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Introduction

Throughout this paper we will use the following notations: N, N 0 , R and C denote the set of positive integers, non-negative integers, real numbers, resp. complex numbers, and x denotes the distance from x to the nearest integer. We will denote the sum of digits of an integer n 0 written in base g by s g (n) and will write s 2 (n) = s(n).

There are more than 40 papers in which arithmetic properties of sumsets of "dense" sets of positive integers have been studied (most of these papers appeared in the last 40 years). A list of these papers is presented in [START_REF] Balog | On arithmetic properties of sumsets[END_REF]. In particular, in [START_REF] Mauduit | On the arithmetic structure of sets characterized by sum of digits properties[END_REF] the first and third authors studied the arithmetic structure of the set where λ = λ(g, m) and γ = γ(g, m) are defined by λ = 1 2 log g log g sin(π/2m) sin(π/2mg) (< 1),

γ = γ(g, m) = g 2 g λ -1
.

so that if (|A| |B|) 1/2 N λ , then the set of the numbers s g (a + b) meets every residue class modulo m, and if (|A| |B|) 1/2 N -λ → +∞, then the numbers s g (a + b) are well distributed modulo m.

The study of the arithmetic structure of the set (1.1) was relatively easy since this set is "dense": for fixed g, r, m, it contains a positive proportion of the integers up to N . Thus the first and third authors wrote in [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] "Since the integers characterized by a simple digit property have a very specific structure and they can be studied very efficiently by the generating function principle, one expects that it can be proved that much "thinner" sets of this type all have a nice arithmetic structure. The most natural way to construct "thin" sets of this type is to consider the sets

(1.3) V k = {n : n ∈ N, n N, s g (n) = k}
where k ∈ N, 0 k (g -1) log N log g + 1 ". Indeed, we showed in [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] that for every k we have

|V k | g N (log N ) -1/2
so that these sets are much thinner than the set in (1.1). Motivated by this consideration our goal was in [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] to study the arithmetic structure of the sets V k in (1.3). We succeded in proving some results similar to the ones proved in the easier situation studied in [START_REF] Mauduit | On the arithmetic structure of sets characterized by sum of digits properties[END_REF]. However, as we wrote in [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] (here we change the notation slightly): ". . . one would like to prove the V k analogue of our result Theorem A. Unfortunately, we have not been able to prove such a theorem. . . . Thus, in particular, we have not been able to prove the following conjecture: 

Conjecture 1. If ε > 0, N > N 0 (ε), A, B ⊂ {1, 2 
s g (a + b) = (g -1)ν/2 where ν = ν(N ) ∈ N is defined by g ν N g ν+1 -1. "
The set of the integers n such that s g (n) = g-1

2

log n log g can be generated by an infinite automaton (or an infinite substitution of constant length g) on the alphabet {0, . . . , g -1} (see [START_REF] Mauduit | Propriétés arithmétiques des substitutions et automates infinis[END_REF] for a precise definition of infinite automata and infinite substitutions). Fouvry and Mauduit described in [START_REF] Fouvry | Sur les entiers dont la somme des chiffres est moyenne[END_REF] the statistical properties of this set and the goal of this paper is to study more deeply the statistical properties in order to be able to understand how it intersects sumsets.

The paper [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] appeared in 1997, and since that no advance has been made towards this conjecture. However, since that many papers have been published on integers characterized by digit properties [START_REF] Fouvry | Sur les entiers dont la somme des chiffres est moyenne[END_REF][START_REF] Mauduit | On the distribution in residue classes of integers with a fixed sum of digits[END_REF][START_REF] Mauduit | Propriétés q-multiplicatives de la suite n c , c > 1[END_REF][START_REF]La somme des chiffres des carrés[END_REF][START_REF]Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF][START_REF] Drmota | The sum-of-digits function of polynomial sequences[END_REF][START_REF] Drmota | Generalized Thue-Morse sequences of squares[END_REF][START_REF] Drmota | Subsequences of automatic sequences and uniform distribution[END_REF][START_REF] Martin | Théorème des nombres premiers pour les fonctions digitales[END_REF][START_REF] Spiegelhofer | Piatetski-Shapiro sequences via Beatty sequences[END_REF][START_REF]Fonctions digitales le long des nombres premiers[END_REF][START_REF] Mauduit | Phénomène de moser-newman pour les nombres sans facteur carré[END_REF]. In some of these papers (mostly in [START_REF] Fouvry | Sur les entiers dont la somme des chiffres est moyenne[END_REF], [START_REF] Martin | Théorème des nombres premiers pour les fonctions digitales[END_REF] and [START_REF] Mauduit | On the distribution in residue classes of integers with a fixed sum of digits[END_REF]) there are new ideas, methods and results which can be used for attacking Conjecture 1. Indeed, by adapting, extending and combining these ideas we have been able to prove the conjecture. In order to shorten the discussion here we will restrict ourselves to the g = 2 special case. (The case g > 2 could be handled similarly, however, there are certain technical difficulties, thus we expect that the proof would be much longer.) In this paper our goal is to present the proof of the following slightly more general form of the g = 2 case of the conjecture: Theorem 1. For any L > 0 and ε > 0 there is a number

