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A B S T R A C T

This paper reports on the study of series of tungsten doped Ni0.5Zn0.5WxFe2−xO4 (x= 0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
ferrites synthesized by a co-precipitation scheme. The crystallite size varies from 62 to 49 nm and the scanning
electron microscope (SEM) images show the spinel cubic structure of the powder sample. Energy Dispersive X-
ray Fluorescence Spectroscopy (EDXRF) confirms the presence of Ni, Zn, W and Fe elements in the prepared
samples. The specific surface areas of the Ni0.5Zn0.5W0.2Fe1.8O4, Ni0.5Zn0.5W0.4Fe1.6O4 and Ni0.5Zn0.5W0.6Fe1.4O4

samples calculated from Brunauer-Emmett-Teller (BET) method are 18.9 m2/g, 21.5m2/g and 24.6m2/g, re-
spectively. The metal oxide pellet type resistive sensor was made for gas sensor application. These sensors are
selective for hydrogen (H2) gas. The performance of these sensors for sensing hydrogen gas at a concentration of
1000 ppm in the temperature range 80–300 °C has been investigated. Platinum electrodes were deposited on all
the pellets by RF sputtering technique. The subsequent decomposition of platinum oxides on the metal oxide
pellet surface results in an increase in surface roughness and electrical resistivity. The sensor shows a change in
resistance from 1.21× 105 Ω to 7.83× 104 Ω in the presence of H2 gas even at alow temperature. The com-
position with x=0.2 at an optimum temperature of 180 °C showed a fast response (14 s) and recovery time
(20 s). High sensitivity, low cost, long term stability, high selectivity and fast response at low temperature makes
this sensor useful for industrial applications.

Introduction

The demand for energy is increasing with the rapid expansion of
automobile and other industrial sectors. Fuel consumption leads to
pollution. Hydrogen is a clean source of energy with high energy den-
sity, so it has the potential to be the future source of fuel with wide
applications in aircraft, chemical processes, fuel cells, nuclear, medical,
petrochemical, transportation, coal mines, thermal power stations etc.
[1–4]. Hydrogen gas is odorless, colorless and tasteless. Hydrogen can
easily leak out due to its a low molecular weight and may cause fires or
explosions at a concentration greater than 4% in dry air [5–7]. Hy-
drogen gas can’t be detected by human beings. The detection of hy-
drogen gas in ppm scale is necessary as it is highly flammable. Hy-
drogen detection techniques can be classified as chemoresistors, diodes
and transistors, mechanical, optical, catalytic, and acoustic gas sensors
[8–13]. Chemoresistive sensors are more significant because of low
synthesis cost, high stability, high sensitivity, selectivity, electrical re-
sponses to different gases [14,15]. The sensor’s performance depend on

the composition of materials, crystallite size, porosity and exposed
surface area, etc. [16,17]. The mesoporous structure (pores diameter
between 2 and 200 nm) is mostly preferred for the gas sensor applica-
tion [18]. Ferrites with nanosized and lower density structures are
preferred for gas sensors. Nanosized grains are preferred to increase the
specific surface area for the analyte gas [19]. Nanoferrites can be syn-
thesised by any of the methods like solid-state reaction method, sol–gel
auto-combustion, hydrothermal, reverse-micelle method, or chemical
co-precipitation method [20–22]. Chemical co-precipitation is a sig-
nificant technique because it gives fine particle size, uniform chemical
composition and better physical properties.

Ni-Zn, a multifunctional semiconductor material is one of the most
studied metal oxides due to its remarkable electrical and electronic
properties [23]. Gas-sensing properties of Ni-Zn ferrite has been studied
by many researchers [24]. Dalawai et al. prepared Ni–Zn ferrite thick
film gas sensors and found that Ni0.6Zn0.4Fe2O4 is more sensitive for Cl2
followed by ethanol as compared to LPG [25].

