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Local optimal transport for functional brain
template estimation
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Abstract. An important goal of cognitive brain imaging studies is to
model the functional organization of the brain; yet there exists currently
no functional brain atlas built from existing data. One of the main road-
blocks to the creation of such an atlas is the functional variability that
is observed in subjects performing the same task; this variability goes
far beyond anatomical variability in brain shape and size. Function-
based alignment procedures have recently been proposed in order to im-
prove the correspondence of activation patterns across individuals. How-
ever, the corresponding computational solutions are costly and not well-
principled. Here, we propose a new framework based on optimal trans-
port theory to create such a template. We leverage entropic smoothing
as an efficient means to create brain templates without losing fine-grain
structural information; it is implemented in a computationally efficient
way. We evaluate our approach on rich multi-subject, multi-contrasts
datasets. These experiments demonstrate that the template-based infer-
ence procedure improves the transfer of information across individuals
with respect to state of the art methods.

Keywords: Brain · Atlas Inference · fMRI · Functional Alignment.

1 Introduction

Brain anatomical and functional variability There is a very large biological vari-
ability between human brains, influenced by both genetic, developmental as well
as environmental factors. It results in conspicuous anatomical differences, that
have traditionally been characterized as diffeomorphic transformations and com-
pensated by dedicated algorithms (see [1] for an application-oriented overview).
Functional imaging, such as functional Magnetic Resonance Imaging (fMRI) also
detects variations of activity across brain regions and thus provides a potential
marker of variation in the functional organization of the brain i.e. the involve-
ment of different neural modules when performing a given task. However, so far
very little work has been dedicated to leverage fMRI contrasts to learn better
correspondences between brains.

Capturing functional variability in brain responses The implicit tenet of most
analyses is that only anatomical information can be leveraged to estimate accu-
rate correspondences between brains, while the unmatched functional variability
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is treated as a residual [2]. It might, at best, be reduced by smoothing; however,
smoothing has been shown to create artificial overlaps of different functional
territories, yielding biased models of functional organization (see e.g. [3]).

Meanwhile, the progressive improvement of fMRI contrast-to-noise ratio and
resolution, as well as the development of deep phenotyping approaches, in which
subjects were scanned under many conditions (e.g. [4, 5]) opens a new per-
spective, namely that of using the acquired functional contrasts to learn inter-
individual correspondences. Diffeomorphic registrations were proposed to match
functional variability across individuals[6] or features obtained in resting-state
fMRI data [7], thus assuming a strong spatial regularity of the correspondence.
This diffeomorphicity constraint was abandoned in other works, in particular
in the popular hyperalignment framework [8, 9], that attempts to identify and
match activation patterns in the visual cortex without imposing strong regular-
ity conditions. Following this line of research, direct functional correspondences
obtained from resting-state fMRI data have been used to directly map functional
areas across individuals [10, 11]. While Hyperalignment is currently used to pool
data across individuals to boost brain activity classification (see for e.g. [12]),
it is not applied in more traditional group studies. Even if free correspondences
potentially yield good alignment for two individuals, this framework has a hard
time producing a subject independent model — a template.

Specifically, two core questions are still open: i) What family of transforma-
tions should be allowed for cross-subject matching ? In particular, should the
transformations have some spatial regularity ? ii) How to estimate templates
under weakly constrained deformation models ?

Our contribution Following the intuitions that lead to the development of hyper-
alignment —map features across individuals under weak spatial constraints— we
develop a novel framework based on optimal transport (OT), that is well suited
to the estimation of explicit transformation models. In particular, we leverage
the regularization procedures tied to this problem, namely entropic smoothing;
we introduce spatial constraints in the matching by relying on local regions.
Locality also clearly benefits to computational efficiency.

Second, we introduce an efficient template estimation procedure based on this
OT deformation model. We evaluate the models by their ability to predict unseen
data in new subjects, and benchmark the OT-based model against alternatives,
including diffeomorphic registration, on two datasets that contain rich functional
information in groups of subjects.

2 Theory

Notations Let p ∈ N , we denote [p] the set of integers from 1 to p. Let x ∈ Rd,
δx will denote the Dirac mass at location x. Given a brain region comprising
p voxels, we consider the d-dimensional signals observed in these voxels x =
{x1, ...,xp}. Here, these d-dimensional signals correspond to d activation maps
observed in a given subject. We denote by X the p × d matrix obtained by



Local optimal transport for functional brain template estimation 3

concatenating the vectors in x. ‖‖F denotes Frobenius norm, and tr(.) the trace
operator.