N 0 = N 0 (L, ε) such that if N ∈ N, N > N 0 , k ∈ N, (1.4) k - log N 2 log 2 < L(log N ) 1/4 , and 
(1.5) A, B ⊂ {1, 2, . . . , N }, then, writing ρ = log 2 8 1/2
, we have

|{(a, b) : a ∈ A, b ∈ B, s(a + b) = k}| - log 4 π 1/2 |A| |B| (log N ) 1/2 (1.6) < N (log N ) 1/2 exp (ρ -ε)(log log N ) 1/2 (|A| |B|) 1/2 .
Note that if ν is defined as in conjecture 1 (with g = 2), then we have log N 2 log 2 = ν 2 + O(1) so that (1.4) holds with ν 2 in place of k. It follows from Theorem 1 that if

(|A| |B|) 1/2 > π log 4 1/2 N exp (ρ -ε)(log log N ) 1/2 , then there are a ∈ A, b ∈ B with (1.7) s(a + b) = ν/2 ,
and, indeed (applying Theorem 1 with ε 2 in place of ε) it also follows that the number of solutions of (1.7) in a and b is about as large as expected:

|{(a, b) : a ∈ A, b ∈ B, s(a + b) = k}| = (1 + o(1)) log 4 π 1/2 |A| |B| (log N ) 1/2 .
In section 6 we will also present an estimate from the opposite side.

Structure of the proof of the Theorem

We will use the circle method. Define the positive integer ν by (2.1)

2 ν-1 2N < 2 ν , define now V k by (2.2) {n : n 2 ν -1, s(n) = k}, for α ∈ R write (2.3) F (α) = n∈V k e(nα), G(α) = a∈A e(aα)
and

H(α) = b∈B e(bα),
and consider the integral

(2.4) J = 1/2 -1/2 G(α)H(α)F (-α)dα. Then J = 1/2 -1/2 a∈A b∈B n∈V k e((a + b -n)α)dα (2.5) = a+b-n=0 a∈A, b∈B, n∈V k 1 = a∈A, b∈B s(a+b)=k 1 = |{(a, b) : a ∈ A, b ∈ B, s(a + b) = k}| .
Thus it suffices to estimate the integral J. In order to do this first we will estimate F (α) defined in (2.3) for "large" α in section 3, next we will estimate it for "small" α in section 4, finally, we will complete the proof of the theorem by using these estimates in section 5.

Estimate of F (α) for large α

The study of the trigonometric product ν-1 j=0 sin π2 j a d for (d, a, ν) ∈ N × N 2 0 plays an important role in many works concerning the sum of digits function. For example the main results from [START_REF] Gelfond | Sur les nombres qui ont des propriétés additives et multiplicatives données[END_REF] and [START_REF] Newman | Binary digit distribution over naturally defined sequences[END_REF] are based on the fact that this trigonometric product is uniformly bounded by

√ 3 2 ν-1
.

Results from [START_REF] Mauduit | On the arithmetic structure of sets characterized by sum of digits properties[END_REF], [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] and [START_REF] Mauduit | On the distribution in residue classes of integers with a fixed sum of digits[END_REF] are based on upper bounds uniform in a of the kind e -cν/ log d with c > 0 and those from [START_REF] Mauduit | Phénomène de moser-newman pour les nombres sans facteur carré[END_REF] on the upper bound on average

1 d 0 a<d 0 j<ν sin π2 j a d √ 3 2 ν √ 3 d log(3/2)/ log 2 .
The situation becomes much more complicated to handle when the rational number a/d is replaced by a real number α. In Lemma 4 we give an explicit upper bound for the trigonometric product

ν-1 j=0 cos π θ + 2 j α = 2 -ν ν-1 j=0
1 + e(θ + 2 j α) with (θ, α) ∈ R 2 depending on θ and on the first non zero digit in the dyadic expansion of the real number α and in Lemma 6 we give a L 1 estimate for this trigonometric product.

Lemma 1. For (θ, α) ∈ R 2 we have (3.1) θ + α 2 + θ + 2α 2 1 5 θ 2 and (3.2) |1 + e(θ + α)| • |1 + e(θ + 2α)| 4 e -2c θ 2 with (3.3) c = π 2 /20.
Remark: Taking α = -3θ/5 we observe that (3.1) is optimal and (3.3) is also optimal (compare Taylor expansions in (3.2) when α = -3θ/5).

