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Noise Benefits in Combined Nonlinear

Bayesian Estimators
Fabing Duan , Yan Pan , François Chapeau-Blondeau , and Derek Abbott , Fellow, IEEE

Abstract—This paper investigates the benefits of intentionally
adding noise to a Bayesian estimator, which comprises a linear
combination of a number of individual Bayesian estimators that are
perturbed by mutually independent noise sources and multiplied
by a set of adjustable weighting coefficients. We prove that the
Bayes risk for the mean square error (MSE) criterion is minimized
when the same optimum weighting coefficients are assigned to
the identical estimators in the combiner. This property leads to a
simplified analysis of the noise benefit to the MSE of the combined
Bayesian estimator even when the number of individual estimators
tends to infinity. It is shown that, for a sufficiently large number of
individual estimators, the MSE of the designed Bayesian estimator
approaches a plateau for a wide range of added noise levels. This
robust feature facilitates the incorporation of the added noise
into the design of Bayesian estimators without tuning the noise
level. For an easily implementable Bayesian estimator composed
of quantizers, the benefit of the symmetric scale-family noise is
demonstrated, and the optimal noise probability density function
is approximated by solving a constrained nonlinear optimization
problem. We further extend this potential Bayesian estimator to
the nonlinear filter design. Finally, examples of the noise benefits
in random parameter estimation and nonlinear filtering support
the theoretical analyses.

Index Terms—Noise benefit, Bayesian estimator, linear combi-
nation, nonlinear filtering, stochastic resonance.

I. INTRODUCTION

I
T IS well known that the closed form description of an

optimal Bayesian estimator is difficult to achieve in general

[1]. For instance, the implementation of a minimum mean square

error (MMSE) estimator requires the solution to the mean of

the posterior probability density function (PDF) of the obser-

vation via difficult integrals [1]. Thus, in practice, it is reason-

able to seek some suboptimal but feasible nonlinear Bayesian
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estimators with tractable forms to estimate random parameters

or variables [1]–[3].

Recently, the noise benefit in nonlinear estimators [4]–[18]

and detectors [19]–[33] has attracted great attentions of re-

searchers in the field of signal processing, because the accu-

racy of an estimator and the detectability of a detector can be

enhanced by design via intentionally adding noise. Sufficient

or necessary conditions have been derived for the existence

of the optimal added noise PDF [6]–[8], [16], [23]–[26], and

the explicit or approximate forms of optimal added noise PDFs

[7]–[13], [15], [16] have also been of great interest. Among these

investigations, it was found that a parallel array of estimators can

benefit from mutually independent added noise components in

comparison to a single estimator [4], [5], [7]–[13]. From the

parameter estimation standpoint, Uhlich [7] proposed a novel

noise-enhanced estimator by averaging estimates from the same

observation added by artificial noise components, and discussed

its superiority over the original estimator and the noise-modified

estimator derived by Chen et al. [6]. Based on the sum of outputs

of quantizer arrays, the linear Wiener decoding scheme [9] and

the linear MMSE estimation [8] of the random inputs were

extensively investigated within the framework of suprathresh-

old stochastic resonance [34]. We also used the least-square

regression algorithm to numerically study the noise benefit in

a quantizer array with optimal weights in comparison with the

unweighted array [35].

In this paper, we design a linear combination illustrated in

Fig. 1 as a potential noise-enhanced Bayesian estimator θ̂LC,

which consists of two modules: Module 1 exploits the benefit of

noise by adding mutually independent noise components ηi into

each estimator θ̂i, and module 2 outputs the linear MMSE esti-

mation based on a set of estimates {θ̂i} from module 1 multiplied

by optimally tuned weighting coefficientswi for i = 1, 2, . . . ,m
and a bias weighting w0. Then, the collective responses of all

individual estimators yield the combined Bayesian estimator

output θ̂LC, as shown in Fig. 1. We first prove that, with the

Bayes risk for the MSE criterion and at a given added noise

level, the MSE of θ̂LC gradually reduces as the number m of

individual estimators increases, leading to the minimum MSE

achieved by the combined estimator θ̂LC in the limit of an infinite

number. It is also proved that any two identical estimators in a

combiner require the same optimum weighting coefficients. This

characteristic simplifies theoretical analyses of the convergence

of the MSE of θ̂LC with no requirement for matrix inversions,

and makes it possible to recognize the noise benefit of the added

noise in the limiting case of an infinite number of individual
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Fig. 1. Block diagram representation of a linear combination of estimators
performing as a noise-enhanced Bayesian estimator. In module 1, mutually inde-
pendent noise components ηi are intentionally added into individual estimators

θ̂i, and then each θ̂i is multiplied by optimally tuned weighting coefficient wi

in module 2, resulting in the combined Bayesian estimator output θ̂LC.

estimators. It is interesting to note that the noise-enhanced

estimator θ̂NE of Ref. [7] is just a special case of the combined

estimator θ̂LC with same fixed weighting coefficients, while the

linear MMSE estimation [8], [9] corresponds to the estimator

θ̂LC with a combination of homogeneous quantizers. It is illus-

tratively shown that, for a large enough number of individual

estimators, the MSE of θ̂LC can be reduced to a minimum for

an optimal added noise level, i.e. the stochastic resonance effect

[34], [36]. When the response of an original estimator θ̂ has an

upper bound, it is demonstrated that, for a very large number of

individual estimators, the MSE of the combined estimator θ̂LC
approaches a plateau for a wide range of large added noise levels.

If this plateau consists of ‘local’ minima of the MSE that are

tolerable levels for practical applications, the noise-enhanced

estimator θ̂LC can be operated over a wide range of added

noise levels. This robust feature suggests that, as the background

noise varies, the designed estimator might be improved by the

added noise without tuning levels in practice. For a special

combined Bayesian estimator θ̂LC with quantizers in number

m > 1, we also prove that θ̂LC can always benefit from any

type of the zero-mean symmetric scale-family added noise,

because the MSE initially decreases by adding a small amount

of noise. Moreover, using constrained nonlinear optimization

methods, the optimal noise PDF is also approximately solved

and the obtained MSE is effectively reduced in the considered

cases. The designed Bayesian estimator can be also extended

to nonlinear filtering with the multiple samples of observations,

and some examples demonstrate the applicability of noise ben-

efits in the proposed Bayesian estimators. The obtained novel

results indicate that the added noise can be incorporated into the

design of nonlinear Bayesian estimation and nonlinear filtering

as a potential technique to enhance the accuracy of estimators

[4]–[18].

II. PARAMETER MODEL AND BAYESIAN ESTIMATOR

We observe the scalar data model as

x = θ + ξ, (1)

where the parameter θ is a random variable with the prior

PDF fθ, and the background white noise ξ, independent of

θ, has the PDF fξ. Then, the observation x accords with the

convolved PDF fx(x) =
∫
fθ(θ)fξ(x− θ)dθ. As in Fig. 1,

the same observation x perturbed by the independent noise

component ηi is operated by each estimator θ̂i(x+ ηi) for

i = 1, 2, . . . ,m, and here m denotes the total number of

individual estimators in the combination. Letting the esti-

mate vector θ̂ = [θ̂1(x+ η1), θ̂2(x+ η2), . . . , θ̂m(x+ ηm)]⊤

and the weight vectorw = [w1, w2, . . . , wm]⊤, we design a new

Bayesian estimator θ̂LC(x) = w0 +w⊤θ̂ as an unbiased estima-

tion of the parameter θ. Here,w0 is the bias weight. Then, the un-

biased condition of expectations Ex,η(θ̂LC) = Eθ(θ) yields the

bias weight w0 = Eθ(θ)−w⊤Ex,η(θ̂), and then the designed

estimator θ̂LC can be written as

θ̂LC(x) = Eθ(θ) +w⊤[θ̂ − Ex,η(θ̂)
]
, (2)

where Ex,η(·) denotes the expectation with respect to the joint

PDF of variables x and η and Eθ(·) denotes the expectation with

respect to the PDF of variable θ.

Define ε = θ − θ̂LC as the error of the estimator for a particu-

lar sample of x, then the Bayes risk of θ̂LC for the MSE criterion

is given by

Rm = Ex,η(ε
2) = var(θ)− 2w⊤p+w⊤Cw, (3)

where the subscriptm is used to denote the number of estimators

θ̂i and the variance of θ is var(θ) = Eθ(θ
2)− E2

θ(θ). The cen-

tralized cross-correlation vector between the parameter θ and

the estimate vector θ̂ is p = Ex,η

[(
θ − Eθ(θ)

)(
θ̂ − Ex,η(θ̂)

)]

with its elements calculated as

pi = Ex,η

[(
θ − Eθ(θ)

)(
θ̂i − Ex,η(θ̂i)

)]

= Ex{θEη[θ̂i(x+ η)]} − Eθ(θ)Ex{Eη[θ̂i(x+ η)]}. (4)

The covariance matrix of the estimate vector θ̂ is a sym-

metric positive definite matrix C = Ex,η

[(
θ̂ − Ex,η(θ̂)

)(
θ̂ −

Ex,η(θ̂)
)⊤]

with its diagonal elements

Cii = Ex,η

[(
θ̂i − Ex,η(θ̂i)

)2]

= Ex{Eη[θ̂
2
i (x+ η)]} − E2

x{Eη[θ̂i(x+ η)]} (5)

and the non-diagonal elements

Cij = Ex,η

[(
θ̂i − Ex,η(θ̂i)

)(
θ̂j − Ex,η(θ̂j)

)]

= Ex{Eη[θ̂i(x+ η)]Eη[θ̂j(x+ η)]}

− Ex{Eη[θ̂i(x+ η)]}Ex{Eη[θ̂j(x+ η)]} (6)

for i, j = 1, 2, . . . ,m (i �= j). Note that the positive definite

property of C requires the individual estimator in the combina-

tion not being such degenerate cases as θ̂i = κ for an arbitrary

constant κ.

