Christian Mauduit 
  
Joël Rivat 
email: rivat@iml.univ-mrs.fr
  
András S Árk 
  
  
  
  
  
ON THE DISTRIBUTION OF THE SUM OF DIGITS OF SUMS a + b

Keywords: Mathematics Subject Classification. 11A63, 11B13 sumset, digits

Introduction

Throughout this paper we will use the following notations: N, N 0 , Z, R and C denote the set of positive integers, non-negative integers, integers, real numbers, resp. complex numbers, x denotes the distance from x to the nearest integer and we write e(α) = e 2iπα . We will denote the sum of digits of an integer n 0 written in base g by s g (n) and will write s 2 (n) = s(n).

Many papers have been written on the arithmetic properties of sumsets of "dense" sets of positive integers. A survey of the early work in this field is presented in [START_REF] Sárközy | Hybrid problems in number theory[END_REF]. In particular, in [START_REF] Mauduit | On the arithmetic structure of sets characterized by sum of digits properties[END_REF] the first and third author showed that if A, B are "large" subsets of {1, 2, . . . , N }, g ∈ N is fixed, (m, g -1) = 1 and m is "small", then the values of the sum of digit function s g (n) assumed over the sums a + b (with a ∈ A, b ∈ B) are well-distributed modulo m:

Theorem A. If g ∈ N, g
2, m ∈ N, (m, g -1) = 1, r ∈ Z and A, B ⊂ {1, 2, . . . , N }, then we have

{(a, b) ∈ A × B, s g (a + b) ≡ r mod m} - |A| |B| m 2 γ N λ (|A| |B|) 1/2 ,
where λ = λ(g, m) and γ = γ(g, m) are defined by λ = 1 2 log g log g sin(π/2m) sin(π/2mg) (< 1), γ = γ(g, m) = g 2 g λ -1

.

In another paper [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] we formulated the conjecture that if g ∈ N is fixed and A, B are "large" subsets of {1, 2, . . . , N }, then there are a ∈ A, b ∈ B such that their sum of digits s g (a + b) is equal to its expected value: 

s g (a + b) = (g -1)ν/2 where ν = ν(N ) ∈ N is defined by g ν N g ν+1 -1.
Later in [START_REF] Mauduit | On the digits of sumsets[END_REF] we proved this conjecture in the g = 2 special case in a slightly stronger form: Theorem B. For any L > 0 and ε > 0 there is a number

N 0 = N 0 (L, ε) such that if N ∈ N, N > N 0 , k ∈ N, k - log N 2 log 2 < L(log N ) 1/4
and A, B ∈ {1, 2, . . . , N },

then writing = log 2 8 1/2
, we have

|{(a, b) ∈ A × B, s(a + b) = k}| - log 4 π 1/2 |A| |B| (log N ) 1/2 < N (log N ) 1/2 exp(( -ε)(log log N ) 1/2 ) (|A| |B|) 1/2 .
In this paper our goal is to extend the study of the distribution of the numbers s(a + b) from a small neighbourhood of the expedted value to a possibly large interval. We will prove the following theorem:

Theorem 1. For N ∈ N, N > 2, A, B ∈ {1, 2, . . . , N }, 0 < z < log 2N log 2 define y 2N = y 2N (z) by z = log 2N log 4 + y 2N • 1 2 log 2N log 2 1/2 .
Then we have

1 |A| |B| |{(a, b) ∈ A × B, s(a + b) < z}| (1) = Φ(y 2N ) + O N |A| |B| (log log N )(log log log N ) 1/2 (log N ) 1/4
uniformly in z as N tends to infinity, with Φ defined by

Φ(u) = (2π) -1/2 u -∞ e -t 2 /2 dt.
This theorem shows that for as the following example shows: let

(2) |A| |B| N log log N (log N ) 1/4
A = B = n N : 2 √ log N | n .
Namely, for this sequences A, B (3) holds, however, for (a, b) ∈ A × B the numbers s(a+b) tend to be smaller than expected by c √ log N (since the last √ log N digits of the sums a + b do not contribute to s(a + b)).