Correspondences from an optimal transport geometry perspective Let us consider
the set xs of functional signals in a given subject s. Following the intuitions of
[10], the p vectors

{
xs1, ...,x

s
p

}
together make up a measure µs lying on a latent

manifold Fs embedded in Rd. The discrete measure µs with positive weights
ws > 0 and support

{
xs1, ...,x

s
p

}
∈ Fs is defined as µs =

∑p
i=1 ws

i δxs
i
. Note that

in the present framework ws = [ 1p ...
1
p ].

The difference between two measures µs =
∑p
i=1 ws

i δxs
i

and µt =
∑q
i=1 wt

iδxt
i
,

reflects the differences between individuals s and t. However, for s 6= t, the sup-
port of the Fs and Ft manifolds are distinct in general: two subjects do not
exhibit the same set of responses, due to intrinsically different brain organiza-
tion. Directly computing Kullback-Leibler divergence between µs and µt is use-
less, as non-coincident support leads to infinite values; fixing this mismatch by
smoothing induces a loss of information. By contrast, the Wasserstein distance
between µs and µt is well-defined [13]. In this framework, distance evaluation is
tightly linked to functional alignment, as it is formulated as the task of finding
an optimal coupling R∗

{
xs1, ...,x

s
p

}
→
{
xt1, ...,x

t
q

}
,R ∈ Rp×q+ Enforcing signal

conservation and optimality of the alignment cost C(xs,xt) yields:

R∗ = min
R

∑
i,j

Ri,jC(xs,xt)i,j (1)

s.t.

∑
j

Ri,j


i

= wsi and

(∑
i

Ri,j

)
j

= wtj (2)

If both subjects functional data share a common number of voxels (i.e. p = q),
and we search for a deterministic coupling (where each source has only one
target voxel), this falls back to the optimal matching problem and makes R a
permutation matrix minimal with respect to C(xs,xt), that can be calculated
through the Hungarian algorithm [14].

Kantorovich relaxation In general , admissible couplings in (1) are probabilistic,
i.e. they can split the mass of a source location towards several target locations
and their coefficients Ri,j encode the mass flow between points xsi and xtj [15].

One possibility, explored in [16] in the context of the MEG inverse problem,
is to match the multi-dimensional signal distributions across subjects using a
spatial-distance-based cost —matching preferentially voxels that are close in 3D
space. The authors had to resort to unbalanced OT to deal with the variation of
mass between subjects. With this formulation, µs and µt should be positive and
of same norm, whereas functional signals usually have diverse amplitude across
subjects and exhibit both positive and negative values, in proportions that vary
across individuals. This approach requires to introduce several additional pa-
rameters to deal with unbalanced transport model. We chose another path here,
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closer to the hyperalignment concept [8], which is to transport voxels according
to the functional information they carry. To do so, we use the discrepancy of the
functional features as a cost function between voxels :

∀i, j ∈ [p]× [q],C(xs,xt)i,j = ‖xsi − xtj‖22
and couple the input measures µs and µt, where all voxels have a constant weight,
respectively 1/p and 1/q.

Entropic regularization. We define the entropy of a coupling as

h(R) = −
∑
i,j

Ri,j(log(Ri,j)− 1)

and use it as regularization function in equation 2, which becomes :

ROT = min
R

∑
i,j

Ri,jC(Xs,Xt)i,j − εh(R) s.t.

∑
j

Ri,j


i

=
1

p
,

(∑
i

Ri,j

)
j

=
1

q

(3)

The entropic term makes the objective function ε-strongly convex, hence lead-
ing to a unique optimal solution for a given ε. Besides making computation of
transport faster using Sinkhorn algorithm [17], this entropic regularization also
acts as a smoothing of the solution.

Other functional alignment methods We may consider other transformations φ
that map µs to µt as linear couplings R that predict the stacked feature values
Xt from Xs, under some given constraints (R ∈ R):

R∗ = argmin
R∈R

‖R(Xs)−Xt‖2F (4)

Hyperalignment[8], search a scaled orthogonal transformation R = σQ s.t.
QTQ = Id, σ ∈ R+. With this model, equation 4 is equivalent to the well-
studied scaled Procrustes problem, solvable in closed form using the singular

value decomposition of XsXtT : (U,Σ,V) = SVD(XsXtT ):

Rso = σQ where (σ,Q) =

(
tr(Σ)