Setting the gradient ∂Rm/∂w = −2p+ 2Cw to zero, we

have the optimum weight vector

wo = C−1p. (7)
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Substituting wo of Eq. (7) into Eqs. (2) and (3), we have the

final form of the designed estimator as

θ̂LC(x) = Eθ(θ) + p⊤C−1
(
θ̂ − Ex,η(θ̂)

)
, (8)

and the optimized MSE with respect to the weight vector is

Ro
m = var(θ)−wo⊤Cwo = var(θ)− p⊤C−1p. (9)

Theorem 1: When the covariance matrix C is positive-

definite, the MSE Ro
m in Eq. (9) is a monotonically decreasing

function of the number m, i.e.

Ro
m < Ro

m−1, (10)

for a given circumstance of the background noise ξ and the added

noise η.

Proof of Theorem 1 is presented in Appendix A. This theorem

implies that, for a given circumstance of the background noise

ξ and the added noise η, the minimum MSE Ro
∞ is achieved

by the Bayesian estimator θ̂LC in the limiting case of m → ∞.

Moreover, the individual estimator θ̂i can differ from each other.

Theorem 2: If two estimators θ̂i = θ̂j (i �= j) in a combiner

are identical, then optimum weighting coefficients wo
i = wo

j .

Proof of Theorem 2 is given in Appendix B. This theorem

suggests that, when a combiner has L groups and each group

has ml identical estimators ϑ̂l,i = ϑ̂l for l = 1, 2, . . . , L and

i = 1, 2, . . . ,ml, then each group has ml identical weighting

coefficients wl,i = wl. Updating the weight vector as w =

[w1, w2, . . . , wL]
⊤ and rewriting the estimate vector as θ̂ =

[θ̂1, θ̂2, . . . , θ̂L] with θ̂l =
∑ml

i=1 ϑ̂l(x+ ηi), we then obtain the

combined Bayesian estimator of Eq. (8) and its MSE of Eq. (9).

Corollary 1: For a combiner composed of m identical orig-

inal estimators θ̂i = θ̂, the Bayesian estimator θ̂LC in Eq. (8)

becomes

θ̂LC(x) = Eθ(θ) + wo
m∑

i=1

(
θ̂(x+ ηi)− Ex{Eη[θ̂(x+ η)]}

)
,

(11)

where the optimum weighting coefficient is

wo = pi/[Cii + (m− 1)Cij ]. (12)

The corresponding MSE Ro
m of Eq. (9) is now simplified as

Ro
m = var(θ)−mp2i /[Cii + (m− 1)Cij ] (13)

with the limit

Ro
∞ = lim

m→∞
Ro

m = var(θ)− p2i /Cij . (14)

Proof of Corollary 1 is presented in Appendix C, where

pi, Cii and Cij , as special cases of Eqs. (4)–(6), are given

in Eqs. (37)–(39). Corollary 1 indicates that, for a combiner

of m identical original estimators, the combined estimator of

Eq. (8) with optimally weighting before summation and the

estimator of Eq. (11) with optimally weighting after summation

can achieve the same MSERo
m of Eq. (13). Moreover, compared

with the general expression of Ro
m in Eq. (9), Eq. (13) results in

considerable simplification of the computation of the MSE Ro
m

with no requirement for matrix inversions in the considered case

of m identical estimators θ̂i = θ̂.

Corollary 2: For a combination of identical estimators θ̂i =
θ̂ in the limit case of m → ∞, the designed Bayesian estimator

θ̂LC in Eq. (8) evolves into

θ̂LC(x) = Eθ(θ) + wo
(
θ̂NE(x)− Ex[θ̂NE(x)]

)
, (15)

where θ̂NE(x) is the noise-enhanced estimator

θ̂NE(x) = Eη[θ̂(x+ η)] (16)

defined by Uhlich [7] and the optimum weight is given by

wo =
Ex

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

Ex

[(
θ̂NE(x)− Ex(θ̂NE)

)2] . (17)

The designed estimator θ̂LC of Eq. (15) achieves the MSERo
∞ of

Eq. (14), and is never worse than the noise-enhanced estimator

θ̂NE of Eq. (16).

Corollary 3: The MSE Ro
∞ of the estimator θ̂LC in Eq. (15)

satisfies the inequality

Ro
∞ ≥ Rms = Ex

[(
θ − θ̂mmse

)2]
, (18)

where Rms is achieved by the MMSE estimator [1]

θ̂mmse(x) = Eθ|x(θ|x) =
∫

θfθ|x(θ|x)dθ (19)

with the conditional posterior PDF fθ|x(θ|x) = fθ(θ)fξ(x−
θ)/

∫
fθ(θ)fξ(x− θ)dθ. The equality of Eq. (18) occurs when

θ̂mmse(x)− Eθ(θ) = κ[θ̂NE(x)− Ex(θ̂NE)],

where κ is an arbitrary constant.

Proofs of Corollaries 2 and 3 are presented in Appendices D

and E, respectively, which are also illustrated in the following

examples.

Example 1: Consider an uniformly distributed parameter θ
buried in the Gaussian white noise ξ [1], [7]. The prior PDF of

θ is fθ(x) = 1/a for 0 ≤ x ≤ a and otherwise zero, and ξ has

the PDF fξ(x) = exp(−x2/2σ2
ξ )/

√
2πσ2

ξ with zero-mean and

variance σ2
ξ . Then, the maximum a posteriori (MAP) estimator

is given by [1], [7]

θ̂map(x) =

⎧
⎪⎨
⎪⎩

0, x < 0,

x, 0 ≤ x ≤ a,

a, x > a,

(20)

and the MMSE estimator of Eq. (19) becomes [1], [7]

θ̂mmse(x) = x+ σξ

√
2

π

e
− x2

2σ2
ξ − e

− (x−a)2

2σ2
ξ

erf
(

x√
2σξ

)
− erf

(
x−a√
2σξ

) . (21)

For the interval bound a = 2 and the background noise level

σξ = 1, it is seen in Fig. 2(a) that the MSE of the MAP estimator

θ̂map of Eq. (20) is 0.4832 (magenta dashed line), much higher

than the MMSE 0.2492 (red solid line) achieved by the MMSE

estimator θ̂mmse of Eq. (21). Substituting this suboptimal estima-

tor θ̂map of Eq. (20) into Eq. (11) and Eq. (16), we can construct

the combined estimator θ̂LC and the noise-enhanced estimator

θ̂NE. The added noise η is chosen as Gaussian white noise

with PDF fη(x) = exp(−x2/2σ2
η)/

√
2πσ2

η and the standard

3



Fig. 2. (a) MSEs of the designed estimator θ̂LC and the noise-enhanced estimator θ̂NE [7] constructed form the suboptimal MAP estimator θ̂map in Eq. (20)

versus the added noise level ση . For comparison, the MSEs of the MAP estimator θ̂map in Eq. (20) and the MMSE estimator θ̂mmse in Eq. (21) are also plotted.

Here, the background noise level σξ = 1 and the interval bound a = 2 for the parameter θ. Specially, for the limiting case m → ∞, MSEs of θ̂LC are also plotted

in (b) over a suitable range. (c) MSEs of θ̂LC and θ̂NE constructed form the quantizer θ̂qt of Eq. (22) with the threshold γ = 0 versus ση . (d) For a combiner of

identical θ̂qt, the MSEs of θ̂LC and the MMSE estimator θ̂mmse versus the background noise level σξ at a fixed added noise level.

deviation ση . As in Fig. 2(a), with the benefits of added noise,

both θ̂LC and θ̂NE are better than the MAP estimator θ̂map.