Transition-metal oxides, like SnO2, ZnO, FeO, Ga2O3, Fe2O3, TiO2,
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In2O3, MoO3, and WO3, show a huge variation in their electrical re-
sistance in the presence of gas [26–30]. WO3 doping with water pro-
duces a porous sensor material, which improves sensitivity and re-
sponse time characteristics [31]. Pure WO3 can sense oxidizing gases
such as NO, O3, and Cl2; but for reducing gases, noble catalysts (Pt, Au,
and Pd) are required for the surface modification [32]. The effect of
noble catalysts on the metal oxide surface for gas sensing properties has
been broadly studied by many researchers [33,34]. Various methods
have been applied for the deposition of noble catalysts, namely, sput-
tering, pulsed laser deposition, ferrite plating, dip coating process,
spray pyrolysis, and electrodeposition [35–40]. High operating tem-
perature becomes the bottleneck for resistive-type semiconductor ma-
terial for its applications in the field of gas sensor. Therefore, worldwide
researchers are trying to improve this bottleneck by means of multiple
methods.

In the present work, our focus was to develop the nanoferrites for a
gas sensor application with high sensitivity at low power consumption.
Therefore, tungsten doped Ni-Zn nanoferrite pellet type resistive sensor
is prepared for hydrogen gas and tested at a temperature range from
80 °C to 300 °C at 1000 ppm. The Zn is more volatile and is loss from
ferrite above 1000 °C The gas sensing properties of different composi-
tions of tungsten doped Ni-Zn ferrites with platinum coating is well
explained in this paper.

Experimental procedure

A chemical co-precipitation method was used to synthesise a series
of metal oxide with chemical formula Ni0.5Zn0.5WxFe2−xO4 where
0≤ x1.0 in steps of 0.2. Nickel chloride hexahydrate, zinc chloride,
tungsten trioxide and iron (III) chloride hexahydrate chemicals of high
purity (99.9%) were used to synthesize this series. The experimental
detail along with the structural, optical, electrical and mechanical
properties of this series is already explained in our previous work [41].

Fabrication of pellet sensor

The powdered samples after pre-sintering at 850 °C for three hours
were allowed to cool to room temperature and were crushed into uni-
form and fine powder with the help of a mortar and pestle. 5 g of an
organic binder poly vinyl alcohol (PVA) was mixed with 10ml of dis-
tilled water in order to make a homogenous solution. Then 0.05ml of

this solution of PVA was missed with a quantity of 0.3 g powdered
sample and crushed to fine powder again. The pellet of diameter 10mm
was made under a pressure of 10 tonne by using uniaxial hydraulic
press. These pellets so prepared were finally subjected to sintering at a
temperature of 1000 °C for another 3 h for densification and removal of
organic binder. For the gas sensing measurements, Platinum electrodes
about 100 nm thick and 500 µm wide were deposited on all the pellets
by RF sputtering technique using shadow mask. In the presence of gas
comprising 50% Ar and 50% O2, 30W fixed RF power was applied to
the target in the chamber at a pressure of 3× 10−6 Torr.

Experimental set-up for gas sensing test

Fig. 1 shows the schematic diagram of gas sensing equipment. A
tailor made gas calibration chamber was used for gas sensing which is
attached with a rotary pump (for vacuum in the testing chamber),
heating assembly, 2 probe system (pure Gold electrodes) for the re-
sistance measurements, needle valves for injecting the calibrated
quantity of gas. The Keithley 6514 electrometer was used to record the
value of resistance during the entire sensing cycle for each sensor.

Gas sensing mechanism

The oxide sensors show significant variation in the electrical re-
sistance because of the reversible interaction of the gas with the pre-
adsorbed ambient oxygen [42]. Metal oxide based gas sensors generally
give better response at a high temperature. When the sensor is heated in
air, oxygen ions (O O O,2

2 ) first chemisorbed on the metal oxide
sensor surface, chemisorption of oxygen electrons leads to formation of
a depleted layer. This layer act as a potential barrier for electron mi-
gration and increases the sensor surface resistance [43]. The reaction on
the sensor surface is as follows

+O e Og ads2( ) 2( ) (1)

+O e O2ads ads2( ) ( ) (2)

+O e Oads ads( ) ( )
2 (3)

The Eqs. (1)–(3) show that oxygen may be chemisorbed on the
sensor surface. This absorbed oxygen roots the electron depletion,
which increases the sensor resistance, whereas, the reducing gas (Rg) is
absorbed on sensor surface as follows