‖Xs‖2F
,UV

)
In the case where p = q, permutations and every coupling acceptable in strict
optimal transport sense (eq. 2) are part of this broader class of orthogonal trans-
forms. By contrast, entropic regularization (eq. 3) yields a non-orthogonal so-
lution in general. It is possible to further relax the orthogonality constraint, by
simply looking for a linear coupling R with a small norm. For computational
efficiency, we consider here `2 norm penalization, yielding min

R
‖Xt −RXs‖2F +

λ
2 ‖R‖

2
2. Using such a model, the alignment problem boils down to a ridge re-

gression also solvable in closed form:

Rridge = XtXsT (XsTXs + λId)−1
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Full brain alignment Although we aim at building a full-brain functional atlas,
applying the above models to full brain suffers from two related issues: i) it may
create some non-local correspondences (e.g. cross-hemisphere swap) that are not
neuroanatomically plausible; ii) it is computationally heavy if not intractable.

In [9] functional alignment is used with a searchlight approach. In this pop-
ular procedure in neuroimaging an algorithm is applied on a set of 3D balls of
radius r covering the brain. Regions described by multiple balls are predicted
by averaging the prediction in each ball. Although this procedure does produce
local correspondences, it is computationally costly. One needs approximately p

r3

balls to ensure that all voxels are covered. Furthermore, the aggregation of sev-
eral balls destroys the local structure enforced by the algorithms within each
ball (sparsity, smoothness, orthogonality...).

We propose instead parcellation-based alignment. In a first step we do a
functional clustering of data to find local non-overlapping clusters c1, · · · , cC
of voxels with common activity patterns. In each of these clusters we find the
optimal alignment transform and concatenate these local transforms to recover
a full-brain transform with the desired regularities. Formally the optimal align-
ment transform to align two subjects xstrain and subject xttrain on the training
session is obtained by solving the problem in each cluster c ∈ {c1, · · · , cC}:

R∗[c] = R∗(Xs
train[c],Xt

train[c]),with ∗ ∈ {OT, so, ridge} (5)

On the test session Xt
test is predicted using Xs

test by:

∀c ∈ {c1, · · · , cC}Xt
test[c] = R?[c]Xs

test[c] (6)

Several algorithms perform well for functional clustering, in this study we
used a computationally efficient recursive K-means method, where, for a target
number of k regions, a first clustering into

√
k pieces is obtained, and each of

them is clustered in turn into
√
k parts. Solving problem 3 or 4 within a local

region constrains the solution to remain local and acts as a regularizer.

Template inference Pairwise correspondences do not scale well with many indi-
viduals. A template measure T is needed, which can be obtained by solving

min
T,R1...Rn

n∑
i=1

‖Rs(T)−Xs‖2? (7)

for the chosen loss ‖.‖? (Wasserstein or Frobenius). We solve it through alternate
minimization iterating over :

– a R-step of independent alignment of the current template to every sample,
thus estimating Ri, i = 1..n

– a T -step where T is regressed to minimize jointly its distance to the samples.

min
Rs

‖Rs(T)−Xs‖2?,∀s ∈ [n] R-step
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min
T

n∑
s=1

‖Rs(T)−Xs‖2? T -step

Note that, for all norms considered here, the T -step results in a quadratic prob-
lem solved by conjugate gradient. As initialization, we define first alignment
operators list as identity, thus the first T-step is min

T

∑n
s=1 ‖T −Xs‖22 and the

first template is the sample mean. In practice, we run 4 iterations of the alternate
minimization, as we found that was sufficient for convergence.

Complexity analysis. We recapitulate the algorithmic complexity of the OT algo-
rithm for p = q. While the Hungarian algorithm finds an optimal (deterministic)
permutation in a complexity of O(p3), Sinkhorn find a τ -approximate solution
of the unregularized problem in O(p2log(p)τ−3) operations [13]. If the brain
contains P voxels divided evenly into k clusters, the overall complexity of the

problem is thus O(P
2

k log(Pk )τ−3). Increasing k thus reduces the computational
burden; on the other hand, choosing k too large yields small clusters, hence
reduces the benefit of OT. In the following experiments, we set k = 200.

3 Experiments

Datasets To benchmark these methods and assess their prediction accuracy, we
ran experiments on two datasets, where individual data were previously regis-
tered in MNI-space following standard procedure (SPM12 software called though
Nipype for IBC, HCP pipeline for HCP). The ”Individual Brain Charting”(IBC)
[5] contains scans of the same 13 participants for a wide variety of cognitive tasks.
The data were acquired using a 3T scanner (acquisition resolution of 1.5mm re-
sampled at 3mm after spatial normalization). We worked directly on activation
maps: for a given functional contrast, they associate an activation statistic with
each voxel.