At an optimal noise level σopt
η = 2.8184, the noise-enhanced

estimator θ̂NE achieves its minimum MSE value of 0.2494. After

the optimal added noise level ση > σopt
η , the MSE of θ̂NE goes

up again, and finally reaches a stable value of 0.33 for very

large added noise levels (e.g. ση > 102). This can be viewed

as a kind of stochastic resonance effect measuring by the MSE

that descends to its lowest point at an optimal non-zero noise

level. It is also interesting to note in Fig. 2(a) that, as the added

noise level ση increases and the number m ≥ 5, the MSERo
m of

θ̂LC calculated by Eq. (13) can be further reduced by the added

noise. In order to observe the behavior of Ro
∞ in Eq. (14) in

detail, Fig. 2(b) redraws the MSE Ro
∞ over a suitable range, and

clearly shows that the MSE Ro
∞ in Eq. (14) achieves a minimum

value of 0.2493 at an optimal noise level σopt
η = 1.995. When

ση > σopt
η , Ro

∞ also rises and gradually evolves into a stable

value of 0.2500 for large noise levels (e.g. ση > 10). Therefore,

compared with the estimator θ̂NE (∗), the designed estimator θ̂LC
(◦) has the similar noise-enhanced effect, but exhibits a quite

stable improvement for a wide range of added noise levels, as

shown in Figs. 2(a) and (b). The reason is that, as the added

noise level ση increases, the optimum weighting coefficient wo

in Eq. (15) can adaptively tune itself for the variety of added

noise, and an effectively reduced MSE Ro
∞ is achieved by the

incorporation of added noise ηi and the weights wo in θ̂LC. It is

shown in Figs. 2(a) and (b) that, even without the help of added

noise η (when ση = 0), the MSE Ro
m of θ̂LC can be optimized

by the weight vector wo as 0.2550 much lower than the MSE

0.4832 achieved by θ̂NE at ση = 0. This superiority of θ̂LC over

θ̂NE is also theoretically proved by Eq. (43) in Appendix D.

The benefits of added noise might take effect in other subop-

timal estimators. For instance, consider a binary quantizer [9],

[34]

θ̂qt(x) =

{
1, x ≥ γ,

0, x < γ,
(22)

with the threshold γ. Similarly, based on this suboptimal esti-

mator θ̂qt, the combined estimator θ̂LC and the noise-enhanced

estimator θ̂NE can be also obtained. Upon increasing the added

noise level ση and the number m, the MSEs Ro
m of θ̂LC are

4



plotted in Fig. 2(c) as a function of ση . It is seen that the noise

benefit to the MSE Ro
∞ of θ̂LC is more effective, reducing the

initial MSE Ro
∞ = 0.2925 at ση = 0 to the minimum of 0.2498

at the optimal added noise level σopt
η = 4.4668, as illustrated in

Figs.2(b) and (c).

Naturally, the optimal added noise level σopt
η is ex-

pected to be obtained for achieving the minimum MSE

of the Bayesian estimators θ̂NE and θ̂LC. The solution of

σopt
η by setting the derivative ∂Ro

m/∂ση = 0 may how-

ever identify several extrema. As shown in Figs. 2(a)–(c),

the equation of ∂Ro
m/∂ση = 0 will yield multiple solutions of

ση . In addition, the second-order derivative ∂2Ro
m/∂σ2

η needs

to be derived for further determining the optimal level σopt
η .

However, it is also seen in Figs. 2 (a)–(c) that, for a sufficiently

large number m (e.g. m ≥ 104), the MSE Ro
m of the combined

estimator θ̂LC reaches a plateau with stationary values of 0.25 for

a wide range of added noise levels (e.g. ση > 1.995 in Fig. 2(a)

orση > 4.4668 in Fig. 2(c)). This robust feature is very attractive

and forms Corollary 4.

Corollary 4: For the combined estimator θ̂LC in Eq. (11),

if the original estimator θ̂(x)|x→∞ = Θ < ∞ and the added

noise has a symmetric scale-family PDF fη(η, ση) = (1/ση)
fη̃(η/ση), then the MSE Ro

∞ of Eq. (14) has a plateau of the

local extremum for large added noise levels ση . Here, fη̃ is the

PDF of the standardized noise variable η̃ with zero mean and

unit variance.

Proof of Corollary 4 is given in Appendix F. Corollary 4

only tells us the MSE Ro
∞ of θ̂LC reaches a stable value for a

large added noise level ση , but does not indicate how low this

stable value is. Due to the optimum weight wo and for a large

noise level, it is seen in Figs.2 (a)–(c) that this stable value of

0.2500 is rather near to the MMSE 0.2492 given by θ̂mmse.

This interesting characteristic of θ̂LC suggests that, instead of

finding the optimal noise level σopt
η , a fixed large noise level

ση can be used to improve the MSE of the combined estimator

θ̂LC with a tolerable accuracy. In practice, the limiting case of

m → ∞ is inaccessible and can only be approached. Then, we

here use a combiner of quantizers to construct the estimator

θ̂LC with a finite number m = 105, and plot its MSE Ro
m as a

function of the background noise levelσξ in Fig. 2(d). It is clearly

seen in Fig. 2(d) that, with the help of added noise (when ση =

10), the combined estimator θ̂LC achieves a rather comparable

performance in comparison to the MMSE estimator θ̂mmse in

the considered range of σξ ∈ [0.1, 4].
In Fig. 2, we only consider the added noise η with Gaussian

distribution. Since the noise components ηi are artificially added

to estimators θ̂i, then the characteristic of added noise η can

be selected purposefully for improving the performance of the

designed estimator θ̂LC. Thus, an important question is whether

the addition of any type of noise to the estimators θ̂i is always

beneficial to the decrease of MSE. When the initial rate of the

MSE is negative, i.e.

lim
ση→0

dRo
m

dση
< 0, (23)

the answer is affirmative in certain circumstances, as stated in

Corollary 5.

Fig. 3. MSEs Ro
∞ of the combined estimator θ̂LC as a function of the added

noise level ση . Here, θ̂LC is constructed form the quantizer θ̂qt of Eq. (22) with
the threshold γ = 0. The added noise η has the generalized Gaussian PDF with
exponents α = 0.5, 1, 2 and ∞. The other parameters are the same as in Fig. 2

Corollary 5: For the designed estimator θ̂LC composed of

identical estimators θ̂i = θ̂qt and the symmetric scale-family

added noise η, θ̂LC can benefit from the added noise when the

number m > 1 and fx(γ) �= 0.

Proof of Corollary 5 is presented in Appendix G, and an

illustrative example is given as follows.

Example 2: Consider the symmetric scale-family added

noise η with generalized Gaussian PDF fη(x) = (c1/ση) exp

(−c2|x/ση|α). Here, c1 = α
2Γ

1
2 ( 3

α )/Γ
3
2 ( 1

α ), c2 = [Γ( 3
α )/Γ

( 1
α )]

α
2 , Γ(x) is the gamma function and the exponent α > 0

[1], [12]. It is shown in Fig. 3 that the noise-enhanced effects of

the MSE also occur clearly for different noise types of α = 0.5,

1 (Laplacian noise), 2 (Gaussian noise) and ∞ (uniform noise).

The larger the exponent α is, the faster the initial rate of the

MSE Ro
∞ declines, which also accords to the results in Ref. [8].

The corresponding MSE achieved by different noise types also

reaches a minimum at an optimal added noise level, and finally

tends to the stable value of 0.25 for larger added noise levels, as

Corollary 4 indicated.

However, Corollary 5 is only applicable to the prescribed

symmetric scale-family added noise η. An important problem

is whether the benefit of the added noise (not restricted to the

symmetric scale-family) exists or not for a combiner of arbitrary

suboptimal estimators θ̂i. The resolution of this problem is in

general difficult [7]–[10], [12]–[16], [37], even for a combiner

of arbitrary identical estimators with the simplified expression of

the MSERo
m in Eq. (13). In this case, since the variance var(θ) is

given, finding the optimal added noise PDF to minimize the MSE

Ro
m of θ̂LC with a finite number m is the optimization problem

fopt
η (η) = argmin

fη
Ro

m

= argmax
fη

mp2i
Cii + (m− 1)Cij

,

s.t. fη(η) ≥ 0,

∫
fη(η)dη = 1, (24)

5



which is a constrained minimization of the nonlinear functional

Ro
m(fη) for the given observation data x, the estimators θ̂i and

the number m. This optimization problem is in general theoreti-

cally intractable, even for a single estimator θ̂i with m = 1. This

is due to the fact that the expectation Ex{Eη[θ̂i(x+ η)]} has

no constraint due to the adaptive bias weight w0, and the terms

E2
x{Eη[θ̂i(x+ η)]} in Eq. (5) (Eq. (38)) andEx{E2

η[θ̂i(x+ η)]}
in Eq. (6) (Eq. (39)) are nonlinear functional of fη . Thus, the

theoretical determination of optimal added noise PDF fopt
η that

minimizes Ro
m can not refer to the convex optimization method

proposed by Chen et al. [6], [16], [23], [24]. The necessary and

sufficient conditions determining the solution of this non-convex

optimization problem in Eq. (24) are that the first variation of

Ro
m vanishes and the second variation of Ro

m is nonnegative

[7], [38]. As Uhlich [7] pointed out, these theoretical conditions

are rather difficult to handle in general, and such approximation

methods as Parzen widows density estimation [7] and

particle-swarm optimization [37] can be employed.

For low computational cost, we here employ an approximate

form of added noise PDF as

f̃opt
η (η) =

K∑

k=1

νk̺k(η, µk, σk), (25)

where the normalization coefficients νk ≥ 0,
∑K

k=1 νk = 1,

and the Gaussian window function ̺k(η, µk, σk) = exp[−(η −
µk)

2/2σ2
k]/

√
2πσ2

k with means µk and standard deviations

σk ≥ 0 [37], [39]. As the number K of ̺k increases, the estima-

tion form f̃opt
η (η) of Eq. (25) gradually converges to fopt

η (η) in

Eq. (24) under certain conditions [7], [37], [39].