Fig. 1. The schematic diagram of gas sensing equipment.
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+ +R (ads) O (ads) (ads) eg RgO (4)

+ +R (ads) O (ads) (ads) 2eg
2

RgO (5)

At a normal temperature, the sensor surface adsorbed oxygen. The

adsorbed oxygen starts to desorb with an increase in temperature.
When reducing (Rg) gas is introduced, it reacts with the chemisorbed
oxygen on the surface and released electrons to the conduction band of
the sensor. This causes a decrease in the electrical resistance. The
electrical resistance variation determines the response of a sensor.
Therefore, for every sensor there must be some optimum temperature
where the gas response is maximized. The sensor response for reducing
gas is calculated by using eq. (6).

=S R
R

1a

g (6)

whereRa and Rg are the resistance of sensing element in the presence of
the air and target gas respectively.

Role of noble metal for gas sensor

Noble metals (Pd, Pt), reduces the adsorption activation energy and
hence improves the sensor performance. The noble metals increase the
reaction rate by increasing the target gas concentration on the surface
of the sensor. It also provides a reaction pathway and enhances sensi-
tivity, selectivity and reliability [44,45]. The noble metals (−ve) are
having low Fermi level as compare to the metal oxides (+ve) used for
the sensors. So there is a rapid exchange of electrons until the Fermi
level of both the metals become equal. Schottky barrier is formed at the
interface, which prevents the recombination of electron-hole pairs and
improves the performance of the sensor [46,47].

Results & discussion

The crystallite size and porosity are important factors for the metal
oxide gas sensors. The crystallite size, lattice parameter, density and
porosity of the tungsten doped Ni-Zn series prepared by a co-pre-
cipitation method was calculated and explained by using X-ray dif-
fraction data and reported in our earlier work [41]. The crystallite size
was found in the range from 62 to 49 nm. The morphology and mi-
crostructures of the tungsten doped Ni-Zn ferrites series was studied by
a scanning electron microscope. Fig. 2(a)–(c) shows the SEM images of
the sintered powder samples for the compositions Ni0.5Zn0.5WxFe2−xO4

(x= 0.0, 0.4, 0.8). SEM micrographs clearly show the aggregation or
accumulation in the ferrite nanoparticles with an average grain size of
about 55 nm.

To confirm the successful incorporation of the tungsten ion into the
ferrite system and stoichiometric composition of the samples, the en-
ergy dispersive X-ray fluorescence spectroscopy was performed on
Panalytical epsilon 4. Fig. 3 depicts the presence of all the desired
elements (nickel, zinc, tungsten and iron) within the prepared samples
except for the oxygen. This is due to the fact that for EDXRF mea-
surement, the detector used for detection of characteristics X-rays of the
elements is a peltier cooled Si (Li) detector, where the element below
Na (here oxygen) cannot be detected as the characteristic X-ray from
this elements gets absorbed by the detector window. Table 1 shows
atomic mass percentage values of the respective elements in the con-
cerned samples as determined from the EDXRF spectral analysis. The
results ruled out the possibilities of inhomogeneous distribution of
tungsten ions into the system and also supports that the precursors have
undergone chemical reaction in the preferred stoichiometric ratio.

The BET analysis was measured by nitrogen sorption using ASAP
2010 and analyzed based on Brunauer-Emmett-Teller theory. To in-
vestigate the specific surface and pore size distribution of the ferrite
samples after annealing at 1000 °C, nitrogen gas adsorption–desorption
measurement was performed. As shown in Fig. 4(a, c and e), all the
curves displayed IV-type sorption isotherms with obvious loops, which
demonstrates that the annealed Ni0.5Zn0.5WxFe2−xO4 (x=0.2, 0.4, and
0.6) samples were mesoporous materials. The specific surface areas of
the Ni0.5Zn0.5W0.2Fe1.8O4, Ni0.5Zn0.5W0.4Fe1.6O4 and
Ni0.5Zn0.5W0.6Fe1.4O4 foams calculated from Brunauer-Emmett-Teller

Fig. 2. The SEM image of the powder samples for the compositions (a)
Ni0.5Zn0.5Fe2O4, b) Ni0.5Zn0.5W0.4Fe1.6O4, &(c) Ni0.5Zn0.5W0.8Fe1.2O4.
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(BET) method are 18.9m2/g, 21.5m2/g and 24.6m2/g, respectively.
From Fig. 4, the pore size distribution diagrams of the annealed samples
show a multi-peak coexistence with one dominant peak centered about
2–3 nm. The larger the pore size, the smaller the number of pores. It
also can be proved to be a hierarchical porous structure with lots of
mesopores on the surface of the layered structure, which is in

agreement with the SEM analysis. These results further indicate that a
higher specific surface area can be obtained in the samples that have a
low mass density.