Sketch of the proof

We will use the circle method (in similar manner as in [START_REF] Erdős | On the distribution of the number of prime factors of sums a + b[END_REF]). Let us write

G(α) = a∈A e(aα), H(α) = b∈B e(bα), (4) S z (α) = n 2N s(n)<z e(nα)
and

(5)

J = 1 0 G(α) H(α) S z (-α) dα.
Then clearly we have

J = 1 0 a∈A b∈B n 2N s(n)<z e((a + b -n)α) dα (6) = (a,b)∈A×B n 2N s(n)<z a+b=n 1 = |{(a, b) ∈ A × B, s(a + b) < z}|
so that, indeed, in order to estimate the left hand side of (1) we have to estimate this integral J. The estimate of J can be reduced to the estimate of the generating function S z (α) which will be carried out in sections 3 and 4 and finally in section 5 we will complete the proof of the theorem by combining the lemmas proved in sections 3 and 4.

3. The estimate of S z (α)

For x > 0 and z > 0 let

(7) R z (x) = {n ∈ N : n x, s(n) < z} and (8) R z (x) = |R z (x)| = |{n ∈ N : n x, s(n) < z}| .
Note that by using this notation the definition of S z (α) in (4) can be rewritten as

(9) S z (α) = n∈Rz(2N )
e(nα).

For x > 0 we write

M x = log x log 4 , D x = 1 2 log x log 2 1/2 , let N x (y) = {n : n x, s(n) < M x + yD x }, and write N x (y) = |N x (y)| = |{n : n x, s(n) < M x + yD x }| .
The estimate of S z (α) near 0 will be based on a theorem of Kátai and Mogyoródi [START_REF] Kátai | On the distribution of digits[END_REF]. Here we state their result in the special case when the base of the number system (denoted by them as K, and denoted above by us as g) is 2. They proved:

Lemma 1. We have

N x (y) = x Φ(y) + O x log log x (log x) 1/2
uniformly in y as x tends to infinity.

Proof. This is the K = 2 special case of Theorem 1 in [START_REF] Kátai | On the distribution of digits[END_REF].

Lemma 2. For (10) 0 z log 2N, (11) N (log N ) 1/2 < x 2N we have (12) R z (x) = |{n : n x, s(n) < z}| = x Φ(y 2N ) + O N log log N (log N ) 1/2
where y 2N is defined by

(13) y 2N = z -M 2N D 2N Proof. Writing (14) y x = z -M x D x ,
by Lemma 1, (11) and (13), we have

R z (x) = |{n : n x, s(n) < z}| = |{n : n x, s(n) < M x + y x D x }| (15) = N x (y x ) = xΦ(y x ) + O x log log x (log x) 1/2 = xΦ(y x ) + O N log log N (log N ) 1/2 .
Observing by (11

) that log x log N , 1 D x - 1 D 2N = (log 2) 1/2 log 2N log x dt t 3/2 log(2N/x) (log x) 3/2 log log N (log N ) 3/2 and M 2N D 2N - M x D x = 1 (log 2) 1/2 log 2N log x dt 2 t 1/2 log(2N/x) (log x) 1/2 log log N (log N ) 1/2 ,
it follows from (10), ( 13), ( 14) and ( 15) that ( 16)

y 2N -y x = z 1 D 2N - 1 D x - M 2N D 2N - M x D x = O log log N (log N ) 1/2 .
By the Lagrange mean value theorem there is a real number ξ between y x and y 2N such that

Φ(y 2N ) -Φ(y x ) y 2N -y x = |Φ (ξ)| = 1 √ 2π e -ξ 2 /2 1 √ 2π
whence, by (16),

|Φ(y 2N ) -Φ(y x )| 1 √ 2π |y 2N -y x | = O log log N (log N ) 1/2 so that (17) Φ(y 2N ) = Φ(y x ) + O log log N (log N ) 1/2 .
(12) follows from (15) and ( 17) which completes the proof of Lemma 2.

Write

(18) u = (log N ) 1/4 (log log log N ) 1/2 N . Lemma 3. For (19) 0 z 2N and (20) α u 
we have

(21) S z (α) -Φ(y 2N ) 2N n=1 e(nα) = O u N 2 log log N (log N ) 1/2 .
Proof. By ( 7), (8), (9) and partial summation we have, writing

N 0 = 2N (log N ) -1/2 , S z (α) = n∈Rz(2N ) e(nα) = n∈Rz(N0) e(nα) + 2N n=N0+1 (R z (n) -R z (n -1)) e(nα) = O(N 0 ) + 2N n=N0 R z (n) (e(nα) -e((n + 1)α)) + R z (2N ) e((2N + 1)α).
By (19), for N 0 n 2N we can apply (12) and we get

S z (α) = O(N 0 )+Φ(y 2N ) 2N n=N0 n (e(nα) -e((n + 1)α)) + 2N e((2N + 1)α) +E z (α) with E z (α) = O N log log N (log N ) 1/2 2N n=N0 |1 -e(α)| + 1 = O ( α N + 1)N log log N (log N ) 1/2 , so that, since 0 Φ 1, (22) S z (α) = Φ(y 2N ) 2N n=1 e(nα) + O N log log N (log N ) 1/2 + O u N 2 log log N (log N ) 1/2 .
(21) follows from ( 22) and (18).