Example 3: Reconsider the parameter estimation given in

Example 1, and choose the estimator θ̂i = θ̂qt of Eq. (22) with

the threshold γ = 0. The number of ̺k is chosen as K = 4, and

the constrained nonlinear optimization algorithm of sequential

quadratic programming [40] is employed to find the approx-

imation PDF of the optimal added noise. Note that, for ran-

domly selected initial values of coefficients 0 ≤ ck ≤ 1, means

−∞ < µk < ∞ and standard deviation σk ≥ 0, both the se-

quential quadratic programming method and the particle-swarm

optimization method are carried out for finding the minimum

MSE Ro
m(f̃opt

η ) and the corresponding optimal PDF f̃opt
η of

added noise η. At each major iteration of the sequential quadratic

programming method, a positive definite quasi-Newton approx-

imation of the Hessian of the objective function is calculated

using the BFGS method [40], [41]. For different estimator

numbers m = 1, 2, 104 and ∞, we randomly choose 20 groups

of initial coefficients ck, means µk and standard deviation σk,

the minimum MSEs Ro
m(f̃opt

η ) with the corresponding vector

parameters ν = [ν1, ν2, . . . , νK ]⊤, µ = [µ1, µ2, . . . , µK ]⊤ and

σ = [σ1, σ2, . . . , σK ]⊤ are recorded in Table I. It is interest-

ing to note that, for a single estimator with m = 1, the op-

timal added noise PDF is f̃opt
η (η) = δ(η + 1.0091) with the

Dirac delta function δ(η). As the estimator number m = 104,

the approximate optimal added noise PDF f̃opt
η (η) have two

nonzero normalization coefficients and is composed of two

Gaussian window functions, yielding a rather small MSE of

0.2493. Interestingly, for the limiting case m → ∞, the optimal

added noise PDF obtained in Table I, as shown in Fig. 4 (red

TABLE I
OPTIMAL ADDED NOISE VIA THE SEQUENTIAL QUADRATIC

PROGRAMMING ALGORITHM

Fig. 4. Approximate PDFs f̃opt
η (η) of the optimal added noise for the esti-

mator θ̂i = θ̂qt of Eq. (22) with the threshold γ = 0 and the number m = ∞.

Here, f̃opt
η (η) is solved for the Gaussian (red solid line) and the Laplacian (blue

dashed line) background noise ξ. The other parameters are the same as in Fig. 2.

solid line), presents a minimum MSE Ro
∞(f̃opt

η ) = 0.2492,

which is just the MMSE achieved by the optimal estimator

of Eq. (19). We note that the solution f̃opt
η (η) of the optimal

added noise PDF is not unique, because the particle-swarm

optimization method also presents another solution as f̃opt
η (η) =

exp[−(η − µη)
2/2σ2

η]/
√

2πσ2
η withµη = −1 and ση = 2.004.

Using this solution, the corresponding MSE also achieves the

MMSE 0.2492. Of course, for various estimators θ̂i, different

prior PDF fθ and background noise PDF fξ, both the sequential

quadratic programming method and the particle-swarm opti-

mization method need to be applied anew.

Example 4: In Examples 1–3, the background noise ξ is

assumed to be Gaussian distributed. However, the background

noise ξ in the real data model of Eq. (1) can in some situations

come with non-Gaussian distributions, and its type results in

the variety of MMSE Bayesian estimators θ̂mmse and the corre-

sponding MMSE values. It is noted that the approximate PDF
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Fig. 5. Diagram of the noise-enhanced FIR filter. The combiner Gℓ, repre-
senting module 1 plus module 2 in Fig. 1, processes the input sample xn−ℓ. All
outputs of combiners Gℓ and the bias weight ω0 applied at the filter output ẑn.

form in Eq. (25) of the optimal added noise and the constrained

nonlinear optimization algorithms remain valid. For a uniformly

distributed parameter θ buried in a given background noise ξ with

its PDF fξ and cumulative distribution function Fξ, the MMSE

Bayesian estimator of Eq. (19) becomes

θ̂mmse(x) = Eθ|x[θ|x] = x+

∫ x−a

x ufξ(u)du

Fξ(x)− Fξ(x− a)
. (26)

For instance, consider the uniform distributed parameter θ with

its PDF fθ(u) = 1/2 (u ∈ [0, 2]) corrupted by the the Laplace

noise ξ with its PDF fξ(ξ) = exp(−
√
2|x|/σξ)/(

√
2σξ) and

standard deviationσξ =
√
2, the MMSE achieved by the estima-

tor of Eq. (26) is 0.2679. For the limiting case ofm → ∞, we use

the constrained nonlinear optimization algorithms as in Exam-

ple 3 with the numberK = 4 to optimize the designed Bayesian

estimator θ̂LC constructed by quantizer with threshold γ = 0.

Then, the approximate form of the optimal added noise PDF

is f̃opt
η (η) = [e−(x−m1)

2/(2σ2
η) + e−(x−m2)

2/(2σ2
η)]/(2

√
2πσ2

η)

with two nonzero coefficients ν1 = ν2 = 0.5, means m1 =
−1.3784, m2 = −0.6217 and standard deviations σ1 = σ2 =
ση = 0.3195 (see Fig. 4 in blue dashed line), which is effective

for obtaining the corresponding MSE 0.2679, the same as the

MMSE achieved by θ̂mmse(x) in Eq. (26). Therefore, a natural

question is that, for any type of background noise ξ, can we

always find an approximation form f̃opt
η of optimal noise PDF

for the designed estimator θ̂LC to achieve the MMSE? We have

shown this is feasible for the cases of great practical relevance of

a Gaussian background noise and a non-Gaussian (Laplacian)

background noise. For other cases, we here leave these interest-

ing open questions of the solution of Eq. (24) for further study.

We can extend the design of the Bayesian estimator to the finite

impulse response (FIR) filter as follows.

III. NOISE-ENHANCED FIR FILTERS

We can extend the noise-benefit combiner G, i.e. module 1

plus module 2 marked in Fig. 1, to estimate a desired signal

zn by the current sample xn and the past samples xn−1, xn−2,
. . . , xn−L, as illustrated in Fig. 5. Here, we assume that the

straight-forward observation xn can not be directly obtained

and goes through the distortion endowed by the nonlinearity

θ̂ in the combiner, representing for example neuronal models

[42], nonlinear estimators [1]–[3] or sensors [5], [9], [34]. In

this situation, for L+ 1 samples of xn, L+ 1 combiners Gℓ are

equipped and each combiner Gℓ contains m original estimators

ϑ̂ℓi, m added noise components ηℓi and the corresponding

adjustable weighting coefficients ωℓi for ℓ = 0, 1, . . . , L and

i = 1, 2, . . . ,m. Then, collecting all outputs of combiners Gℓ

and adding the bias weight ω0, we have the designed noise-

enhanced finite impulse response (FIR) filter

ẑn = ω0 +

L∑

ℓ=0

m∑

i=1

ωℓiϑ̂ℓi(xn−ℓ + ηℓi). (27)

Here, the number L+ 1 of combiners Gℓ is the order of the

designed FIR filter of Eq. (27) and the error signal is defined as

εn = zn − ẑn.

Furthermore, in each combiner Gℓ, Theorem 2 also holds.

Thus, consider the individual estimators ϑ̂ℓi = ϑ̂ℓ in each Gℓ

are identical, we have m identical optimum weight coefficients

ωℓi = wℓ. In this case, we can label these weight coefficients wℓ

as the vector w = [w0, w1, . . . , wL]
⊤ and rewrite the estimate

vector as θ̂ = [θ̂0, θ̂1, . . . , θ̂L]
⊤ with θ̂ℓ =

∑m
i=1 ϑ̂ℓ(x+ ηi).

Using the unbiased condition Eẑ(ẑn) = Ez(zn), the designed

filter in Eq. (27) becomes

ẑn = Ez(zn) +w⊤(θ̂ − Ex,η(θ̂)
)
. (28)

Under this circumstance, the MSE Jm,L+1 of the FIR filter in

Eq. (28) is

Jm,L+1 = E[ε2n] = var(zn)− 2w⊤p+w⊤Cw. (29)

The covariance matrix C=Ex,η{[θ̂−Ex,η(θ̂)][θ̂−Ex,η(θ̂)]
⊤}

has diagonal elements

Cℓ+1,ℓ+1 = Exn−ℓ
[Eη(θ̂

2
ℓ )]− E2

xn−ℓ
[Eη(θ̂ℓ)]

= Exn−ℓ
{mEη[ϑ̂

2
ℓ(xn−ℓ + η)] +m(m− 1)

× E2
η[ϑ̂ℓ(xn−ℓ + η)]}

−m2E2
xn−ℓ

{Eη[ϑ̂ℓ(xn−ℓ + η)]}
and the non-diagonal elements (ℓ �= κ)

Cℓ+1,κ+1

= Exn−ℓ,xn−κ
[Eη(θ̂ℓ)Eη(θ̂κ)]− Exn−ℓ

[Eη(θ̂ℓ)]Exn−κ
[Eη(θ̂κ)]

= m2Exn−ℓ,xn−κ
{Eη[ϑ̂ℓ(xn−ℓ + η)]Eη[ϑ̂κ(xn−κ + η)]}

−m2Exn−ℓ
{Eη[ϑ̂ℓ(xn−ℓ + η)]}Exn−κ

{Eη[ϑ̂κ(xn−κ + η)]},

where Exn−ℓ,xn−κ
(·) =

∫
·fx(xn−ℓ, xn−κ)dxn−ℓdxn−κ is with

respect to the second-order joint PDF fx(xn−ℓ, xn−κ). The cen-

tralized cross-correlation vector p = Ex,η{[zn − Ez(zn)][θ̂ −
Ex,η(θ̂)]} has elements

pℓ+1 = mEzn,xn−ℓ
{znEη[ϑ̂ℓ(xn−ℓ + η)]} −mEz(zn)

× Exn−ℓ
{Eη[ϑ̂ℓ(xn−ℓ + η)]}.