Before starting the gas sensor measurements, all the sensors were
kept at 350 °C in dry air (79% Nitrogen & 21% Oxygen) for 3 h, to study
their microstructure. The chamber for gas testing was evacuated by a

Fig. 3. Depicts the XRF spectral of (a) Ni0.5Zn0.5Fe2O4, (b) Ni0.5Zn0.5W0.2Fe1.8O4, (c) Ni0.5Zn0.5W0.4Fe1.6O4, (d) Ni0.5Zn0.5W0.6Fe1.4O4, (e) Ni0.5Zn0.5W0.8Fe1.2O4, (f)
Ni0.5Zn0.5W1.0Fe1.0O4,

A. Pathania, et al. Results in Physics 15 (2019) 102531

4



rotary pump at a pressure of approximately 10−2 Torr. Initially, the dry
air is allowed to enter the air tight chamber until the resistance value is
stabilized. Then the dry air along with requisite concentration of hy-
drogen (H2) gas was introduced into the calibration chamber. The
electrometer (Keithley 6514) was used to record the value of resistance
of all the sensors during the entire sensing cycle. The resistance of the
sensors was in the range of 1.21× 105 Ω–7.83×104 Ω under dry air
atmosphere at a temperature from 80 to 300 °C. The same process was
repeated for all the sensors.

Response characteristics

Fig. 5 shows the sensitivity of all the pellet sensors in the tem-
perature range from 80 to 300 °C at 1000 ppm of H2 gas. With the rise in
temperature the kinetic energy of the atoms increases due to which
adsorption of atoms on reactive sites increases and found to be op-
timum for temperature 180–200 °C. With further increase in tempera-
ture the Brownian motion of the atoms dominates and hence sensitivity
decreases. Whereas, no sensitivity is noticed when concentration of

Fig. 3. (continued)
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tungsten in the matrix is nil. With a slight addition of tungsten (x=0.2)
he sensitivity is found to be noticeable, with further increase in con-
centration of tungsten, the overall sensitivity is very minute. All tung-
sten doped sensors show a higher response at a temperature of 180 °C.
This confirms that 180 °C is the optimum temperature where maximum
response of 60.97% is achieved for hydrogen gas at 1000 ppm. After
that the response is found to decrease continuously due to the low-
degree of reaction between chemisorbed oxygen and hydrogen, the
response of the sensors is less below 180 °C. However, above 180 °C,
there is again a drop in the response because of the fast degree reaction
between chemisorbed oxygen and hydrogen gas which limited the ef-
fective diffusion and adsorption of hydrogen on the surface of the
sensor [48]. The sensor with tungsten concentration (x=0.2) shows
the highest response as compared to other sensors. Fig. 6 shows the
response of the sensor with tungsten (x= 0.2) at an operating

temperature of 180 °C for different concentrations 850, 900, 950 and
1000 ppm of hydrogen gas. It is clearly observed that response of the
gas increases with an increase in the concentration of the gas molecules
on the grain surface [49]. This is due to the fact that the oxygen che-
misorption capacity increases with greater amount of Fe2+. However, if
the Fe2+ concentration is too high then the Debye width is narrower,
and the gas response of the sensor is reduced. As the concentration of
tungsten increases, the iron content decreases which also decreases the
amount of Fe2+and hence, response increases [24].

Fig. 7 shows the change in resistance with time at a temperature of
180 °C in the presence of 1000 ppm hydrogen gas. The 1000 ppm of
hydrogen gas is injected at different times and it shows the same be-
haviour for all times.