4. The estimate of S z (α) for large α For (θ, α) ∈ R 2 and λ ∈ Z with λ 0 let

F λ (θ, α) = 2 -λ 0 n<2 λ e(s(n)θ + nα).
For λ 0, we have the trivial upper bound

(23) |F λ (θ, α)| 1
and for λ 1,

F λ (θ, α) = 2 -λ λ-1 j=0
1 + e(θ + 2 j α) .

For α ∈ Z we have F λ (0, α) = 1 and for α ∈ R \ Z we have

(24) |F λ (0, α)| = 2 -λ sin π2 λ α sin πα 2 λ sin π α -1 .
For 0 µ λ, 0 m < 2 µ and n 0 we have s(m + 2 µ n) = s(m) + s(n) and

(25)

F λ (θ, α) = F µ (θ, α) F λ-µ (θ, 2 µ α).
For λ 1 we have

∂F λ ∂θ (θ, α) = 2 -λ λ-1 i=0 2iπ e(θ + 2 i α) λ-1 j=0 j =i
1 + e(θ + 2 j α) , so that for (θ, α) ∈ R 2 , λ 1 we have the elementary upper bound Proof. This is Lemma 3.2 of [START_REF] Mauduit | On the digits of sumsets[END_REF].

Lemma 5. Let ν 1 be an integer and α ∈ R. For 0 θ 0 1 2 , and c defined by (28) we have

(29) θ θ0 |F ν (θ, α)| dθ √ π e c/4 e -cθ 2 0 ν √ cν .
Proof. This is Lemma 3.3 of [START_REF] Mauduit | On the digits of sumsets[END_REF].

Lemma 6. Let ν 1 0 be an integer and α ∈ R such that 2 -2-ν1 α 2 -1-ν1 . For any θ ∈ R and any integer ν ν 1 we have

(30) |F ν (θ, α)| 2 1 2 -ν+ν1 + π |θ| (ν -ν 1 ) |F ν1 (θ, α)| .
Proof. By (25) we have

F ν (θ, α) = F ν1 (θ, α)F ν-ν1 (θ, 2 ν1 α),
and writing

α = n + β with 2 -2-ν1 |β| 2 -1-ν1 we have 2 ν1 α = 2 ν1 n + 2 ν1 β with 2 -2 |2 ν1 β| 2 -1 so that 2 ν1 α = |2 ν1 β| 1 4
, and by ( 26) and ( 24) it follows |F ν-ν1 (θ, 2 ν1 α)| 2 1 2 -ν+ν1 + πθ(ν -ν 1 ) and we get (30).

Lemma 7. For real numbers U > 2, U -1 < θ 1 1 2 , integers 1 ν 1 ν, and α ∈ R such that 2 -2-ν1 α 2 -1-ν1 , we have 1/2 -1/2 min U, |sin πθ| -1 |F ν (θ, α)| dθ (31) 2 ν1-ν (1 + log(U θ 1 )) + (ν -ν 1 )(U -1 + ν -1/2 1 ) + e -cθ 2 1 ν log 1 2θ 1 .
where the implied constant is absolute.

Proof. Let θ 0 = U -1 , so that 0 < θ 0 We have

θ0 θ θ1 min U, |sin πθ| -1 |F ν (θ, α)| dθ θ0 θ θ1 |F ν (θ, α)| dθ θ
and combining (30) and (23) the right hand side above is at most

2 1 2 -ν+ν1 θ0 θ θ1 dθ θ + π(ν -ν 1 ) θ0 θ θ1 |F ν1 (θ, α)| dθ.
By (29) applied with ν 1 in place of ν we obtain

θ0 θ θ1 min U, |sin πθ| -1 |F ν (θ, α)| dθ 2 ν1-ν log(θ 1 /θ 0 ) + ν -ν 1 √ ν 1 .
Observing that

1/2 θ1 e -cθ 2 ν dθ θ e -cθ 2 1 ν 1/2 θ1 dθ θ = e -cθ 2 1 ν log 1 2θ 1 .
by (27) we get

θ1 θ 1/2 min U, |sin πθ| -1 |F ν (θ, α)| dθ e -cθ 2 1 ν log 1 2θ 1 .
Combining these estimates leads to Lemma 7.