Then, we obtain the optimum weight vectorwo = C−1p and the

optimized MSE J o
m,L+1 of the considered FIR filter in Eq. (28)

is given by

J o
m,L+1 = E(ε2n) = var(zn)− p⊤C−1p. (30)
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Fig. 6. Plots of the MSEJ o
m,2 of the designed filter in Eq. (28) as a function of

the added noise level ση for different numbers m = 1, 2, 31, 256, 103, 105 and
∞. Here, the saturation estimators of Eq. (31) are with the identical parameters
β = 5, and the external Gaussian noise level σξ = 0.1.

Notice the multiplicator m in each element pℓ+1 and the term

p⊤C−1p in Eq. (30), we find limits of elements as

C∞
ℓ+1,ℓ+1 = lim

m→∞
Cℓ+1ℓ+1/m

2

= Exn−ℓ
{E2

η[ϑ̂(xn−ℓ + η)]} − E2
xn−ℓ

{Eη[ϑ̂(xn−ℓ + η)]},

C∞
ℓ+1,κ+1 = lim

m→∞
Cℓ+1κ+1/m

2

= Exn−ℓ,xn−κ
{Eη[ϑ̂ℓ(xn−ℓ + η)]Eη[ϑ̂κ(xn−κ + η)]}

− Exn−ℓ
{Eη[ϑ̂ℓ(xn−ℓ + η)]}Exn−κ

{Eη[ϑ̂κ(xn−κ + η)]},
p∞ℓ+1 = pℓ+1/m

= Ezn,xn−ℓ
{znEη[ϑ̂ℓ(xn−ℓ + η)]} − Ez(zn)

× Exn−ℓ
{Eη[ϑ̂ℓ(xn−ℓ + η)]}.

Substituting these limits into Eq. (30), we can also compute the

limit value of J o
∞,L+1 as m → ∞.

Example 5: Consider the noisy input xn = sn + ξn, where

the input signal sn = sin(2πn/N) is a sampled sinusoid with

N = 16 (N > 2) samples per period and the external white-

noise process ξn is Gaussian distributed. The desired signal is

also assumed to be the sampled sinusoid zn = 2 cos(2πn/N) at

the same frequency [43]. Due to the periodicity of the input and

desired signals, the expectations must be computed by averaging

over one period, i.e the operator
∑N

n=1(·)/N . Then, the variance

of the desired signal is var(zn) = 2. When the external Gaussian

noise ξn has a fixed noise level σξ = 0.1 and the added noise

components ηℓi are also Gaussian distributed, we plot the MSE

J o
m,2 of the filter in Eq. (28) as a function of the added noise

level ση for combiners with m identical saturation estimators

ϑ̂ℓ(x) = tanh(βx), (31)

where the slope parameter β > 0. It is clearly seen in Fig. 6 that

the MSE J o
m,2 of the designed filter in Eq. (28) benefits from

the increase of the added noise level ση as the number m is

large enough. For instance, as m = 105 and at an optimal added

TABLE II
MSES OF FIR FILTERS

noise levelση = 0.890, a minimum value of the MSE is achieved

as J o
m,2 = 0.3558 (∗ marked in Fig. 6). In addition, Ref. [43]

(pp. 103, Fig. 6.3 in Sect. 6) also considered this example of

the two-sample FIR filter, namely Wiener filter, yielding the

MSE value of 0.4011. Notice that the weights of Wiener filter

are directly deduced by the covariance matrix of xn and the

cross-correlation vector between zn and samples of xn [43].

Obviously, with the benefit of added noise and for a sufficient

large order m = 105, the obtained result in Fig. 6 is better.

In fact, the sinusoid sn = A sin(2πn/N) can be viewed as a

variable with PDF fs(u) = 1/(π
√
A2 − u2) over the interval

u ∈ [−A,A], and the estimate of the desired signal from the

observation data is also a Bayesian estimation problem. The

corresponding MMSE filter is not the linear Wiener filtering.

The designed filter of Eq. (28) might achieve a better MSE than

the linear Wiener filter, as shown in Fig. 6.

Upon increasing the order L+ 1 and at the corresponding

optimal added noise levels, we list the minimum values of the

MSE J o
m,L+1 in Table II for the designed FIR filter with the

number m = 105. As the order L+ 1 increases, Theorem 1

also holds and the minimum MSE J o
m,L+1 of Eq. (28) grad-

ually decreases from 0.3558 at order L+ 1 = 2 to 0.0069 at

order L+ 1 = 9. Compared with the results of Wiener filter,

the added noise η, as a potential designable variable, clearly

manifests its benefits with a performance that is always superior

in Table II for the nonlinear FIR filter. In addition, it is also

seen in Fig. 6 that, for a large enough level of added noise,

the MSE J o
m,2 keeps a stable value for a sufficiently large

numberm → ∞. This robust feature of the noise-enhanced filter

of Eq. (28) also suggests no need of tuning the added noise

level. Then, in Table II, we choose the number m = 105 and

list the MSE J o
m,L+1 of the noise-enhanced filter in Eq. (28)

at a fixed added noise level ση = 5, yielding a comparative

results of the MSE in Table II. Specially, forL+ 1 = 5, Fig. 7(a)

shows a realization of the input xn, and the saturation estimator

ϑℓ(xn) = tanh(5xn) is illustrated in Fig. 7(b) at the added noise

level ση = 0. When the added noise level ση = 5 and m = 105,

we obtain the optimum weight vector wo = C−1p = 10−5 ×
[3.1082, 0.3873,−2.3912,−4.80578,−6.4904]⊤ and plot the

output ẑn (◦) of the designed filter of Eq. (28) in Fig. 7(c).

Note that ẑn starts from n = 5, since it is a function of xn and

the past four samples xn−ℓ. For comparison, the desired signal

zn = 2 cos(2πn/N) (red solid line) is also given in Fig. 7(c). In

this numerical realization of ẑn, the corresponding MSE 0.0261

agrees well with (is slightly larger than) the MSEJ o
m,5 = 0.0212

at the order L+ 1 = 5 shown in Table II.
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Fig. 7. (a) A realization of the input xn; (b) The saturation estimator
ϑℓ(xn) = tanh(5xn) at the added noise level ση = 0; (c) Outputs of the

designed filter ẑn of Eq. (28) at the added noise level ση = 5 and for m = 105,
and the desired signal zn = 2cos(2πn/N). The other parameter are the same
as in Fig. 6.

IV. DISCUSSION

Using the Bayes risk for the MSE criterion, this paper mainly

investigates the benefits of added noise in the designed Bayesian

estimator composed of a combination of individual Bayesian

estimators multiplied by the corresponding optimum weighting

coefficients. We first demonstrate that the MSE of the com-

bined estimator gradually decreases as the number of individual

estimators increases, and then find two equivalent optimum

weight coefficients tied with any two identical estimators in

the combination. Then, some easily tractable properties of a

combination of identical estimators are deduced. It is shown that

the MSE of the combined estimator can be optimized not only

by the linear weighting coefficients but also by the added noise.

Moreover, when the individual estimator has an upper bound and

the number of the individual estimators is sufficiently large, we

find a robust feature of the combined Bayesian estimator, i.e. the

MSE approaching a plateau for a wide range of larger added

noise levels. This feature facilitates improvement of the MSE of

the designed estimator without tuning the added noise level, and

greatly extends the operating range of the designed estimator

in practical applications. For the Bayesian estimator composed

of identical quantizers, we prove that the injection of a small

amount of symmetrical scale-family noise into the observation

always improves the MSE of the Bayesian estimator. In order to

find the optimal added noise that achieves a “minimum” MSE as

close to the MMSE as possible, we adopt the sequential quadratic

programming and the particle-swarm optimization method to

obtain the approximate form of the optimal noise PDF. The

illustrative results show the effectiveness of these constrained

nonlinear optimization algorithms. We also extend the combined

Bayesian estimator to the nonlinear filtering. In addition, we can

extend the results of the scalar parameter model of Eq. (1) to the

vector observation model

x = Hϑ+ ξ, (32)

where the observation vector x = [x1, x2, . . . , xN ]⊤, the un-

known vector parameter ϑ = [ϑ1, ϑ2, . . . , ϑk]
⊤, the N × k

observation matrix is H and the background noise vector ξ =
[ξ1, ξ2, . . . , ξN ]⊤. In Appendix H, the Bayesian estimator ϑ̂ for

the parameter vectorϑ is derived in Eq. (56). The further discus-

sions of this general Bayesian estimator vector ϑ̂ in Eq. (56) is

significant to the theoretical research and practical applications

of noise benefits in the parameter estimation. Finally, two spe-

cially important questions that remain in this extended vector

model are how to prejudge whether the added noise is beneficial

or not, and how to find the exact expression of the optimal

added noise PDF that minimizes the MSE of the designed

Bayesian estimator formed by a combiner of suboptimal but

easily implementable nonlinear estimators.

