

∥∥∥∥∥∥
∑

i>j0+2

ai2
j0−i −

∑
i>j0+2

2j0−i

∥∥∥∥∥∥ =
∑

i>j0+`1+1

(1− ai)2j0−i 6 2−`1 .

For ‖θ‖ 6 1
4 we have∥∥θ + 2j0α− 1

2

∥∥ 6 ‖θ‖+
∥∥2j0α− 1

2

∥∥ 6 ‖θ‖+ 2−`1 6 1
4 + 1

4 = 1
2 ,

thus observing that the sinus is increasing over [0, π/2] we obtain for ‖θ‖ 6 1
4 :

1
2

∣∣1 + e(θ + 2j0α)
∣∣ = sinπ

∥∥θ + 2j0α− 1
2

∥∥ 6 sinπ
(
‖θ‖+ 2−`1

)
.

Applying (3.4) to the products for 0 6 j < j0 and for j0 < j 6 ν − 1 we get

(3.7) 2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ 6 sinπ

(
‖θ‖+ 2−`1

)
ec/2e−c‖θ‖

2(ν−1).

In the special case where aν1 = aν1+1 = · · · = aν+1 = 1, we have j0 = ν1 − 2 and `1 = ν − ν1 + 3
and we get (3.6). From now we can assume that there exists i ∈ {ν1 +1, . . . , ν+1} such that ai = 0.
In the word a1 · · · aν+1 let us consider the length `0 of the largest subword of the shape 10 · · · 0.
That means that `0 is the greatest element of {2, . . . , ν − ν1 + 2} with the property that there exist
j0 ∈ {ν1 − 1, . . . , ν + 1− `0} such that aj0+1 = 1 and aj0+2 = · · · = aj0+`0 = 0. Then∥∥2j0α− 1

2

∥∥ =
∑

i>j0+`0+1

ai2
j0−i 6

∑
i>j0+`0+1

2j0−i = 2−`0

and as above we obtain for ‖θ‖ 6 1
4 :

(3.8) 2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ 6 sinπ

(
‖θ‖+ 2−`0

)
ec/2e−c‖θ‖

2(ν−1).

Let ` = `0 + `1. Since max(`0, `1) > `/2, combining (3.7) and (3.8) we get for ‖θ‖ 6 1
4 :

(3.9) 2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ 6 sinπ

(
‖θ‖+ 2−`/2

)
ec/2e−c‖θ‖

2(ν−1).
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In the word aν1−1 · · · aν+1 we observe that each subword of length ` contains the subword 10: since
there is no subword 0 · · · 0 of length > `0 there need be a 1 in the first `0 positions, and then there
need be a 0 in the next `1 positions. This implies that the number κ of integers j ∈ {0, . . . , ν − 1}
such that (aj+1, aj+2) = (1, 0) is at least the number of disjoint intervals of ` integers in [ν1−1, ν+1]
and therefore satisfies κ > b(ν − ν1 + 3)/`c. For such j we have∥∥2jα− 1

2

∥∥ =
∑
i>j+3

ai2
j−i 6 1

4 ,

so that picking only those j’s in the product as above we get for ‖θ‖ 6 1
4

2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ 6 (sinπ(‖θ‖+ 1

4 )
)κ � (

sinπ(‖θ‖+ 1
4 )
)(ν−ν1)/`

.

In order to combine this bound with (3.9) we first observe that the right hand side of (3.9) is

estimated by ‖θ‖ e−c‖θ‖2ν + 2−`/2 and this implies

2−ν
ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣� ‖θ‖ e−c‖θ‖2ν + min

(
2−`/2,

(
sinπ(‖θ‖+ 1

4 )
)(ν−ν1)/`

)
.

The term 2−`/2 is decreasing with ` while for ‖θ‖ < 1
4 we have 0 < sinπ(‖θ‖+ 1

4 ) < 1 so that the
other term is increasing with `. The minimum of these two bounds can be estimated by a uniform
bound in ` by taking the worse possible value of ` (where the two bounds involving ` are equal):

−`2

2
log 2 = (ν − ν1) log sinπ(‖θ‖+ 1

4 ),

and finally we get (3.6). �

Lemma 5. For c defined by (3.3), 0 < θ0 <
1
4 , 1 6 ν1 6 ν, 2−ν1 6 ‖α‖ < 21−ν1 , we have

2−ν
∫
‖θ‖6θ0

ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ dθ � 1− e−cθ20ν

ν
+ θ02ν1−ν + θ0 exp

(
−σ(θ0)

√
ν − ν1

)
.