We learn alignment between subjects between d = 53 contrasts derived from
data acquired with antero-posterior(AP) EPI phase encoding; to assess the qual-
ity of our predictions, we also use 53 contrasts acquired in separate sessions using
the same experimental paradigms with posterior-anterior(PA) EPI phase encod-
ing. Note that the resulting AP/PA distortions were estimated and corrected
with FSL’s topup software prior to image pre-processing. Human Connectome
Project (HCP) [18]. is the collection of neuroimaging and behavioral data on
1,200 normal young adults, aged 22-35. For our experiment we focused on 20
randomly chosen subjects. For each, we used the d = 25 statistical maps avail-
able in both left-to-right(LR) and right-to-left(RL) phase encoding, resampled
at 3mm after spatial normalization. We learn alignment between subjects using
LR images and assess prediction on RL acquisitions.

Pairwise alignment benchmarks In pairwise prediction, we first learn the optimal
alignment operator between a source and a target subject on training data.
We then use this alignment and supplementary images of the source subject to
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Source Learn Alignment Target1

2 Prediction
Contrasts

Fig. 1: Pairwise prediction of target subject from aligned source subject

predict additional data of the target subject and score this prediction against
the true target subject images using a prediction metric (see Fig. 1).

We use this straightforward set-up on IBC and HCP datasets to compare
prediction performance of the alignment methods presented above, applied on a
parcellation of the brain: (i) Scaled-Orthogonal Transform, (ii) Ridge Regression,
(iii) Optimal Permutation, (iv) OT with entropic smoothing. We compare these
to two baselines, the identity transform (that predicts the target subject as the
source subject data), and a multi-purpose state-of-the-art diffeomorphic medical
image registration algorithm: symmetric image normalization (SyN)[19]. SyN
yields a diffeomorphic mapping maximizing Mattes mutual information between
local regions. Since it works only for scalar images, it was applied only on the
principal components of the training set of images. In a second experiment, we
study the influence of the amount entropic regularization used in OT loss on
both datasets. Obviously some pairs of subjects have more similar functional
data than others. To make our evaluation process robust to this variability, we
tested every method on the same set of 20 pairs of subjects chosen randomly
in each dataset. Our implementation relies on Nilearn for data handling, open-
source solvers (Scikit-learn, POT for Sinkhorn, antspy for SyN).

1
Template Target subjectSource subjects

Infer 
template

Learn Alignment2

3 Prediction

Contrasts

Fig. 2: Template-based prediction of left-out subject

Template-based alignment benchmarks To evaluate template-based prediction
accuracy, we split the IBC dataset randomly into two folds of 7 and 6 subjects.
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We inferred the template from the train subjects across every AP and PA con-
trast. We then learned an alignment operator between each of the test subject
and the template using AP contrasts and try to predict their PA contrasts that
we scored using predictions metrics (see Figure 2). We compare the results of the
same methods quantitatively in terms of prediction loss. In a third experiment,
we infer a template on which we learn alignment for all subjects using AP data.
We then apply these alignments to left out PA data to bring all our subject in a
common space. In this common space, we a run a one sample-test and compare
the group effects detected by each method, for specific conditions.

Prediction metrics To measure the quality of our prediction Ri(X), at the voxel
level, against the ground truth Y, we defined η2, the normalized reconstruction
error, as :

η2?(Y,Yi,X)) = 1−
∑n
i=1(Yi −RiX)2∑n

i=1 Y2
i

,

where ? stands for identity, ridge, scaled orthogonal, OT. An η2 value of 0 means
that the quality of the prediction is equivalent to predicting 0 along all the di-
mensions. A perfect prediction yields a value of 1. To focus on the prediction
improvement that can be made through alignment - independently of the pre-
existing distance between data to align - we assess performance quantitatively
using a reconstruction ratio Rη2 . This ratio is also defined at voxel level and is
superior to 0 if the voxel is predicted better by aligned data than by raw data.