APPENDIX A

PROOF OF Theorem 1

Let the subscript m to denote the dimension of a matrix of

m×m or a vector of m× 1. The positive definite covariance

matrix Cm has an unique lower-diagonal-upper decomposi-

tion Cm = LmDmL⊤
m, where Lm is a unit lower triangular

matrix and Dm = diag(d1, d2, . . . , dm) is a diagonal matrix

[44]. Since the determinant det(Lm) = 1, then det(Cm) =
det(Dm) =

∏m
i=1 dm and elements di= detCi/detCi−1> 0

for i = 2, 3, . . . ,m [44]. Notice the matrix Cm = LmDmL⊤
m

can be also partitioned as

Cm =

[
Cm−1 γm−1

γ⊤
m−1 Cmm

]

=

[
Lm−1 0

ℓ⊤m−1 1

][
Dm−1 0

0 dm

][
L⊤
m−1 ℓm−1

0 1

]
, (33)

where the sub-matrix Cm−1 is just the covariance matrix of

the combiner with m− 1 individual estimators. This is the

optimum nesting property of a matrix (vector) [44]. The diagonal

matrix Dm in Eq. (33) and the cross-correlation vector pm =
[p⊤

m−1, pm]⊤ have the optimum nesting property. From Eq. (33),

the row ℓm−1 is uniquely given by Lm−1Dm−1ℓm−1 = γm−1,

and then Lm also possesses the optimum nesting property.

Defining an intermediate vectorkm = L⊤
mwo

m and from Eq. (7),

we find

Cmwo
m = LmDmL⊤

mwo
m = LmDmkm = pm (34)

and km = [k⊤
m−1, km]⊤ has the optimum nesting property.

Therefore, the MSE Ro
m of Eq. (9) can be expressed as

Ro
m = var(θ)− (wo

m)⊤Cmwo
m

= var(θ)− k⊤
mDmkm

= var(θ)−
[
km−1

km

]⊤ [
Dm−1 0

0⊤ dm

] [
km−1

km

]

= var(θ)− k⊤
m−1Dm−1km−1 − dmk2m

= Ro
m−1 − dmk2m, (35)

where Ro
m−1 = var(θ)− k⊤

m−1Dm−1km−1 is just the MSE of

the combined estimator θ̂LC with the number m− 1. From the

positive-definiteness ofCm,dm > 0 andk2m > 0. Thus, Eq. (10)

holds.
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APPENDIX B

PROOF OF Theorem 2

Without loss of generality, we label two identical estimators

as θ̂1 = θ̂2. Let Cij denote the element of C at the ith row and

the jth column for i, j = 1, 2, . . . ,m. From Eqs. (5) and (6), it

is seen that the covariance matrix C has equivalent elements

C11 = C22, C21 = C12 and C1k = C2k for k = 3, 4, . . . ,m.

The inverse matrix C−1 = A/det (C), and the matrix A is

the cofactor of C with its elements Aij = (−1)i+jBij . The

minor Bij of Cij is obtained by deleting the ith row and the

jth column of C. Immediately, we find B11 = B22, B21 = B12

and B1k = −B2k, yielding A11 = A22, A21 = A12 and A1k =
A2k. Furthermore, for identical estimators θ̂1 = θ̂2, the cross

correlation vector p has equivalent elements p1 = p2. Thus,

the optimum weight vector wo = C−1p = Ap/det (C) has

equivalent elements

wo
1 =

m∑

j=1

A1jpj
det (C)

=
m∑

j=1

A2jpj
det (C)

= wo
2. (36)

APPENDIX C

PROOF OF COROLLARY 1

For a combiner ofm identical estimators θ̂i = θ̂ and according

to Theorem 1, all weight coefficients wi = w are equivalent

for i = 1, 2, . . . ,m. In this case, the weight vector w = w1
for a m× 1 dimensional vector 1 of all ones and the estimate

vector θ̂ = [θ̂(x+ η1), θ̂(x+ η2), . . . , θ̂(x+ ηm)]⊤. Thus, the

combined estimator θ̂LC in Eq. (2) can be simplified as Eq. (11).

In addition, due to identical estimators θ̂i = θ̂, Eq. (4) becomes

pi = Ex{θEη[θ̂(x+ η)]} − Eθ(θ)Ex{Eη[θ̂(x+ η)]}, (37)

which indicates the centralized cross-correlation vector p has

m equivalent elements pi. Similarly, from Eqs. (5) and (6), the

covariance matrix C has m equivalent diagonal elements

Cii = Ex{Eη[θ̂
2(x+ η)]} − E2

x{Eη[θ̂(x+ η)]} (38)

and m(m− 1) equivalent non-diagonal elements

Cij = Ex{E2
η[θ̂(x+ η)]} − E2

x{Eη[θ̂(x+ η)]}. (39)

Then, the MSE Rm of θ̂LC in Eq. (11) can be computed as

Rm = Ex,η

[(
θ − θ̂LC

)2]

= var(θ)− 2w
m∑

i=1

pi + w2
m∑

i=1

m∑

j=1

Cij

= var(θ)− 2mwpi +mw2[Cii + (m− 1)Cij ]. (40)

Since the covariance matrix C is positive definite and

1⊤C1 > 0, then Cii + (m− 1)Cij > 0. Setting the derivative

∂Rm/∂w = 0, we obtain the optimum weight wo of Eq. (12)

achieving the minimum of Eq.(40). Substituting the optimum

weight wo into Eq. (40), the MSE Ro
m can be simplified as

Eq. (13). As the number m → ∞ and Cii < ∞, we have the

limit Ro
∞ = limm→∞ Ro

m in Eq. (14).

APPENDIX D

PROOF OF COROLLARY 2

For the Bayesian estimator in Eq. (15), the corresponding

MSE is given by

R = Ex

[(
θ − θ̂LC

)2]

= var(θ)− 2wEx

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

+ w2Ex

[(
θ̂NE(x)− Ex(θ̂NE)

)2]
. (41)

Then, setting the derivative ∂R/∂w = 0, the optimum weight

wo is solved as Eq. (17). Substituting the optimum weight wo

of Eq. (17) into Eq. (41), we have the minimum MSE

Ro = var(θ)− E2
x

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

Ex

[(
θ̂NE(x)− Ex(θ̂NE)

)2] .

(42)

Substituting θ̂NE(x)=Eη[θ̂(x+η)] of Eq. (16) into Eq. (42), we

find the numerator E2
x

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]
=

pi of Eq. (37) and the denominator Ex[(θ̂NE(x)− Ex(θ̂NE))
2]

= Cij of Eq. (39). Therefore, the MSE Ro of Eq. (42) is just the

limit Ro
∞ of Eq. (14). We also find that Ro of Eq. (42) satisfies

Ro = min
w

Ex

[(
θ − θ̂LC

)2]

= min
w

Ex

{[
θ − Eθ(θ)− w

(
θ̂NE − Ex(θ̂NE)

)]2}

≤ Ex

{[
θ − Eθ(θ)−

(
θ̂NE − Ex(θ̂NE)

)]2}|w=1

= Ex

[(
θ − θ̂NE

)2]
, (43)

where the unbiased condition Ex(θ̂NE) = Eθ(θ). This inequal-

ity of Eq. (43) clearly shows that the estimator θ̂LC in Eq. (15)

presents a better or at lest equivalent MSE compared to that

of the estimator θ̂NE in Eq. (16), and this is obtained thanks

to purposeful addition of noise and the adjustable weighting

coefficients in the combiner of Fig. 1.

APPENDIX E

PROOF OF COROLLARY 3

From the MSE Ro
∞ of Eq. (14), i.e. Eq. (42), achieved by

the estimator θ̂LC of Eq. (15) and by using the Cauchy-Schwarz

inequality, we find the numerator

E2
x

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

= E2
x

[
Eθ|x

(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

= E2
x

[(
θ̂mmse − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

≤ Ex

[(
θ̂mmse(x)− Eθ(θ)

)2
]Ex[

(
θ̂NE(x)− Ex(θ̂NE)

)2]
,

(44)

where the equality occurs when θ̂mmse(x)− Eθ(θ) = κ[θ̂NE(x)

− Ex(θ̂NE)], i.e. Eq. (20), and κ is an arbitrary constant. Sub-
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stituting the inequality of Eq. (44) into Eq. (42), we have

Ro
∞ ≥ var(θ)− Ex

[(
θ̂mmse(x)− Eθ(θ)

)2
]

= var(θ)− Ex

(
θ̂2mmse

)
+ 2Ex

(
θ̂mmse

)
Eθ(θ)− E2

θ(θ)

= Eθ(θ
2)− Ex

(
θ̂2mmse

)

= Ex

[(
θ − θ̂mmse

)2]

= Rms,

where the unbiased condition Eθ(θ) = Ex(θ̂mmse) and

Ex(θθ̂mmse) = Ex[Eθ|x(θ)θ̂mmse] = Ex(θ̂
2
mmse). Thus,

Eq. (18) holds.