Proof. Applying (3.6) it is enough to observe that σ(θ) > σ(θ0) for ‖θ‖ 6 θ0 and integrate. �

Lemma 6. For 1 6 ν1 6 ν and 2−ν1 6 ‖α‖ < 21−ν1 , we have

2−ν
∫ 1/2

−1/2

ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ dθ � 1

ν +
(

log ν
ν

)1/2

exp

(
−
(

log 2
2 +O

(√
log ν
ν

))√
ν − ν1

)
.

Proof. Without loss of generality we may assume that ν > 30/c, where c is defined by (3.3). We

combine Lemma 3 and Lemma 5, and take θ0 =

√
log(1+

√
cν)

cν , which is admissible since for 30 6 cν

we have 0 < θ0 6
(

log(1+
√

30)
30

)1/2

< 1
4 . For this choice of θ0 we have

e−cθ
2
0ν

√
cν

=
1− e−cθ20ν

cν
=

1

cν +
√
cν
� 1

ν

and we observe that

σ(θ0) =

√
− 1

2 (log 2) log
(

sin(π4 +O(
√
ν−1 log ν))

)
=

log 2

2
+O(

√
ν−1 log ν),
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so that 2ν1−ν � exp (−σ(θ0)
√
ν − ν1) and we get the expected estimate. �

Remark: The term 1
ν is optimal apart from the implied constant. Indeed taking α = 1/2 we have

2−ν
∫ 1/2

−1/2

ν−1∏
j=0

∣∣1 + e(θ + 2jα)
∣∣ dθ =

∫ 1/2

−1/2

|sinπθ| |cosπθ|ν−1
dθ =

2

πν
.

We are now ready to estimate |F (α)| for large ‖α‖:

Lemma 7. For ν1 ∈ N, ν1 6 ν and 2−ν1 6 ‖α‖ < 21−ν1 we have

(3.10) |F (α)| � N

(
1
ν +

(
log ν
ν

)1/2

exp

(
−
(

log 2
2 +O

(√
log ν
ν

))√
ν − ν1

))
Proof. Clearly we have

F (α) =
∑
n∈Vk

e(nα) =
∑

06n62ν−1
s(n)=k

e(nα)

=

2ν−1∑
n=0

e(nα)

∫ 1/2

−1/2

e((s(n)− k)θ) dθ

=

∫ 1/2

−1/2

2ν−1∑
n=0

e(nα+ (s(n))θ) e(−kθ) dθ,

so that

|F (α)| 6
∫ 1/2

−1/2

∣∣∣∣∣
2ν−1∑
n=0

e(nα+ (s(n))θ)

∣∣∣∣∣ dθ =

∫ 1/2

−1/2

∣∣∣∣∣∣
ν−1∏
j=0

(1 + e(θ + 2jα))

∣∣∣∣∣∣ dθ.
Applying Lemma 6 and using (2.1) we get (3.10). �

4. Estimate of F (α) for small ‖α‖

We will need

Lemma 8. Assume that the function b : N→ R satisfies the conditions

(4.1)
1

2
µ+ b(µ) ∈ N for every µ ∈ N

and

(4.2) there is a K > 1 such that for every µ ∈ N we have |b(µ)| 6 Kµ1/4,

and define the set Eb by

Eb =

{
n : n ∈ N, s(n) =

1

2

⌊
log n

log 2

⌋
+ b

(⌊
log n

log 2

⌋)}
.

Write

(4.3) η =

(
log 4

π

)1/2

.
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Then we have

Eb(x) := |Eb ∩ [1, x]| = η
x

(log x)1/2
+OK

(
x

log x

)
uniformly for x > 2.

Proof. This is the g = 2 special case of Theorem 1.1 in [6]. �

Lemma 9. If L, N and k are defined as the the theorem, ν, Vk and η are defined by (2.1), (2.2)
and (4.3) then uniformly for 2 6 x 6 2ν − 1 we have

(4.4) Vk(x) = |Vk ∩ [1, x]| = η
x

(log x)1/2
+OL

(
N

logN

)
.

Proof. If x 6 N
logN then (4.4) holds trivially, thus we may restrict ourselves to

(4.5)
N

logN
< x 6 2ν − 1(< 4N)

(where the last inequality follows from (2.1)). Define the integer ν2 by

(4.6) 2ν2 6
N

logN
< 2ν2+1,

and define the function b : N→ R in the following way: let

(4.7) b(µ) = k − 1

2
µ if µ ∈ N, ν2 6 µ 6 ν

and

(4.8) b(µ) =

{
1
2 for µ odd
1 for µ even

}
if µ ∈ N and µ 6∈ [ν2, ν].