Lemma 8. For integers 0 ν 1 < ν, (θ, α) ∈ R 2 such that θ < 1 4 and 2 -2-ν1 α 2 -1-ν1 and c defined by (28) we have

(32) |F ν (θ, α)| θ e -c θ 2 ν + 2 ν1-ν + exp -σ(θ) √ ν -ν 1 ,
where σ(θ) = -1 2 (log 2) log sin π( θ

+ 1 4 ) = log 2 2 + O( θ ).
Proof. This is Lemma 3.4 of [START_REF] Mauduit | On the digits of sumsets[END_REF] with ν 1 + 2 in place of ν 1 and therefore a modified absolute implied constant. The range of α is extended by continuity.

Lemma 9. For integers 0

ν 1 < ν, (θ 0 , α) ∈ R 2 such that 0 < θ 0 < 1 4 and 2 -2-ν1 α 2 -1-ν1
, and c defined by (28), we have

θ θ0 |F ν (θ, α)| dθ 1 -e -cθ 2 0 ν ν + θ 0 2 ν1-ν + θ 0 exp -σ(θ 0 ) √ ν -ν 1 .
Proof. This is Lemma 3.5 of [START_REF] Mauduit | On the digits of sumsets[END_REF] with ν 1 + 2 in place of ν 1 and therefore a modified absolute implied constant. The range of α is extended by continuity.

Lemma 10. For integers 0

ν 1 < ν, α ∈ R such that 2 -2-ν1 α < 2 -1-ν1 and U 5 we have (33) 1/2 -1/2 min U, |sin πθ| -1 |F ν (θ, α)| dθ 1 U + 1 ν 1/2 + exp -σ(1/5) √ ν -ν 1 log U. Proof. Let θ 0 = U -1 , so that 0 < θ 0 1 5 . Since min U, |sin πθ| -1 U = θ -1 0 , by Lemma 9 we have θ0 -θ0 min U, |sin πθ| -1 |F ν (θ, α)| dθ 1 -e -cθ 2 0 ν θ 0 ν +2 ν1-ν +exp -σ(θ 0 ) √ ν -ν 1 ,
and by the mean value theorem and the monoticity of σ we get

θ0 -θ0 min U, |sin πθ| -1 |F ν (θ, α)| dθ θ 0 + 2 ν1-ν + exp -σ(1/5) √ ν -ν 1 .
By Lemma 8 we have

θ0 θ 1/5 min U, |sin πθ| -1 |F ν (θ, α)| dθ 1/5 θ0 e -cθ 2 ν dθ + 2 ν1-ν + exp -σ(1/5) √ ν -ν 1 1/5 θ0 θ -1 dθ,
and writing θ = θ 0 + t we have

1/5 θ0 e -c(θ 2 -θ 2 0 )ν dθ +∞ 0 e -c(t 2 +2θ0t)ν dt +∞ 0 e -ct 2 ν dt = √ π 2 √ cν ,
so that the quantity above is

ν -1/2 e -cθ 2 0 ν + 2 ν1-ν log(θ -1 0 ) + exp -σ(1/5) √ ν -ν 1 log(θ -1 0 ). By Lemma 5 we have θ >1/5 min U, |sin πθ| -1 |F ν (θ, α)| dθ sin π 5 -1 √ π e c/4 e -cν/25 √ cν .
Gathering the estimates above and observing that 2 ν1-ν exp (-σ(1/5) √ ν -ν 1 ) we get Lemma 10.

We will need a special case of the so called "Chernoff bounds": Lemma 11. Let ν 1 be an integer and X 1 ,. . . ,X ν be independent random variables such that P(X j = 1) = 1 2 and P(X j = 0) = 1 2 for j = 1, . . . , ν. Then for any t > 0 we have [START_REF] Alon | The probabilistic method[END_REF] to the random variables 1-2X 1 , . . . , 1-2X ν with a = 2t.