Proof. We want to determine the minimum m θ of α → θ + α 2 + θ + 2α 2 when α runs over R. By symmetry and periodicity we may assume that 0 θ 1/2. Put t = θ + α and g(t

) = t 2 + 2t -θ 2 . We have m θ = g(t 0 ) for some t 0 ∈ [-1/2, 1/2]. Since m θ g(θ/2) = θ 2 /4 we may assume that both t 0 ∈ [-θ/2, θ/2] and 2t 0 -θ θ/2. For t ∈ [-1/2, (2θ -1)/4] we have -3/2 2t-θ -1/2, thus g(t) = t 2 +(2t-θ +1) 2 , so that in this interval g(t) g(2(θ -1)/5) = (1-θ) 2 /5. For t ∈ [(2θ -1)/4, θ/2] we have g(t) = t 2 + (2t -θ) 2 , so that in that interval g(t) g(2θ/5) = θ 2 /5.
Observing that θ 2 (1 -θ) 2 we conclude that the minimum is reached for t 0 = 2θ/5 and get (3.1). For x ∈ [-1/2, 1/2], we have

0 cos(πx) 1 - π 2 x 2 2 + π 4 x 4 24 1 - π 2 x 2 2 + π 4 x 4 8 - π 6 x 6 48 e -π 2 x 2 2 .
Observing that |1 + e(u)| = 2 cos(π u ) we deduce from the inequality above that

|1 + e(θ + α)| • |1 + e(θ + 2α)| 4 e -π 2 2 ( θ+α 2 + θ+2α 2 ) ,
and applying (3.1) we get (3.2).

Lemma 2. For (θ, α) ∈ R 2 , ν ∈ N and c defined by (3.3) we have

(3.4) 2 -ν ν-1 j=0 1 + e(θ + 2 j α) e -c θ 2 (ν-2 ν/2 ) e c/4 e -c θ 2 ν .
Proof. Notice that ν -2 ν/2 is an even integer 2ν with 2ν ν 2ν + 1. Hence

2 -ν ν-1 j=0 1 + e(θ + 2 j α) 2 -2ν ν -1 j=0 1 + e(θ + 2 2j α) 1 + e(θ + 2 2j+1 α)
and applying Lemma 1 with α replaced by 2 j α for j = 0, . . . , ν -1 we get the result.

Lemma 3. For 0 θ 0 1 2 , α ∈ R, ν ∈ N and c defined by (3.3) we have (3.5) 2 -ν θ θ0 ν-1 j=0 1 + e(θ + 2 j α) dθ √ π e c/4 e -cθ 2 0 ν √ cν .
Proof. By (3.4) it is enough to observe that

θ θ0 e -c θ 2 ν dθ = 2 e -cθ 2 0 ν 1/2 θ0 e -c(θ 2 -θ 2 0 )ν dθ
and writing θ = θ 0 + t we have

1/2 θ0 e -c(θ 2 -θ 2 0 )ν dθ +∞ 0 e -c(t 2 +2θ0t)ν dt +∞ 0 e -ct 2 ν dt = √ π 2 √ cν ,
which gives (3.5).

Lemma 4. Let ν 1 ∈ N, (θ, α) ∈ R 2 such that θ < 1 4 and 2 -ν1 α < 2 1-ν1
. For ν ν 1 and c defined by (3.3) we have

(3.6) 2 -ν ν-1 j=0 1 + e(θ + 2 j α) θ e -c θ 2 ν + 2 ν1-ν + exp -σ(θ) √ ν -ν 1 ,
where σ(θ) = -1 2 (log 2) log sin π( θ + 1 4 ) .

Proof. If ν 1 = 1, i.e. α = 1/2 then for j = 0 we observe that 1 2 1 + e θ + 1 2 = |sin πθ| π θ and for 1 j ν -1 we have 1 2 1 + e(θ + 2 j α) = 1 2 |1 + e(θ)| e -c θ 2 (using (3.2) with α = 0) and we obtain that (3.6) is satisfied. Therefore we can assume that ν 1 2.

By periodicity we may assume that -1/2 < α < 1/2. Then if -1/2 < α < 0, observing that 1 + e(θ + 2 j α) = 1 + e(-θ -2 j α) we may replace (θ, α) by (-θ, -α), so that we can assume that 0 α < 1/2. We can write

α = ∞ i=1 a i 2 -i with a 1 = • • • = a ν1-1 = 0, a ν1 = 1 and a i ∈ {0, 1} for i ν 1 + 1.
In the word a 1 • • • a ν+1 let us consider the length 1 of the largest subword of the shape 01 • • • 1. That means that 1 is the greatest element of {2, . . . , ν -ν 1 +3} with the property that there exist an integer j 0 with 0 ν 1 -2 j 0 ν +1-1 ν -1 such that a j0+1 = 0 and a j0+2 = • • • = a j0+ 1 = 1 (taking j 0 = ν 1 -2 and 1 = 2 show that the set of such 1 's is not empty). Under these conditions we have