For this function b condition (4.1) holds trivially. (4.2) also holds trivially for µ 6∈ [ν2, ν] for any
fixed K and large enough N , while if

(4.9) ν2 6 µ 6 ν,

then by (2.1), (4.6) and (4.9) we have

N

2 logN
< 2ν2 6 2µ 6 2ν 6 4N

whence

(4.10)
logN

log 2
− log logN

log 2
+O(1) < ν2 6 µ 6 ν <

logN

log 2
+O(1).

It follows from (1.4), (2.1), (4.7), (4.9) and (4.10) that for N large enough we have

|b(µ)| =
∣∣∣∣k − 1

2
µ

∣∣∣∣ 6 ∣∣∣∣k − 1

2

logN

log 2

∣∣∣∣+
1

2

∣∣∣∣ logN

log 2
− µ

∣∣∣∣
< L(logN)1/4 +

1

2

log logN

log 2
+O(1)

< (L+ 1)(logN)1/4
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so that (4.2) holds with K = L+ 1 and the function b defined by (4.7) and (4.8). Thus by Lemma
8 for 2 6 x 6 2ν we have

Eb(x) = η
x

(log x)1/2
+OK

(
x

log x

)
(4.11)

= η
x

(log x)1/2
+OL

(
x

log x

)
(for 2 6 x 6 2ν).

Assume now that

2ν2 6 n 6 2ν .

Then writing µ =
⌊

logn
log 2

⌋
, clearly we have

ν2 6 µ 6 ν,

thus by (4.7) we have

b(µ) = b

(⌊
log n

log 2

⌋)
= k − 1

2
µ = k − 1

2

⌊
log n

log 2

⌋
whence

(4.12) k =
1

2

⌊
log n

log 2

⌋
+ b

(⌊
log n

log 2

⌋)
(for 2ν2 6 n 6 2ν).

It follows from (4.12) and the definitions of Vk and Eb that

(4.13) Vk ∩ [2ν2 , 2ν − 1] = Eb ∩ [2ν2 , 2ν − 1].

Thus for 2ν2 6 x 6 2ν − 1 we have

Vk(x)− Vk(2ν2) = Eb(x)− Eb(2ν2)

whence, by (4.6), (4.11) and the definitions of Vk and Eb,

Vk(x) = Eb(x) + Vk(2ν2)− Eb(2ν2)

= η
x

(log x)1/2
+OL

(
x

log x

)
+O(2ν2)

= η
x

(log x)1/2
+OL

(
x

log x

)
+O

(
N

logN

)
= η

x

(log x)1/2
+OL

(
N

logN

)
.

�

Lemma 10. Write

(4.14) φ(α) = η
1

(logN)1/2

2ν−1∑
n=1

e(nα).

Then, using the same assumptions and notations as in Lemma 9 we have

(4.15) |F (α)− φ(α)| = OL

(
N

logN
(N ‖α‖+ 1)

)
uniformly for all α.
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Proof. By partial summation, we write

F (α) =
∑
n∈Vk

e(nα) =

2ν−1∑
n=1

(Vk(n)− Vk(n− 1)) e(nα)

=

2ν−2∑
n=1

Vk(n)(e(nα)− e((n+ 1)α)) + Vk(2ν − 1) e((2ν − 1)α),

then by Lemma 9 we get

F (α) =

2ν−2∑
n=2

(
η

n

(log n)1/2
+OL

(
N

logN

))
(e(nα)− e((n+ 1)α))

+

(
η

2ν − 1

(log(2ν − 1))1/2
+OL

(
N

logN

))
e((2ν − 1)α) +O(1),

so that reversing the partial summation we obtain

F (α) = η

2ν−1∑
n=3

(
n

(log n)1/2
− n− 1

(log(n− 1))1/2

)
e(nα)

+OL

(
N

logN

(
2ν−2∑
n=2

|1− e(α)|+ 1

))
+O(1),

thus

F (α) = η

2ν−1∑
n=3

(
1

(log n)1/2
+O

(
1

(log n)3/2

))
e(nα)(4.16)

+OL

(
N

logN
(N ‖α‖+ 1)

)
,

where we used (2.1) and

(4.17) |1− e(α)| 6 2π ‖α‖ .