APPENDIX F

PROOF OF COROLLARY 4

From Eq. (14), we have the derivative

∂Ro
∞

∂ση
=

p2i
∂Cij

∂ση
− 2piCij

∂pi

∂ση

C2
ij

. (45)

From Eq. (37) and Eq. (39) and noting the interchange of

the order of differentiation and integration in Eq. (45), both

derivatives ∂pi/∂ση and ∂Cij/∂ση contain the term

∂Eη[θ̂(x+ η)]

∂ση
=

∫
θ̂(x+ η)

∂fη(η, ση)

∂ση
dη

=

∫
θ̂(x+ η)

(
−
fη̃(

η
ση

)

σ2
η

−
ηf ′

η̃(
η
ση

)

σ3
η

)
dη

=

∫
θ̂(x+ ση η̃)

(
−fη̃(η̃)

ση
−

η̃f ′
η̃(η̃)

ση

)
dη̃,

(46)

where η̃ = η/ση and f ′
η = dfη/dη. Since θ̂(x)|x→∞ = Θ < ∞,∫

fη̃(η̃)dη̃ = 1 and the derivative with respect to ση allowing us

to interchange the order of integration and differentiation [8],

we find

lim
ση→∞

∫
θ̂(x+ ση η̃)

fη̃(η̃)

ση
dη̃ =

∫
lim

ση→∞
θ̂(x+ ση η̃)

fη̃(η̃)

ση
dη̃

= lim
ση→∞

Θ
∫
fη̃(η̃)dη̃

ση
= 0,

and

lim
ση→∞

∫
θ̂(x+ ση η̃)

η̃f ′
η̃(η̃)

ση
dη̃

= lim
ση→∞

Θ
[
η̃fη̃(η̃)|∞−∞ −

∫
fη̃(η̃)dη̃

]

ση

= lim
ση→∞

Θ

[
ηfη(η)|∞−∞

σ2
η

− 1

ση

]
= 0,

where fη(±∞) = 0 and limση→∞,η→±∞ ηfη(η)/σ
2
η is infinites-

imal of higher order. Thus, limση→∞ ∂Eη[θ̂(x+ η)]/∂ση = 0.

Substituting this limit into Eq. (45), we have

lim
ση→∞

∂Ro
∞

∂ση
= 0. (47)

Therefore, under the considered conditions in Corollary 4, the

MSERo
∞ of Eq. (14) tends to a (local) extremum asymptotically

for large added noise levels.

APPENDIX G

PROOF OF COROLLARY 5

For a combiner of identical quantizer estimators θ̂i = θ̂qt
of Eq. (22), the terms Eη[θ̂qt(x+ η)] = Eη[θ̂

2
qt(x+ η)] = 1−

Fη(γ − x) = Fη(x− γ) = Fη̃[(x− γ)/ση], where Fη(x) =
Fη̃(x/ση) is the cumulative distribution function of added noise

η and Fη̃ corresponds to the cumulative distribution function of

standardized noise η̃ = η/ση . From Eq. (13), the derivative of

Ro
m with respect to the added noise level ση is

∂Ro
m

∂ση
=

mp2i

[
∂Cii

∂ση
+ (m− 1)

∂Cij

∂ση

]

[Cii + (m− 1)Cij ]2
−

2mpi
∂pi

∂ση

Cii + (m− 1)Cij
.

Since the symmetrically-distributed noise η̃ has zero mean∫
fη̃(η̃)η̃dη̃ = 0 and let η̃ = (x− γ)/ση , we have

lim
ση→0

∂Ex{θEη[θ̂qt(x+ η)]}
∂ση

= lim
ση→0

∫
θfθ(θ)

∫ ∂Fη̃

(
x−γ
ση

)

∂ση
fξ(x− θ)dxdθ

=

∫
θfθ(θ)

∫
lim
ση→0

fη̃

(
x− γ

ση

) −(x− γ)

σ2
η

fξ(x− θ)dxdθ

=

∫
θfθ(θ)

∫
lim
ση→0

fη̃(η̃)(−η̃)fξ(ση η̃ + γ − θ)dη̃dθ

=

∫
−θfθ(θ)fξ(γ − θ)dθ

∫
fη̃(η̃)η̃dη̃ = 0, (48)

and

lim
ση→0

∂Ex{Eη[θ̂qt(x+ η)]}
∂ση

= −fx(γ)

∫
fη̃(η̃)η̃dη̃ = 0.

(49)

Then, we find

lim
ση→0

∂pi
∂ση

= 0, lim
ση→0

∂Cii

∂ση
= 0. (50)

Due to Fη̃(−η̃)=1−Fη̃(η̃) and fη̃(−η̃)=fη̃(η̃), the derivative

lim
ση→0

∂Ex{E2
η[θ̂qt(x+ η)]}
∂ση

= lim
ση→0

∫ ∞

−∞
2Fη̃

(
x− γ

ση

) ∂Fη̃

(
x−γ
ση

)

∂ση
fx(x)dx

=

∫ ∞

−∞
lim
ση→0

2Fη̃

(
x− γ

ση

)
fη̃

(
x− γ

ση

) −(x− γ)

σ2
η

fx(x)dx

= 2fx(γ)

[∫ 0

−∞
Fη̃(η̃)fη̃(η̃)(−η̃)dη̃ −

∫ ∞

0

Fη̃(η̃)fη̃(η̃)η̃dη̃

]

= 2fx(γ)

∫ ∞

0

[1− 2Fη̃(η̃)]fη̃(η̃)η̃dη̃. (51)
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Thus, for the quantizer number m > 1, fx(γ) �= 0 and Fη̃(η̃) >
1/2 over the range of η̃ > 0, we find

lim
ση→0

∂Ro
m

∂ση
= lim

ση→0

m(m− 1)p2i
∂Cij

∂ση

[Cii + (m− 1)Cij ]2

=

∫ ∞

0

[1− 2Fη̃(η̃)]fη̃(η̃)η̃dη̃

× 2m(m− 1)fx(γ)p
2
i

[Cii + (m− 1)Cij ]2

∣∣∣
ση=0

< 0, (52)

where p2i > 0 and Cii + (m− 1)Cij > 0 for the positive defi-

nite covariance matrix C.

APPENDIX H

DERIVATION OF PARAMETER VECTOR ESTIMATION

For the observation data model in Eq. (32), the unknownk × 1
parameter vector ϑ is with the k × 1 known mean vector Eϑ(ϑ)
and the k × k covariance matrix Cϑ. Let the N × k observation

matrix H be represented in row form H = [h⊤
1 ,h

⊤
2 , . . . ,h

⊤
N ]⊤

with its 1× k row vectors hn, and assume that the N × 1
noise vector ξ is with the common distribution fξ for mutually

independent samples ξn for n = 1, 2, . . . , N , we have the scalar

observation

xn = hnϑ+ ξn, (53)

which can be also analyzed by the theory developed in Sec. II

with the parameter θ replaced by hnϑ in Eq. (53). We add

m noise components ηin to the observation xn, respectively,

resulting in m× 1 estimate vector

ϑ̂n =
[
ϑ̂1n(xn + η1n), ϑ̂2n(xn + η2n), . . . , ϑ̂mn(xn + ηmn)

]⊤
.

Then, for the observation xn, the centralized correlation vector

between ϑ and ϑ̂n is

pn = Exn,η[hn(ϑ− Eϑ(ϑ))(ϑ̂n − Exn,η(ϑ̂n))] = G⊤
nh

⊤
n

with the k ×m cross-covariance matrix Gn = Exn,η[(ϑ−
Eϑ(ϑ))(ϑ̂n − Exn,η(ϑ̂n))

⊤], and them×m covariance matrix

Cn = Exn,η

[(
ϑ̂n − Exn,η(ϑ̂n)

)(
ϑ̂n − Exn,η(ϑ̂n)

)⊤]
. Thus,

using the designed Bayesian estimator of Eq. (8), we obtain

ϑ̂LC,n = hnϑ̂

= Eϑ(hnϑ) + p⊤
nC

−1
n

(
ϑ̂n − Exn,η(ϑ̂n)

)

= hnEϑ(ϑ) + hnGnC
−1
n

(
ϑ̂n − Exn,η(ϑ̂n)

)
. (54)

These scalar estimators of Eq. (54) can be combined into a vector

estimator as

ϑ̂LC =

⎡
⎢⎢⎢⎣

ϑ̂LC,1

ϑ̂LC,2

...