2 j0 α -1 2 = i j0+2 a i 2 j0-i - i j0+2 2 j0-i = i j0+ 1 +1 (1 -a i )2 j0-i 2 -1 .
For θ

1 4 we have θ + 2 j0 α -1 2 θ + 2 j0 α -1 2 θ + 2 -1 1 4 + 1 4 = 1 2
, thus observing that the sinus is increasing over [0, π/2] we obtain for θ 1 4 :

1 2 1 + e(θ + 2 j0 α) = sin π θ + 2 j0 α -1 2 sin π θ + 2 -1 .
Applying (3.4) to the products for 0 j < j 0 and for j 0 < j ν -1 we get

(3.7) 2 -ν ν-1 j=0
1 + e(θ + 2 j α) sin π θ + 2 -1 e c/2 e -c θ 2 (ν-1) .

In the special case where a ν1 = a ν1+1 = • • • = a ν+1 = 1, we have j 0 = ν 1 -2 and 1 = ν -ν 1 + 3 and we get (3.6). From now we can assume that there exists i ∈ {ν 1 + 1, . . . , ν + 1} such that a i = 0. In the word a 1 • • • a ν+1 let us consider the length 0 of the largest subword of the shape 10 • • • 0. That means that 0 is the greatest element of {2, . . . , ν -ν 1 + 2} with the property that there exist

j 0 ∈ {ν 1 -1, . . . , ν + 1 -0 } such that a j0+1 = 1 and a j0+2 = • • • = a j0+ 0 = 0. Then 2 j0 α -1 2 = i j0+ 0+1 a i 2 j0-i i j0+ 0+1 2 j0-i = 2 -0
and as above we obtain for θ 1) . 1 + e(θ + 2 j α) sin π θ + 2 -/2 e c/2 e -c θ 2 (ν-1) .

1 4 : (3.8) 2 -ν ν-1 j=0 1 + e(θ + 2 j α) sin π θ + 2 -0 e c/2 e -c θ 2 (ν-
Let = 0 + 1 . Since max( 0 , 1 ) / 
In the word a ν1-1 • • • a ν+1 we observe that each subword of length contains the subword 10: since there is no subword 0 • • • 0 of length 0 there need be a 1 in the first 0 positions, and then there need be a 0 in the next 1 positions. This implies that the number κ of integers j ∈ {0, . . . , ν -1} such that (a j+1 , a j+2 ) = (1, 0) is at least the number of disjoint intervals of integers in [ν 1 -1, ν +1] and therefore satisfies κ (ν -ν 1 + 3)/ . For such j we have

2 j α -1 2 = i j+3 a i 2 j-i 1 4 
, so that picking only those j's in the product as above we get for θ

1 4 2 -ν ν-1 j=0 1 + e(θ + 2 j α) sin π( θ + 1 4 ) κ sin π( θ + 1 4 ) (ν-ν1)/ .
In order to combine this bound with (3.9) we first observe that the right hand side of (3.9) is estimated by θ e -c θ 2 ν + 2 -/2 and this implies

2 -ν ν-1 j=0 1 + e(θ + 2 j α) θ e -c θ 2 ν + min 2 -/2 , sin π( θ + 1 4 ) (ν-ν1)/
.

The term 2 -/2 is decreasing with while for θ < 1 4 we have 0 < sin π( θ + 1 4 ) < 1 so that the other term is increasing with . The minimum of these two bounds can be estimated by a uniform bound in by taking the worse possible value of (where the two bounds involving are equal):

-2 2 log 2 = (ν -ν 1 ) log sin π( θ + 1 4
), and finally we get (3.6). Lemma 5. For c defined by (3.3), 0 < θ 0 < 1 4 , 1 ν 1 ν, 2 -ν1 α < 2 1-ν1 , we have

2 -ν θ θ0 ν-1 j=0 1 + e(θ + 2 j α) dθ 1 -e -cθ 2 0 ν ν + θ 0 2 ν1-ν + θ 0 exp -σ(θ 0 ) √ ν -ν 1 .
Proof. Applying (3.6) it is enough to observe that σ(θ) σ(θ 0 ) for θ θ 0 and integrate.

Lemma 6. For 1 ν 1 ν and 2 -ν1 α < 2 1-ν1 , we have

2 -ν 1/2 -1/2 ν-1 j=0
1 + e(θ + 2 j α) dθ

1 ν + log ν ν 1/2 exp -log 2 2 + O log ν ν √ ν -ν 1 .
Proof. Without loss of generality we may assume that ν 30/c, where c is defined by (3.3). We combine Lemma 3 and Lemma 5, and take

θ 0 = log(1+ √ cν) cν
, which is admissible since for 30 cν

we have 0 < θ 0 log(1+ √ 30) 30 1/2 < 1 4 .
For this choice of θ 0 we have

e -cθ 2 0 ν √ cν = 1 -e -cθ 2 0 ν cν = 1 cν + √ cν 1 ν
and we observe that

σ(θ 0 ) = -1 2 (log 2) log sin( π 4 + O( ν -1 log ν)) = log 2 2 + O( ν -1 log ν),
so that 2 ν1-ν exp (-σ(θ 0 ) √ ν -ν 1 ) and we get the expected estimate.