Rη2?(Y, R,X) = 1−
∑n
i=1(Yi −RiX)2∑n
i=1(Yi −Xi)2

= 1− 1− η2?(Y,Ri,X)

1− η2id(Y, Id,X)

4 Results

Pairwise alignment Figure 3 shows that functional alignment methods gener-
ally improve prediction quality from one subject to another with respect to the
identity, though not uniformly over the cortex. Sensory and motor regions typ-
ically obtain high scores, showing the stability of the signals across subjects in
these areas; by contrast, other regions obtain low scores overall. Syn offers no
improvement of prediction scores, nor does the optimal permutation of voxels.
This means that a strict one-to-one mapping of voxels is not suitable for func-
tional alignment. For the three other methods, we clearly see different behavior
between regions with high signal-to-noise ratio (SNR) and regions with lower
SNR. Figure 4 (a-b), report the compared distributions of predictions ratios Rη2
on IBC and HCP datasets and are consistent with previous observations. Ridge
and OT outperform all other methods on IBC dataset whereas Scaled Orthogo-
nal and Ridge perform slightly better on HCP dataset. Figure 4 (c), shows that
entropic regularization strongly improves prediction scores up to an inflexion
point.
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Fig. 3: Prediction score η2(Y,R,X) of target subject 9 using alignment with
subject 15 (IBC dataset, z=-17mm).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

R 2

Optimal Transport
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Scaled Orthogonal

SyN (ANTs)

(a) Average Rη2 on IBC dataset.

1.0 0.5 0.0 0.5 1.0
R 2

(b) Average Rη2 HCP
dataset.
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0.4

0.2

0.0
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(c) Impact of entropic
smoothing on Rη2 .

Fig. 4: Pairwise prediction : (a), (b) Alignment score of methods on 20 pairs of
IBC/HCP datasets. (c) Effect of entropic regularization (OT) IBC dataset.

Template alignment In Figure 5, we can observe that prediction accuracy is
strongly improved by the use of a learned template in most brain regions, which
establishes that functional alignment performs well to estimate cross-subject
correspondences and identify a latent brain activity template. It also validates
that our template estimation procedure manages to capture some of the inter-
subject variability in its mapping process.

Fig. 5 shows that Scaled orthogonal, Ridge and Optimal transport are equally
accurate at predicting new subject data overall. However they do so in dissimilar
ways. Ridge regression tend to predict 0 in regions with low SNR. This strong
smoothing effect comes at the expense of providing predictions that are not very
precise for high SNR regions. On the contrary, Optimal Transport makes large
mistakes in low SNR regions but predicts high-SNR regions more accurately. This
behavior is desirable in a template-building procedure since it better preserves
specificity and structure in fuctional signal.
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Fig. 5: Template-based prediction: map yields the score of IBC-subject 11 missing
data prediction. Plot shows prediction ratio distributions across test subjects,
i.e. gain from alignment over prediction from group average.

Fig. 6: 1 sample test Zscores after aligning IBC subjects to template. 2 condi-
tions : (A) Match (hcp-relational task)(B) 0 back place(hcp-wm task)

We finally consider a realistic use case, where test data would be function-
ally aligned in view of a group study (one-sample t-test). We present the en-
suing group-level brain maps, projected on the cortical surface, in Fig.6, for 2
contrasts. The Match contrast (borrowed from a visual comparison task on arti-
ficial textures), shows that both ridge and optimal transport recover regions in
the anterior and posterior segments of the superior temporal sulcus that would
not be detected using standard approaches, or scale-orthogonal functional align-
ment. For the 0-back place contrast, borrowed from a visual matching task on
place images, OT- and Ridge-based aligment recover regions in the temporo oc-
cipital junction and inferior parietal sulcus that would not be detected using
standard approaches, nor by scale-orthogonal functional alignment. In particu-
lar, place sensitive regions of the ventral and dorsal visual cortex seem to have
been sucessfully recovered by the functional alignment approach.
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5 Discussion

We demonstrated in this work that functional alignment can be used to infer a
template that captures a good-enough level of detail to generalize to data from
new subjects. This confirms prior results from [8, 9], but we moreover introduced
a principled way to build brain templates in this framework. Among the possible
approaches to identify correspondences and infer a template, weakly-regularized
ones proved to be particularly efficient: local ridge regression is clearly the less
structured method, yet it yields high accuracy, typically higher than the more
constrained local Procrustes alignment; smooth OT performed better than non-
smooth OT. Eventually, the most constrained approach, Syn, did not perform
well on this task. Importantly, these results do not reflect mere overfit, as the
predictions are made on images not used for alignment and template inference.
Additional extensions can be brought to the current framework:

– First, remove the reliance on a fixed parcellation of the brain, that is probably
suboptimal to identify cross-subjects correspondences. This can be done by
ensembling results obtained from multiple parcellations [20]. This should
improve accuracy, albeit at a higher computation cost.

– Second, learn correspondences between subjects and toward a common tem-
plate from resting-state data, following the ideas in [11, 7]. This will be es-
pecially useful since resting-state data are more and more frequently used in
group studies and represent the standard for brain organization studies.
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