A little computation shows that we have

(4.18)

2ν−1∑
n=3

1

(log n)1/2
e(nα) =

1

(logN)1/2

2ν−1∑
n=3

e(nα) +O

(
N

logN

)
and

(4.19)

2ν−1∑
n=3

1

(log n)3/2
= O

(
N

(logN)3/2

)
.

(4.15) follows from (4.14), (4.16), (4.18) and (4.19). �
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5. Completion of the estimate of the integral J

We will prove that

Lemma 11. Under the assumptions in the theorem and using the notations above we have

(5.1) |F (α)− φ(α)| = OL

(
N

(logN)1/2 exp
(
(ρ− ε

2 )(log logN)1/2
))

uniformly for all α.

Proof. Define τ by

τ =
(logN)1/2

N exp
(
(ρ− ε

3 )(log logN)1/2
) .

Assume first that ‖α‖ 6 τ . Then if N is large enough in terms of L and ε, then it follows from
(4.15) in Lemma 10 that

|F (α)− φ(α)| = OL

(
N

logN
(N ‖α‖+ 1)

)
6 OL

(
N

logN
(Nτ + 1)

)
(5.2)

= OL

(
N

(logN)1/2 exp
(
(ρ− ε

3 )(log logN)1/2
)) (for ‖α‖ 6 τ)

so that now (5.1) holds whenever ‖α‖ 6 τ .
Assume now that

(5.3) ‖α‖ > τ.

Clearly we have

(5.4) |F (α)− φ(α)| 6 |F (α)|+ |φ(α)| .
First we will estimate |F (α)| by using Lemma 7. Define the positive integer ν1 as in Lemma 7:

(5.5) 2−ν1 6 ‖α‖ < 21−ν1 .

Then by (2.1), (5.3) and (5.5) we have

2ν−ν1 = 2ν · 2−ν1 > 2N · 1

2
‖α‖ > Nτ

whence, by the definition of τ ,

ν − ν1 >
log(Nτ)

log 2
=

1

log 2

(
1

2
log logN −

(
ρ− ε

3

)
(log logN)1/2

)
=

log logN

2 log 2

(
1− 2

(
ρ− ε

3

)
(log logN)−1/2

)
.

It follows that

√
ν − ν1 >

(log logN)1/2

(2 log 2)1/2

(
1−

ρ− ε
3

(log logN)1/2
+O

(
1

log logN

))
and (

log 2

2
+ o(1)

)√
ν − ν1 >

((
log 2

8

)1/2

+ o(1)

)(
(log logN)1/2 +O(1)

)
(5.6)

= (ρ+ o(1))(log logN)1/2.
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By (2.1), (5.5) and (5.6) we get from Lemma 7 that

|F (α)| � N

(
1

logN
+

(log logN)1/2

(logN)1/2
exp

(
−(ρ+ o(1))(log logN)1/2

))
(5.7)

� N

(logN)1/2 exp
(
(ρ− ε

2 )(log logN)1/2
) .

Moreover, by (4.14), (5.3) and the inequality |1− e(α)| > 4 ‖α‖ we have

|φ(α)| = η
1

(logN)1/2

∣∣∣∣1− e((2ν − 1)α)

1− e(α)

∣∣∣∣(5.8)

� 1

(logN)1/2
· 1

‖α‖
<

1

(logN)1/2
· 1

τ

=
N exp

(
(ρ− ε

3 )(log logN)1/2
)

logN
.

By (5.4), (5.7) and (5.8) it follows that (5.1) also holds in the case (5.3). �

Now we are ready to complete the proof of the theorem. The integral J in (2.4) can be rewritten
in the following form:

(5.9) J = J1 + J2

where

J1 =

∫ 1/2

−1/2

G(α)H(α)φ(−α)dα, J2 =

∫ 1/2

−1/2

G(α)H(α)(F (−α)− φ(−α))dα.

Here clearly we have

J1 =

∫ 1/2

−1/2

∑
a∈A

e(aα)
∑
b∈B

e(bα)
η

(logN)1/2

2ν−1∑
n=1

e(−nα)dα(5.10)

=
η

(logN)1/2

∑
a∈A

∑
b∈B

2ν−1∑
n=1

∫ 1/2

−1/2

e((a+ b− n)α)dα

=
η

(logN)1/2

∑
a∈A

∑
b∈B

1 =
η

(logN)1/2
|A| |B| ,

and by Lemma 11 we have

|J2| 6 OL

(
N

(logN)1/2 exp
(
(ρ− ε

2 )(log logN)1/2
))∫ 1/2

−1/2

|G(α)H(α)| dα.