Remark:

The term 1 ν is optimal apart from the implied constant. Indeed taking α = 1/2 we have

2 -ν 1/2 -1/2 ν-1 j=0 1 + e(θ + 2 j α) dθ = 1/2 -1/2
|sin πθ| |cos πθ| ν-1 dθ = 2 πν .

We are now ready to estimate |F (α)| for large α :

Lemma 7. For ν 1 ∈ N, ν 1 ν and 2 -ν1 α < 2 1-ν1 we have

(3.10) |F (α)| N 1 ν + log ν ν 1/2 exp -log 2 2 + O log ν ν √ ν -ν 1
Proof. Clearly we have

F (α) = n∈V k e(nα) = 0 n 2 ν -1 s(n)=k e(nα) = 2 ν -1 n=0 e(nα) 1/2 -1/2 e((s(n) -k)θ) dθ = 1/2 -1/2 2 ν -1 n=0 e(nα + (s(n))θ) e(-kθ) dθ, so that |F (α)| 1/2 -1/2 2 ν -1 n=0 e(nα + (s(n))θ) dθ = 1/2 -1/2 ν-1 j=0
(1 + e(θ + 2 j α)) dθ.

Applying Lemma 6 and using (2.1) we get (3.10). 

E b = n : n ∈ N, s(n) = 1 2 log n log 2 + b log n log 2 . Write (4.3) η = log 4 π 1/2 .
Then we have

E b (x) := |E b ∩ [1, x]| = η x (log x) 1/2 + O K x log x uniformly for x 2.
Proof. This is the g = 2 special case of Theorem 1.1 in [START_REF] Fouvry | Sur les entiers dont la somme des chiffres est moyenne[END_REF].

Lemma 9. If L, N and k are defined as the the theorem, ν, V k and η are defined by (2.1), (2.2) and (4.3) then uniformly for 2 x 2 ν -1 we have

(4.4) V k (x) = |V k ∩ [1, x]| = η x (log x) 1/2 + O L N log N .
Proof. If x then by (2.1), (4.6) and (4.9) we have

N 2 log N < 2 ν2 2 µ 2 ν 4N whence (4.10) log N log 2 - log log N log 2 + O(1) < ν 2 µ ν < log N log 2 + O(1).
It follows from (1.4), (2.1), (4.7), (4.9) and (4.10) that for N large enough we have

|b(µ)| = k - 1 2 µ k - 1 2 log N log 2 + 1 2 log N log 2 -µ < L(log N ) 1/4 + 1 2 log log N log 2 + O(1) < (L + 1)(log N ) 1/4
so that (4.2) holds with K = L + 1 and the function b defined by (4.7) and (4.8). Thus by Lemma 8 for 2 x 2 ν we have

E b (x) = η x (log x) 1/2 + O K x log x (4.11) = η x (log x) 1/2 + O L x log x (for 2 x 2 ν ).
Assume now that 2 ν2 n 2 ν .

Then writing µ = log n log 2 , clearly we have ν 2 µ ν, thus by (4.7) we have

b(µ) = b log n log 2 = k - 1 2 µ = k - 1 2 log n log 2 whence (4.12) k = 1 2 log n log 2 + b log n log 2 (for 2 ν2 n 2 ν ).
It follows from (4.12) and the definitions V k and E b that (4.13)

V k ∩ [2 ν2 , 2 ν -1] = E b ∩ [2 ν2 , 2 ν -1].
Thus for 2 ν2 x 2 ν -1 we have

V k (x) -V k (2 ν2 ) = E b (x) -E b (2 ν2 )
whence, by (4.6), (4.11) and the definitions of V k and E b ,

V k (x) = E b (x) + V k (2 ν2 ) -E b (2 ν2 ) = η x (log x) 1/2 + O L x log x + O(2 ν2 ) = η x (log x) 1/2 + O L x log x + O N log N = η x (log x) 1/2 + O L N log N . Lemma 10. Write (4.14) φ(α) = η 1 (log N ) 1/2 2 ν -1 n=1 e(nα).
Then, using the same assumptions and notations as in Lemma 9 we have

(4.15) |F (α) -φ(α)| = O L N log N (N α + 1)
uniformly for all α.