P X 1 + • • • + X ν -ν 2 > t < 2 exp(-2 t 2 /ν). Proof. E.g. apply Corollary A.1.2 of
Lemma 12. Let ν 1 be an integer and ξ ν > 0. We have

card 0 n < 2 ν , s(n) -ν 2 > ξ ν √ ν < 2 ν+1 exp -2 ξ 2 ν . Proof. Apply Lemma 11 with t = ξ ν √ ν.
For any α ∈ R, N ∈ N, and z ∈ R let us write

(34) T (α, N, z) = N -1 0 n<N s(n)<z
e(nα).

Lemma 13. Let ν 3 be an integer and α ∈ R \ Z. For z ∈ R we have

(35) |T (α, 2 ν , z)| α -1 2 -ν log log ν + ν -1/2 (log ν) 2 ,
where the implied constant is absolute.

Proof. Assume first that z

ν 2 -1 2 √ ν log ν. By Lemma 12 with ξ ν = 1 2 √ log ν we have (36) |T (α, 2 ν , z)| exp(-1 2 log ν) = ν -1/2 . Assume now that z > ν 2 + 1 2 √ ν log ν. Observing that n<2 ν e(nα) 1 |sin(πα)| = 1 sin(π α ) (2 α ) -1
and writing

T (α, 2 ν , z) = 2 -ν 0 n<2 ν e(nα) -2 -ν 0 n<2 ν s(n) z e(nα), by Lemma 12 with ξ ν = 1 2 √ log ν we have |T (α, 2 ν , z)| α -1 2 -ν + exp(-1 2 log ν) = α -1 2 -ν + ν -1/2 .
It remains to consider the case when

ν 2 - 1 2 ν log ν < z ν 2 + 1 2 ν log ν. Writing k ν = ν 2 -1 2 √ ν log ν we have T (α, 2 ν , z) = kν k<z 2 -ν 0 n<2 ν s(n)=k e(nα) + T (α, 2 ν , k ν ), and 
2 -ν 0 n<2 ν s(n)=k e(nα) = 1/2 -1/2
F ν (θ, α) e(-kθ) dθ so that

T (α, 2 ν , z) = 1/2 -1/2   kν k<z e(-kθ)   F ν (θ, α) dθ + T (α, 2 ν , k ν ),
hence using (36) with k ν in place of z we have

|T (α, 2 ν , k ν )| = O(ν -1/2
) and we get

|T (α, 2 ν , z)| 1/2 -1/2 min( z -k ν , |sin πθ| -1 ) |F ν (θ, α)| dθ + O(ν -1/2 ).
We choose U = 2 + √ ν log ν and observe that z -k ν U . If α 2 -1-ν then (35) holds by the trivial estimate. Therefore we can assume that α > 2 -1-ν . Let 0 ν 1 < ν be the unique integer such that 2 -2-ν1 < α 2 -1-ν1 , and let us first assume that

(37) ν -ν 1 σ 1 5 -2 1 2 log ν + log log ν 2 holds, so that exp σ(1/5) √ ν -ν 1 √ ν log ν.
Applying (33) we get

|T (α, 2 ν , z)| ν -1/2 .
If condition (37) does not hold, in particular we have

(38) ν -ν 1 (log ν) 2 ,
thus ν 1 1, and taking

θ 1 = log ν + 2 log log ν 2cν ,
we observe that, using (28), we have 1 < log 3 √ 2c < U θ 1 for ν 3, and θ 1 1 2 for ν 22. Moreover we have

U θ 1 log ν, U -1 ν -1/2 , ν -1/2 1 ν -1/2 , log 1 2θ 1 log ν,
and e cθ 2 1 ν = ν 1/2 log ν and we can apply (31) to get

|T (α, 2 ν , z)| 2 ν1-ν log log ν + (ν -ν 1 )ν -1/2 ,
and by (38) we get (35) for ν 22. Finally (35) holds for 3 ν < 22 by using the trivial upper bound and modifying the implied absolute constant.

Lemma 14. Let N 16 be an integer and α ∈ R \ Z. For z ∈ R we have

(39) |T (α, N, z)| (log log N )(log log log N ) N α + (log log N ) 2 (log N ) 1/2 .
where the implied constant is absolute.