If N is large enough in terms of L and ε, then by using the Cauchy-Schwarz inequality we get that

|J2| 6
N

(logN)1/2 exp
(
(ρ− ε)(log logN)1/2

) (∫ 1/2

−1/2

|G(α)|2 dα
∫ 1/2

−1/2

|H(α)|2 dα

)1/2

(5.11)

=
N

(logN)1/2 exp
(
(ρ− ε)(log logN)1/2

) (|A| |B|)1/2
.
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By (2.5), (5.9), (5.10) and (5.11) we have∣∣∣∣|{(a, b) : a ∈ A, b ∈ B, s(a+ b) = k}| − η

(logN)1/2
|A| |B|

∣∣∣∣
= |J − J1| = |J2| <

N

(logN)1/2 exp
(
(ρ− ε)(log logN)1/2

) (|A| |B|)1/2
,

which completes the proof of the theorem.

6. Estimates from the opposite side

One might like to know how far could be Theorem 1 improved upon, in other words, what can
be said from the opposite side ? In this direction we will show:

Theorem 2. For N ∈ N, N →∞ there are sets

(6.1) A, B ⊂ {0, 1, 2, . . . , N}
such that

(6.2) |A| = |B| = N exp

(
− 4

(log 2)1/2
(logN)1/2 log logN +O(1)

)
and∣∣∣∣{(a, b) : a ∈ A, b ∈ B, s(a+ b) 6

1

2

logN

log 2
+

(
1

(log 2)1/2
− C

log logN

)
(logN)1/2 log logN

}∣∣∣∣
(6.3)

< |A| |B| exp
(
−2(log logN)2 +O(log logN)

)
(where C is a positive absolute constant large enough).

It can be deduced from this theorem easily that for these sets A, B, except for “very few” sums
a+ b with a ∈ A, b ∈ B, the sum of digits of the sums a+ b is much greater than expected: for any

c > 0 and large N there are much less than |A||B|
(logN)c pairs (a, b) with

s(a+ b) 6
1

2

logN

log 2
+

(
1

(log 2)1/2
− C

log logN

)
(logN)1/2 log logN.

Proof. Write

(6.4) ν =

⌊
logN

log 2
− 4

(log 2)1/2
(logN)1/2 log logN

⌋
and

(6.5) µ =

⌊
4

(log 2)1/2
(logN)1/2 log logN − 1

⌋
and let

A = {m · 2µ + (2µ − 1) : 0 6 m < 2ν−1}
and

B = {n · 2µ : 0 6 n < 2ν−1}.
Then by (6.4) and (6.5), it follows from

(6.6) a = m · 2µ + (2µ − 1) ∈ A, b = n · 2µ ∈ B
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that we have

0 < a+ b < 2ν−1 · 2µ + (2µ − 1) + 2ν−1 · 2µ = 2µ+ν + (2µ − 1)

6 2
logN
log 2 −1 + 2O((logN)1/2 log logN) <

1

2
N + o(N) < N

for N large enough, so that both (6.1) and

(6.7) A+ B ⊂ {1, 2, . . . , N}

hold. Moreover, we have

(6.8) |A| = |B| = 2ν−1

whence (6.2) follows from (6.4).
It also follows from (6.6)

(6.9) a+ b = (m+ n) · 2µ + (2µ − 1)

whence, by the q-additive property of the sum of digits function, we have

s(a+ b) = s((m+ n) · 2µ + (2µ − 1)) = s((m+ n) · 2µ) + s(2µ − 1)(6.10)

= s(m+ n) + s(1 . . . 1) = s(m+ n) + µ (with 0 < m+ n < 2ν).

We will call an integer 0 6 t < 2ν “bad”, if

s(t) >
ν

2
− (log ν)ν1/2,

and denote the set of these bad integers t by T . Indeed, if a sum a + b with a, b of form (6.6) is
such that m+ n = t is a “bad” number, then by (6.9) and (6.10) we have