Proof. By partial summation, we write

F (α) = n∈V k e(nα) = 2 ν -1 n=1 (V k (n) -V k (n -1)) e(nα) = 2 ν -2 n=1 V k (n)(e(nα) -e((n + 1)α)) + V k (2 ν -1) e((2 ν -1)α),
then by Lemma 9 we get

F (α) = 2 ν -2 n=2 η n (log n) 1/2 + O L N log N (e(nα) -e((n + 1)α)) + η 2 ν -1 (log(2 ν -1)) 1/2 + O L N log N e((2 ν -1)α) + O(1),
so that reversing the partial summation we obtain

F (α) = η 2 ν -1 n=3 n (log n) 1/2 - n -1 (log(n -1)) 1/2 e(nα) + O L N log N 2 ν -2 n=2 |1 -e(α)| + 1 + O(1), thus 
F (α) = η 2 ν -1 n=3 1 (log n) 1/2 + O 1 (log n) 3/2 e(nα) (4.16) + O L N log N (N α + 1) ,
where we used (2.1) and (4.17)

|1 -e(α)| 2π α .

A little computation shows that we have (4.18) 

2 ν -1 n=3 1 (log n) 1/2 e(nα) = 1 (log N ) 1/2 2 ν -1 n=3 e(nα) + O N log N and (4.19) 2 ν -1 n=3 1 (log n) 3/2 = O N (log N ) 3/2 .

Completion of the estimate of the integral J

We will prove that Lemma 11. Under the assumptions in the theorem and using the notations above we have

(5.1) |F (α) -φ(α)| = O L N (log N ) 1/2 exp (ρ -ε 2 )(log log N ) 1/2 uniformly for all α. Proof. Define τ by τ = (log N ) 1/2 N exp (ρ -ε 3 )(log log N ) 1/2
. Assume first that α τ . Then if N is large enough in terms of L and ε, then it follows from (4.15) in Lemma 10 that

|F (α) -φ(α)| = O L N log N (N α + 1) O L N log N (N τ + 1) (5.2) = O L N (log N ) 1/2 exp (ρ -ε 3 )(log log N ) 1/2
(for α τ ) so that now (5.1) holds whenever α τ . Assume now that (5.3) α > τ.

Clearly we have

(5.4) |F (α) -φ(α)| |F (α)| + |φ(α)| .
First we will estimate |F (α)| by using Lemma 7. Define the positive integer ν 1 as in Lemma 7:

(5.5) 2 -ν1 α < 2 1-ν1 .

Then by (2.1), (5.3) and (5.5) we have

2 ν-ν1 = 2 ν • 2 -ν1 > 2N • 1 2 α > N τ
whence, by the definition of τ ,

ν -ν 1 > log(N τ ) log 2 = 1 log 2 1 2 log log N -ρ - ε 3 (log log N ) 1/2 = log log N 2 log 2 1 -2 ρ - ε 3 (log log N ) -1/2 . It follows that √ ν -ν 1 > (log log N ) 1/2 (2 log 2) 1/2 1 - ρ -ε 3 (log log N ) 1/2 + O 1 log log N and log 2 2 + o(1) √ ν -ν 1 > log 2 8 1/2 + o(1) (log log N ) 1/2 + O(1) (5.6) = (ρ + o(1))(log log N ) 1/2 .
By (2.1), (5.5) and (5.6) we get from Lemma 7 that 1 -e((2 ν -1)α)

|F (α)| N 1 log N + (log log N ) 1/2 (log N ) 1/2 exp -(ρ + o(1))(log log N ) 1/2 (5.7) N (log N ) 1/2 exp (ρ -ε 2 )(log log N ) 1/
1 -e(α) (5.8)

1 (log N ) 1/2 • 1 α < 1 (log N ) 1/2 • 1 τ = N exp (ρ -ε 3 )(log log N ) 1/2 log N .
By (5.4), (5.7) and (5.8) it follows that (5.1) also holds in the case (5.3). Now we are ready to complete the proof of the theorem. The integral J in (2.4) can be rewritten in the following form:

(5.9)

J = J 1 + J 2
where

J 1 = 1/2 -1/2 G(α)H(α)φ(-α)dα, J 2 = 1/2 -1/2 G(α)H(α)(F (-α) -φ(-α))dα.
Here clearly we have 

|J 2 | O L N (log N ) 1/2 exp (ρ -ε 2 )(log log N ) 1/2 1/2 -1/2 |G(α)H(α)| dα.
If N is large enough in terms of L and ε, then by using the Cauchy-Schwarz inequality we get that

|J 2 | N (log N ) 1/2 exp (ρ -ε)(log log N ) 1/2 1/2 -1/2 |G(α)| 2 dα 1/2 -1/2 |H(α)| 2 dα 1/2 (5.11) = N (log N ) 1/2 exp (ρ -ε)(log log N ) 1/2 (|A| |B|) 1/2 .
By (2.5), (5.9), (5.10) and (5.11) we have

|{(a, b) : a ∈ A, b ∈ B, s(a + b) = k}| - η (log N ) 1/2 |A| |B| = |J -J 1 | = |J 2 | < N (log N ) 1/2 exp (ρ -ε)(log log N ) 1/2 (|A| |B|) 1/2 ,
which completes the proof of the theorem.