Proof. If N is a power of 2 then (39) follows from (35). If N is not a power of 2, let r 2 be an integer and write

N = 2 j1 + • • • + 2 jr with j 1 > • • • > j r . If α (2N ) -1 ( 
35) holds trivially so we may assume that α > (2N ) -1 . We have

0 n<N s(n)<z e(nα) = 0 n<2 j 1 s(n)<z e(nα) + 0 n<N -2 j 1 s(2 j 1 +n)<z e((2 j1 + n)α) = 0 n<2 j 1 s(n)<z e(nα) + e(2 j1 α) 0 n<N -2 j 1 s(n)<z-1 e(nα) hence N |T (α, N, z)| 2 j1 T (α, 2 j1 , z) + (N -2 j1 ) T (α, N -2 j1 , z -1) 
.

Iterating this process we get

N |T (α, N, z)| r i=1 2 ji T (α, 2 ji , z -i) . It follows that (40) N |T (α, N, z)| 0 j< log N log 2 2 j max z∈R T (α, 2 j , z) .
Let us first assume that assume that α > N -1 (log N ) 3/2 . By (35)

N |T (α, N, z)| 7 + 3 j< log N log 2 α -1 log log j + 2 j j -1/2 (log j) 2 .
Observing that

α - 1 
3 j< log N log 2 log log j N (log N ) 3/2 (log N ) log log log N = N log log log N (log N ) 1/2 , and 
3 j< log N log 2 2 j j -1/2 (log j) 2 (log log N ) 2 3 j< log N 2 log 2 2 j + (log log N ) 2 (log N ) 1/2 log N 2 log 2 j< log N log 2 2 j so that 3 j< log N log 2 2 j j -1/2 (log j) 2 N (log log N ) 2 (log N ) 1/2 ,
and for α > N -1 (log N ) 3/2 we get (39). It remains to consider the case where (41) (2N ) -1 < α N -1 (log N ) 3/2 . Let J = -log( α ) log 2 > 0, i.e.: 2 J = α -1 .

In (40) we use the trivial estimate T (α, 2 j , z) 1 for 0 j J and (35) for J < j < log N/ log 2. This leads to N |T (α, N, z)| 0 j J (1) follows from ( 6) and (50) and this completes the proof of the theorem.

Conjecture 1 .

 1 If ε > 0, N > N 0 (ε), A, B ∈ {1, 2, . . . , N } and |A|, |B| > εN , then there are integers a, b such that a ∈ A, b ∈ B and

  the mean value theorem, gives (for λ = 0 and (θ, α) ∈ R 2 we have F λ (θ, α) = 1) for any integer λ 0 (26) |F λ (θ, α)| |F λ (0, α)| + πθλ Lemma 4. Let λ 0 be an integer and (θ, α) ∈ R 2 . We have (27) |F λ (θ, α)| e c/4 e -c θ 2 λ , where (28) c = π 2 /20.

1 2 . 1 U 2 1 2 - 3 2

 21223 For |θ| θ 0 , since min U, |sin πθ| -= θ -1 0 , combining (30) with (23) applied with λ = ν 1 and using parity we have θ0 -θ0 min U, |sin πθ| -1 |F ν (θ, α)| dθ 2U θ0 0 ν+ν1 + πθ(ν -ν 1 ) dθ and by integration we get θ0 -θ0 min U, |sin πθ| -1 |F ν (θ, α)| dθ 2 +ν1-ν + π U -1 (ν -ν 1 ).

2 j + J<j< log N log 2 α - 1 uN 2 5 . 2 where 2 N 1 0J 2 N 1 =

 2212522121 log log j + 2 j j -1/2 (log j)2 .Proof. Combining Lemmas 3 and 15 we get for all α thatS z (α) -Φ(y 2N ) log log N (log N ) 1/2 + (log log N ) log log log N u + N (log log N ) 2 (log N ) 1/2 ,and the choice of u made by (18) gives (47). Completion of the proof of Theorem 1) H(α) S z (-α) dα = Φ(y 2N ) J 1 + J )H(α) S z (-α) -Φ(y 2N ) )H(α)| S z (-α) -Φ(y 2N ) (log log N )(log log log N ) 1/2 (log N ) 1/4 |G(α)H(α)| dα, by the Cauchy-Schwarz inequality and by Parseval identity (log log N )(log log log N ) 1/2 (log N ) a + b -n)α) dα = a∈A b∈B |A| |B| . By (48) and (49) we have (50) |J -Φ(y 2N ) |A| |B|| N (log log N )(log log log N ) 1/2 (log N ) 1/4 |A| |B|.
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We have

and as above

Now

J<j< 

and by (43) we have