Response & recovery time

Response and recovery time are two important parameters for a gas
sensor. Fig. 8 shows the response time for all the tungsten doped sensors
in the temperature range 80–300 °C in the step of 20 °C for 1000 ppm of
hydrogen concentration. The response time shows an increasing trend
with an increase in tungsten doping for all the temperatures. This may
be due to the porosity. Large pores lead to faster reaction as compared
to small pores. The response time for all the sensors is found to decrease
due to the fast reaction with an increase in temperature. Since the
sensor with tungsten (x=0.2) shows the higher sensitivity, so the re-
sistance variation in the presence of H2 gas was recorded for 8 weeks in

Table 1
Atomic mass percentage data obtained from XRF analysis of the samples.

Ni (%) Zn (%) W (%) Fe (%)

Ni0.5Zn0.5Fe2O4 16.7 16.5 – 66.6
Ni0.5Zn0.5W0.2Fe1.8O4 16.2 16.7 7.1 58.1
Ni0.5Zn0.5W0.4Fe1.6O4 16.5 17.8 15.4 49.4
Ni0.5Zn0.5W0.6Fe1.4O4 15.8 16.9 22.8 44.6
Ni0.5Zn0.5W0.8Fe1.2O4 16.2 16.6 28.7 37.6
Ni0.5Zn0.5W1.0Fe1.0O4 15.9 16.1 33.6 34.3

Fig. 4. The N2 adsorption–desorption isotherm and pore size distribution of the samples annealed at 1000 °C (a, b) Ni0.5Zn0.5W0.2Fe1.8O4, (c, d)
Ni0.5Zn0.5W0.4Fe1.6O4, and (e, f) Ni0.5Zn0.5W0.6Fe1.4O4.
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the interval of one week at a temperature of 180 °C, which showed the
same behaviour at all the times. Fig. 9 shows the stability of the sensor
with tungsten (x=0.2) i.e. changes in resistance with time in the
presence of 1000 ppm hydrogen gas. Response & recovery time are the
important parameters for the gas sensors. Fig. 10 shows the response
time of all the sensors with respect to temperature from 80 to 300 °C.
The recovery time for all the metal oxide gas sensors is more as com-
pared to the response time [50,51]. Tungsten doped Ni-Zn ferrites with
x=0.2 at an optimum temperature of 180 °C showed a fast response
(14 s) and recovery time (20 s).

Conclusion

A series of tungsten doped Ni-Zn (x=0.0, 0.2, 0.4, 0.6, 0.8, 0.1)
ferrite was synthesized by a co-precipitation method for gas sensor
application. The crystallite size was in the range from 62 to 49 nm. The
SEM images confirm the cubic spinel structure for all the samples.
Platinum electrodes about 100 nm thick and 500 µm wide were de-
posited on all the pellets by RF sputtering technique. The parent sample

Fig. 5. Sensitivity (%) the sensors with the temperature range from 80 to 300 °C
at 1000 ppm of H2concentration.

Fig. 6. The response of the sensor with tungsten (x=0.2) at an optimum
temperature of 180 °C for a concentration 850, 900, 950 and 1000 ppm of hy-
drogen gas.

Fig. 7. The change in resistance with time at a temperature of 180 °C in the
presence of 1000 ppm hydrogen gas.

Fig. 8. The response time for all sensors at temperature range from 80 to 300 °C
in a step of 20 °C.

Fig. 9. Stability of the sensor with tungsten (x= 0.2).
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without tungsten did not show any response to the hydrogen gas. The
sensors with tungsten doping were very selective for hydrogen gas. All
the samples were tested at a temperature range from 80 to 300 °C at a
1000 ppm of hydrogen gas. The sensor showed the change in resistance
from 1.21× 105 Ω to 7.83×104 Ω in the presence of H2 gas even at a
low temperature. All the sensors show a high response at an optimum
temperature of 180 °C. The response and recovery time with tempera-
ture shows a decreasing trend. The sensor with tungsten concentration
(x=0.2) has been found to show the best results among all. A response
of 60.97% at an optimum temperature of 180 °C; the response time and
recovery time of 14 s and 20 s respectively. Low power consumption
(180 °C) with fast response and recovery time make tungsten (x=0.2)
doped Ni-Zn ferrite sensor compatible for the industrial application for
hydrogen gas sensing.
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