Estimates from the opposite side

One might like to know how far could be Theorem 1 improved upon, in other words, what can be said from the opposite side ? In this direction we will show: Theorem 2. For N ∈ N, N → ∞ there are sets (6.1)

A, B ⊂ {0, 1, 2, . . . , N } such that

(6.2) |A| = |B| = N exp - 4 (log 2) 1/2 (log N ) 1/2 log log N + O(1) and (a, b) : a ∈ A, b ∈ B, s(a + b) 1 2 log N log 2 + 1 (log 2) 1/2 - C log log N (log N ) 1/2 log log N (6.3) < |A| |B| exp -2(log log N ) 2 + O(log log N )
(where C is a positive absolute constant large enough).

It can be deduced from this theorem easily that for these sets A, B, except for "very few" sums a + b with a ∈ A, b ∈ B, the sum of digits of the sums a + b is much greater than expected: for any c > 0 and large N there are much less than

|A||B| (log N ) c pairs (a, b) with s(a + b) 1 2 log N log 2 + 1 (log 2) 1/2 - C log log N (log N ) 1/2 log log N. Proof. Write (6.4) ν = log N log 2 - 4 (log 2) 1/2 (log N ) 1/2 log log N and (6.5) µ = 4 (log 2) 1/2 (log N ) 1/2 log log N -1 and let A = {m • 2 µ + (2 µ -1) : 0 m < 2 ν-1 } and B = {n • 2 µ : 0 n < 2 ν-1 }.
Then by (6.4) and (6.5), it follows from

(6.6) a = m • 2 µ + (2 µ -1) ∈ A, b = n • 2 µ ∈ B that we have 0 < a + b < 2 ν-1 • 2 µ + (2 µ -1) + 2 ν-1 • 2 µ = 2 µ+ν + (2 µ -1) 2 log N log 2 -1 + 2 O((log N ) 1/2 log log N ) < 1 2 N + o(N ) < N
for N large enough, so that both (6.1) and (6. whence (6.2) follows from (6.4). It also follows from (6.6) (6.9)

a + b = (m + n) • 2 µ + (2 µ -1)
whence, by the q-additive property of the sum of digits function, we have

s(a + b) = s((m + n) • 2 µ + (2 µ -1)) = s((m + n) • 2 µ ) + s(2 µ -1) (6.10) = s(m + n) + s(1 . . . 1) = s(m + n) + µ (with 0 < m + n < 2 ν ).
We will call an integer 0 t < 2 ν "bad", if

s(t) ν 2 -(log ν)ν 1/2 ,
and denote the set of these bad integers t by T . Indeed, if a sum a + b with a, b of form (6.6) is such that m + n = t is a "bad" number, then by (6.9) and (6.10) we have

s(a + b) = s(t) + µ ν 2 -(log ν)ν 1/2 + µ
while by (6.4) and (6.5) we have

ν 2 + µ 1 2 log N log 2 - 2(log N ) 1/2 (log 2) 1/2 log log N + 4(log N ) 1/2 (log 2) 1/2 log log N -3 = 1 2 log N log 2 + 2(log N ) 1/2 (log 2) 1/2 log log N -3, log ν log log N log 2 + log 1 - 4(log 2) 1/2 (log N ) 1/2 log log N = log log N + O(1), and 
ν 1/2 (log N ) 1/2 (log 2) 1/2 1 - 4(log 2) 1/2 (log N ) 1/2 log log N 1/2 = (log N ) 1/2 (log 2) 1/2 + O(log log N ), thus (log ν)ν 1/2 (log N ) 1/2 (log 2) 1/2 log log N + O((log N ) 1/2 ), and 
s(a + b) 1 2 log N log 2 + (log N ) 1/2 (log 2) 1/2 log log N + O((log N ) 1/2 ),
so that s(a + b) is "large" for such a pair (a, b):

(6.11) s(a + b) > 1 2 log N log 2 + 1 (log 2) 1/2 - C log log N (log N ) 1/2 log log N
where C is a positive absolute constant large enough. Thus if a+b is a "good" sum, i.e., the opposite of (6.11) holds, then (6.12) m + n = t satifies s(t) < ν 2 -(log ν)ν 1/2 , so that t ∈ {0, 1, . . . , 2 ν -1} \ T . The number of these t's is 2 ν -|T | , and if such a t is fixed, and m, n (with 0 m, n < 2 ν-1 ) satisfy (6.12), then m, n and thus also a, b (with a ∈ A, b ∈ B) unique determine each other, thus the number of solutions of both (6.12) in (m, n) and (6.9) in (a, b) is at most It remains to give a lower bound for |T |. In order to do this we need two lemmas Lemma 12. Let X 1 ,. . . ,X ν be independent random variables such that P(X j = 1) = 1 2 and P(X j = 0) = 1 2 for j = 1, . . . , ν. Then for any t > 0 we have P X 1 + • • • + X ν -ν 2 > t < 2 exp(-2 t 2 /ν). Proof. This is a special case of the so called "Chernoff bounds". E.g. apply Corollary A.1.2 of [START_REF] Alon | The probabilistic method[END_REF] to the random variables 1 -2X 1 , . . . , 1 -2X ν with a = 2t. Lemma 13. For ν ∈ N and ξ ν > 0 we have 