ϑ̂LC,N

⎤
⎥⎥⎥⎦ = Hϑ̂

= HE(ϑ) +

⎡
⎢⎢⎢⎣

h1G1C
−1
1

(
ϑ̂1 − Ex1,η(ϑ̂1)

)

h2G2C
−1
2

(
ϑ̂2 − Ex2,η(ϑ̂2)

)

...

hNGNC−1
N

(
ϑ̂N − Exn,η(ϑ̂N )

)

⎤
⎥⎥⎥⎦ . (55)

Assuming that H⊤H is invertible, the estimate vector ϑ̂ is

given by

ϑ̂ = (H⊤H)−1H⊤ϑ̂LC

= E(ϑ) + (H⊤H)−1H⊤

⎡
⎢⎢⎢⎣

h1G1C
−1
1

(
ϑ̂1 − Ex1,η(ϑ̂1)

)

h2G2C
−1
2

(
ϑ̂2 − Ex2,η(ϑ̂2)

)

...

hNGNC−1
N

(
ϑ̂N − Exn,η(ϑ̂N)

)

⎤
⎥⎥⎥⎦,

(56)

with the MSE of each estimation parameter ϑ̂i as the i-th
diagonal element of covariance matrix Ex,η[(ϑ− ϑ̂)(ϑ− ϑ̂)⊤]
for i = 1, 2, . . . , k.

REFERENCES

[1] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
[2] D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian estimation using

Gaussian sum approximations,” IEEE Trans. Autom. Control, vol. AC-17,
no. 4, pp. 439–448, Aug. 1972.

[3] H. Z. Fang, N. Tian, Y. B. Wang, M. C. Zhou, and M. A. Haile, “Non-
linear Bayesian estimation: From Kalman filtering to a broader horizon,”
IEEE/CAA J. Automatica Sinica, vol. 5, no. 2, pp. 401–407, Mar. 2018.

[4] D. Rousseau and F. Chapeau-Blondeau, “Noise-improved Bayesian esti-
mation with arrays of one-bit quantizers,” IEEE Trans. Instrum. Meas.,
vol. 56, no. 6, pp. 2658–2662, Dec. 2007.

[5] F. Chapeau-Blondeau, S. Blanchard, and D. Rousseau, “Noise-enhanced
Fisher information in parallel arrays of sensors with saturation,” Phys. Rev.

E, vol. 74, no. 3, 2006, Art. no. 031 102.
[6] H. Chen, P. K. Varshney, and J. H. Michels, “Noise enhanced parameter

estimation,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5074–5081,
Oct. 2008.

[7] S. Uhlich, “Bayes risk reduction of estimators using artificial observation
noise,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5535–5545,
Oct. 2015.

[8] A. Patel and B. Kosko, “Optimal mean-square noise benefits in quantizer-
array linear estimation,” IEEE Signal Process. Lett., vol. 17, no. 12,
pp. 1005–1009, Dec. 2010.

[9] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott, Stochas-

tic Resonance: From Suprathreshold Stochastic Resonance to Stochastic

Signal Quantization. New York, NY, USA: Cambridge Univ. Press, 2008.
[10] G. O. Balkan and S. Gezici, “CRLB based optimal noise enhanced param-

eter estimation using quantized observations,” IEEE Signal Process. Lett.,
vol. 17, no. 5, pp. 477–480, May 2010.

[11] L. Xu, F. Duan, X. Gao, D. Abbott, and M. D. McDonnell, “Adaptive recur-
sive algorithm for optimal weighted suprathreshold stochastic resonance,”
Roy. Soc. Open Sci., vol. 4, no. 9, 2017, Art. no. 160 889.

[12] Y. Pan, F. Duan, F. Chapeau-Blondeau, and D. Abbott, “Noise enhance-
ment in robust estimation of location,” IEEE Trans. Signal Process.,
vol. 66, no. 8, pp. 1953–1966, Apr. 2018.

[13] Q. Zhai and Y. Wang, “Noise effect on signal quantization in an array of
binary quantizers,” Signal Process., vol. 152, no. 11, pp. 265–272, 2018.

[14] J. Zhu, X. Li, R. S. Blum, and Y. Gu, “Parameter estimation from quantized
observations in multiplicative noise environments,” IEEE Trans. Signal

Process., vol. 63, no. 15, pp. 4037–4050, Aug. 2015.
[15] H. Soganci, S. Gezici, and O. Arikan, “Optimal stochastic parameter

design for estimation problems,” IEEE Trans. Signal Process., vol. 60,
no. 9, pp. 4950–4956, Sep. 2012.

[16] H. Chen, L. R. Varshney, and P. K. Varshney, “Noise-enhanced information
systems,” Proc. IEEE, vol. 102, no. 10, pp. 1607–1621, Oct. 2014.

12



[17] D. Wang, L. Li, Y. Ji, and Y. Yan, “Model recovery for Hammerstein
systems using the auxiliary model based orthogonal matching pursuit
method,” Appl. Math. Model., vol. 54, no. 2, pp. 537–550, 2018.

[18] M. Zeng, N. Nam-Phong, O. A. Dobre, and H. V. Poor, “Securing downlink
massive MIMO-NOMA networks with artificial noise,” IEEE J. Sel. Topics

Signal Process., vol. 13, no. 3, pp. 685–699, Jun. 2019.
[19] A. Patel and B. Kosko, “Optimal noise benefits in Neyman–Pearson and

inequality-constrained statistical signal detection,” IEEE Trans. Signal

Process., vol. 57, no. 5, pp. 1655–1669, May 2009.
[20] S. Kay, “Can detectability be improved by adding noise?” IEEE Signal

Process. Lett., vol. 7, no. 1, pp. 8–10, Jan. 2000.
[21] S. Zozor and P. O. Amblard, “Stochastic resonance in locally optimal

detectors,” IEEE Trans. Signal Process., vol. 51, no. 12, pp. 3177–3181,
Dec. 2003.

[22] F. Chapeau-Blondeau and D. Rousseau, “Noise-enhanced performance
for an optimal Bayesian estimator,” IEEE Trans. Signal Process., vol. 52,
no. 5, pp. 1327–1334, May 2004.

[23] H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Theory of the
stochastic resonance effect in signal detection: Part I–Fixed detectors,”
IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3172–3184, Jul. 2007.

[24] H. Chen and P. K. Varshney, “Theory of the stochastic resonance effect in
signal detection–Part II: Variable detectors,” IEEE Trans. Signal Process.,
vol. 56, no. 10, pp. 5031–5041, Oct. 2008.

[25] A. B. Akbay and S. Gezici, “Noise benefits in joint detection and estimation
problems,” Signal Process., vol. 118, no. 1, pp. 235–247, 2016.

[26] H. Soganci, S. Gezici, and O. Arikan, “Optimal signal design for multi-
parameter estimation problems,” IEEE Trans. Signal Process., vol. 63,
no. 22, pp. 6074–6085, Nov. 2015.

[27] G. Zeitler, G. Kramer, and A. C. Singer, “Bayesian parameter estima-
tion using single-bit dithered quantization,” IEEE Trans. Signal Process.,
vol. 60, no. 6, pp. 2713–2726, Jun. 2012.

[28] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, “Sequential
signal encoding from noisy measurements using quantizers with dynamic
bias control,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 978–1002,
Mar. 2001.

[29] H. Chen and P. K. Varshney, “Performance limit for distributed estimation
systems with identical one-bit quantizers,” IEEE Trans. Signal Process.,
vol. 58, no. 1, pp. 466–471, Jan. 2010.

[30] H. Chen and P. K. Varshney, “Nonparametric one-bit quantizers for dis-
tributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3777–
3787, Jul. 2010.

[31] O. Dabeer and A. Karnik, “Signal parameter estimation using 1-bit dithered
quantization,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5389–5405,
Dec. 2006.

[32] M. D. McDonnell, “Is electrical noise useful?” Proc. IEEE, vol. 99, no. 2,
pp. 242–246, Feb. 2011.

[33] G. P. Harmer, B. R. Davis, and D. Abbott, “A review of stochastic reso-
nance: Circuits and measurement,” IEEE Trans. Instrum. Meas., vol. 51,
no. 2, pp. 299–309, Apr. 2002.

[34] N. G. Stocks, “Suprathreshold stochastic resonance in multilevel threshold
systems,” Phys. Rev. Lett., vol. 84, no. 11, pp. 2310–2313, 2000.

[35] L. Xu, T. Vladusich, F. Duan, L. J. Gunn, D. Abbott, and M. D. McDonnell,
“Decoding suprathreshold stochastic resonance with optimal weights,”
Phys. Lett. A, vol. 379, no. 38, pp. 2277–2283, 2015.

[36] R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic
resonance,” J. Phys. A, Math. General, vol. 14, no. 11, pp. L453–L457,
1981.

[37] S. Bayram, S. Gezici, and H. V. Poor, “Noise enhanced hypothesis-testing
in the restricted Bayesian framework,” IEEE Trans. Signal Process.,
vol. 58, no. 8, pp. 3972–3989, Aug. 2010.

[38] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part 3:

Variational Methods and Optimization. Berlin, Germany: Springer-Verlag,
1984.

[39] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York,
NY, USA: Wiley, 2000.

[40] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA:
Springer-Verlag, 2006.

[41] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1983.

[42] J. J. Collins, C. C. Chow, and T. T. Imhoff, “Stochastic resonance without
tuning,” Nature, vol. 376, no. 6537, pp. 236–238, 1995.

[43] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Upper Saddle
River, NJ, USA: Prentice-Hall, 1985.

[44] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive

Signal Processing. New York, NY, USA: McGraw-Hill, 2000.

13