s(a+ b) = s(t) + µ >
(ν

2
− (log ν)ν1/2

)
+ µ

while by (6.4) and (6.5) we have

ν

2
+ µ >

1

2

logN

log 2
− 2(logN)1/2

(log 2)1/2
log logN +

4(logN)1/2

(log 2)1/2
log logN − 3

=
1

2

logN

log 2
+

2(logN)1/2

(log 2)1/2
log logN − 3,

log ν 6 log
logN

log 2
+ log

(
1− 4(log 2)1/2

(logN)1/2
log logN

)
= log logN +O(1),

and

ν1/2 6
(logN)1/2

(log 2)1/2

(
1− 4(log 2)1/2

(logN)1/2
log logN

)1/2

=
(logN)1/2

(log 2)1/2
+O(log logN),

thus

(log ν)ν1/2 6
(logN)1/2

(log 2)1/2
log logN +O((logN)1/2),

and

s(a+ b) >
1

2

logN

log 2
+

(logN)1/2

(log 2)1/2
log logN +O((logN)1/2),
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so that s(a+ b) is “large” for such a pair (a, b):

(6.11) s(a+ b) >
1

2

logN

log 2
+

(
1

(log 2)1/2
− C

log logN

)
(logN)1/2 log logN

where C is a positive absolute constant large enough. Thus if a+b is a“good”sum, i.e., the opposite
of (6.11) holds, then

(6.12) m+ n = t

satifies

s(t) <
ν

2
− (log ν)ν1/2,

so that

t ∈ {0, 1, . . . , 2ν − 1} \ T .
The number of these t’s is

2ν − |T | ,
and if such a t is fixed, and m, n (with 0 6 m,n < 2ν−1) satisfy (6.12), then m, n and thus also a,
b (with a ∈ A, b ∈ B) unique determine each other, thus the number of solutions of both (6.12) in
(m,n) and (6.9) in (a, b) is at most

(6.13) min(|A| , |B|) = |A| = |B| =
√
|A| |B|.

Thus the number of “good” pairs (a, b) for which the opposite of inequality (6.11) holds is at most
the product of the number of such t’s multiplied by this upper bound:

∣∣∣∣{(a, b) : a ∈ A, b ∈ B, s(a+ b) 6
1

2

logN

log 2
+

(
1

(log 2)1/2
− C

log logN

)
(logN)1/2 log logN

}∣∣∣∣
(6.14)

6
√
|A| |B|(2ν − |T |).

It remains to give a lower bound for |T |. In order to do this we need two lemmas

Lemma 12. Let X1,. . . ,Xν be independent random variables such that P(Xj = 1) = 1
2 and P(Xj =

0) = 1
2 for j = 1, . . . , ν. Then for any t > 0 we have

P
(∣∣X1 + · · ·+Xν − ν

2

∣∣ > t
)
< 2 exp(−2 t2/ν).

Proof. This is a special case of the so called “Chernoff bounds”. E.g. apply Corollary A.1.2 of [1]
to the random variables 1− 2X1, . . . , 1− 2Xν with a = 2t. �

Lemma 13. For ν ∈ N and ξν > 0 we have

card
{

0 6 n < 2ν ,
∣∣s(n)− ν

2

∣∣ > ξν
√
ν
}
< 2ν+1 exp

(
−2 ξ2

ν

)
.

Proof. Apply Lemma 12 with t = ξν
√
ν. �

Using Lemma 13 (with log ν in place of ξν) we get that

|T | =
∣∣∣{0 6 t < 2ν , s(t) >

ν

2
− (log ν)

√
ν}
∣∣∣(6.15)

> |{0 6 t < 2ν}| −
∣∣∣{0 6 t < 2ν ,

∣∣∣s(t)− ν

2

∣∣∣ > (log ν)
√
ν}
∣∣∣

> 2ν − 2ν+1 exp(−2(log ν)2).
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It follows from (6.8), (6.14) and (6.15) that∣∣∣∣{(a, b) : a ∈ A, b ∈ B, s(a+ b) 6
1

2

logN

log 2
+

(
1

(log 2)1/2
− C

log logN

)
(logN)1/2 log logN

}∣∣∣∣
6
√
|A| |B| 2ν+1 exp(−2(log ν)2)

6 |A| |B| exp(−2(log logN)2 +O(log logN))

�

We have seen that there are large subsets A, B ∈ {1, 2, . . . , N} with the property that

(6.16) s(a+ b) =
⌊ν

2

⌋ (
=

⌊
1

2

logN

log 2

⌋)
has much less solutions than expected. But how large can be A, B so that (6.16) has no solution
at all ? It is trivial that there are A, B with |A| |B| � N such that (6.16) has no solution. On the
other hand, we have not been able to answer the following question:

Problem 1. Are there sets A, B ∈ {1, 2, . . . , N} such that |A| |B| /N → ∞ and (6.16) has no
solution ?
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