card 0 n < 2 ν , s(n) -ν 2 > ξ ν √ ν <

(1. 1 )

 1 U r (N ) = {n : n ∈ N, n N, s g (n) ≡ r mod m} (for fixed g, r, m and large N ), and among others they showed that these sets contain "many" sums a + b with a ∈ A, b ∈ B where A, B are "dense" subsets of {1, . . . , N }: Theorem A. If g ∈ N, g 2, m ∈ N, (m, g -1) = 1, r ∈ Z and A, B ⊂ {1, . . . , N }, then we have (1.2) |{(a, b) ∈ A × B, s g (a + b) ≡ r mod m}| -|A| |B| m 2γN λ (|A| |B|) 1/2

  , . . . , N } and |A| , |B| > εN , then there are integers a, b such that a ∈ A, b ∈ B and

2 ,

 2 combining (3.7) and (3.8) we get for θ

4 . 8 .

 48 Estimate of F (α) for small α We will need Lemma Assume that the function b : N → R satisfies the conditions (4.1) 1 2 µ + b(µ) ∈ N for every µ ∈ N and (4.2) there is a K 1 such that for every µ ∈ N we have |b(µ)| Kµ 1/4 , and define the set E b by

N 2 µ

 2 log N then (4.4) holds trivially, thus we restrict ourselves to(4.5) N log N < x 2 ν -1(< 4N )(where the last inequality follows from (2.1)). Define the integer ν 2 by(4.6) 2 ν2 N log N < 2 ν2+1 ,and define the function b : N → R in the following way: let(4.7) b(µ) = k -1 if µ ∈ N, ν 2 even if µ ∈ N and µ ∈ [ν 2 , ν].For this function b condition (4.1) holds trivially. (4.2) also holds trivially for µ ∈ [ν 2 , ν] for any fixed K and large enough N , while if (4.9) ν 2 µ ν,

( 4 .

 4 15) follows from (4.14), (4.16), (4.18) and (4.19).

2 .

 2 Moreover, by (4.14), (5.3) and the inequality |1 -e(α)| 4 α we have |φ(α)| = η 1 (log N ) 1/2

  a + b -n)α)dα = η (log N ) 1/2 a∈A b∈B 1 = η (log N ) 1/2 |A| |B| ,and by Lemma 11 we have

7 )

 7 A + B ⊂ {1, 2, . . . , N } hold. Moreover, we have (6.8) |A| = |B| = 2 ν-1

14 )

 14 (6.13) min(|A| , |B|) = |A| = |B| = |A| |B|. Thus the number of "good" pairs (a, b) for which the opposite of inequality (6.11) holds is at most the product of the number of such t's multiplied by this upper bound: (a, b) : a ∈ A, b ∈ B, s(a + b) |A| |B|(2 ν -|T |).

  2 ν+1 exp -2 ξ 2 ν .Proof. Apply Lemma 12 with t = ξ ν √ ν.Using Lemma 13 (with log ν in place of ξ ν ) we get that -2 ν+1 exp(-2(log ν) 2 ).It follows from (6.8), (6.14) and (6.15) that(a, b) : a ∈ A, b ∈ B, s(a + b) (log N ) 1/2 log log N |A| |B| 2 ν+1 exp(-2(log ν) 2 ) |A| |B| exp(-2(log log N ) 2 + O(log log N ))We have seen that there are large subsets A, B ∈ {1, 2, . . . , N } with the property that solutions than expected. But how large can be A, B so that (6.16) has no solution at all ? It is trivial that there are A, B with |A| |B| N such that (6.16) has no solution. On the other hand, we have not been able to answer the following question: Problem 1. Are there sets A, B ∈ {1, 2, . . . , N } such that |A| |B| /N → ∞ and (6.16) has no solution ?

	(6.15) has much less (6.16)	|T | = {0 t < 2 ν , s(t) |{0 t < 2 ν }| -{0 t < 2 ν , s(t) -ν 2 -(log ν) √ ν} 2 log N log 2 + 1 (log 2) 1/2 -C log log N s(a + b) = ν 2 = 1 2 log N log 2 > 2 ν 1	ν 2	> (log ν) √	ν}
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