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S U M M A R Y
Dynamo action in the Earth’s outer core is expected to be controlled by a balance between
pressure, Coriolis, buoyancy and Lorentz forces, with marginal contributions from inertia and
viscous forces. Current numerical simulations of the geodynamo, however, operate at much
larger inertia and viscosity because of computational limitations. This casts some doubt on the
physical relevance of these models.

Our work aims at finding dynamo models in a moderate computational regime which
reproduce the leading-order force balance of the Earth. By performing a systematic parameter
space survey with Ekman numbers in the range 10−6 ≤ E ≤ 10−4, we study the variations
of the force balance when changing the forcing (Rayleigh number, Ra) and the ratio between
viscous and magnetic diffusivities (magnetic Prandtl number, Pm). For dipole-dominated
dynamos, we observe that the force balance is structurally robust throughout the investigated
parameter space, exhibiting a quasi-geostrophic (QG) balance (balance between Coriolis and
pressure forces) at zeroth order, followed by a first-order Magneto-Archimedean-Coriolis
(MAC) balance between the ageostrophic Coriolis, buoyancy and Lorentz forces. At second
order, this balance is disturbed by contributions from inertia and viscous forces. Dynamos with
a different sequence of the forces, where inertia and/or viscosity replace the Lorentz force in
the first-order force balance, can only be found close to the onset of dynamo action and in
the multipolar regime. To assess the agreement of the model force balance with that expected
in the Earth’s core, we introduce a parameter quantifying the distance between the first- and
second-order forces. Analysis of this parameter shows that the strongest-field dynamos can
be obtained close to the onset of convection (Ra close to critical) and in situations of reduced
magnetic diffusivity (high Pm). Decreasing the Ekman number gradually expands this regime
towards higher supercriticalities and lower values of Pm.

Our study illustrates that most classical numerical dynamos are controlled by a QG-MAC
balance, while cases where viscosity and inertia play a dominant role are the exception rather
than the norm.

Key words: Core; Dynamo: theories and simulations; Numerical modelling.

1 I N T RO D U C T I O N

The Earth’s magnetic field is believed to be generated by dynamo
action in the liquid outer core. The flow dynamics driving this pro-
cess are expected to be controlled by a balance between pressure,
Coriolis, buoyancy and Lorentz forces, with marginal contributions
from inertia and viscous forces (e.g. Roberts & King 2013). How-
ever, the exact structure of the leading-order force balance is still
debated (e.g. Dormy 2016; Aubert et al. 2017; Aurnou & King
2017).

Historically, theoretical considerations largely based on asymp-
totic studies of magneto-convection resulted in the distinction be-
tween weak- and strong-field regimes of dynamo action (e.g. Holler-
bach 1996). In a system dominated by rapid rotation, as is the case
for the Earth’s core, fluid motions tend to be invariant in the direc-
tion of the rotation axis, and fulfil the so-called Proudman–Taylor
constraint. In the weak-field regime, this rotational constraint is
broken by the viscous force or inertia, while the Lorentz force is
substantially weaker, leading to small-scale convection. Increas-
ing the vigour of convection increases the magnetic field strength
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and as a result, the Lorentz force could eventually break the rota-
tional constraint, leading to larger convective scales. This induces
a catastrophic runaway growth of the magnetic field until convec-
tion occurs on the scale of the system size. At this point the mag-
netic field equilibrates at the Elsasser number � ∼ O(1), where
� measures the relative amplitudes of the Lorentz and Coriolis
forces:

� = |FLorentz|
|FCoriolis| = |J × B|

|2ρ� × u| ∼ J B

ρ�U
, (1)

with J representing the current density, B the magnetic field strength,
ρ the fluid density, � the rotation rate and U the flow velocity. The
resulting regime is referred to as strong-field regime due to the
Lorentz force now being much stronger than the viscous forces
and inertia. Since a magnetic field with � ∼ O(1) facilitates con-
vection (Malkus 1959), it has been suggested that the core flow
dynamics are in a magnetostrophic (MS) state, where pressure,
Coriolis and Lorentz forces balance each other at zeroth order (Wu
& Roberts 2013). To assess based on geomagnetic observations
whether the geodynamo operates in a magnetostrophic regime, the
Elsasser number has traditionally been estimated using the follow-
ing definition:

�t = B2

ρμη�
, (2)

where μ represents the magnetic permeability and η the magnetic
diffusivity. Inserting characteristic values of the Earth (e.g. Chris-
tensen & Aubert 2006) yields �t ∼ O(1), which has often been
used to argue for Lorentz and Coriolis forces being of the same
order of magnitude in the outer core. The definition of �t, however,
does not include length and velocity scales and therefore may pro-
vide an inaccurate measure of the relative amplitudes of the forces
(Soderlund et al. 2012, 2015; Calkins 2018). A more rigorous es-
timate of this force ratio can be obtained using a dynamic Elsasser
number, defined as (Soderlund et al. 2012)

�d = B2

ρμ�U D
, (3)

where D represents the thickness of the outer core. Employing
characteristic values to this definition yields �d ∼ O(10−2) for the
Earth, indicating that the Lorentz force is two orders of magni-
tude smaller than the Coriolis force. This suggests that core flow
dynamics could be controlled by a geostrophic balance between
pressure and the Coriolis force at leading order, which would re-
sult in quasi-geostrophic (QG) instead of magnetostrophic convec-
tion dynamics (Soderlund et al. 2012; Calkins 2018). This is in
agreement with recent studies of the core flow based on the inver-
sion of geomagnetic secular variation data, which suggest that on
global scales QG flows appear to describe the observations best
(e.g. Gillet et al. 2012). Theoretical grounding for how such large-
scale quasi-geostrophy could be possible has recently been pro-
vided by Aurnou & King (2017), who suggested based on scaling
analysis of the Elsasser number that magnetostrophic flow dynam-
ics may be deferred to smaller scales, inaccessible to geomagnetic
observations. Aurnou & King (2017) therefore argue for a length-
scale-dependent combination of zeroth-order quasi-geostrophy and
magnetostrophy.

In addition to observations and theoretical considerations, global
numerical dynamo simulations represent an important tool for our
understanding of the dynamo mechanism. Although computational
resources have increased significantly since the first successful dy-
namo simulations computed more than 20 yr ago (Glatzmaier &

Roberts 1995), current numerical models still operate at parameters
far from the expected conditions of the Earth’s core. Despite this
limitation, numerical dynamos have proven to be very successful
in reproducing numerous features of the geomagnetic field (e.g.
Christensen et al. 2010). However, it remains uncertain whether
these results are obtained for the right physical reasons. As a con-
sequence many studies have been performed, trying to answer this
question. Soderlund et al. (2012) found that convection in many
dynamo simulations does not occur on the system scale, but rather
on a scale similar to that of rotating convection. As a result, they
argued for a subdominant role of the magnetic field in those nu-
merical models, which was attributed to a sizeable contribution of
viscosity (e.g. King & Buffett 2013; Oruba & Dormy 2014). Some
authors even suggested that the majority of dynamos found to date
belong to the viscous weak-field regime (e.g. Dormy 2016; Dormy
et al. 2018). However, the discrepancy between dynamo solutions
and non-magnetic convection was shown to become more obvi-
ous when the viscosity in the models is lowered (e.g. Sakuraba &
Roberts 2009; Yadav et al. 2016). By explicitly computing the mag-
nitude of all forces (e.g. Wicht & Christensen 2010; Soderlund et al.
2012, 2015) and their level of cancellation (e.g. Yadav et al. 2016),
numerical dynamos were found to be quasi-geostrophic at zeroth
order, with buoyancy and Lorentz forces balancing the ageostrophic
Coriolis force, that is, the part of the Coriolis force which is not bal-
anced by pressure. More recently, Aubert et al. (2017) introduced
a length-scale-dependent approach for a more refined analysis of
the force balance. High-resolution dynamos (e.g. Yadav et al. 2016;
Schaeffer et al. 2017; Sheyko et al. 2018) at advanced parame-
ter regimes support this QG-MAC (Quasi-Geostrophic Magneto-
Archimedean-Coriolis) balance, which suggests that it could go all
the way to the core (Aubert et al. 2017).

While the majority of dynamo models to date therefore seem
to support a QG-MAC balance, some studies also report dynamos
that could be controlled by a magnetostrophic balance at zeroth
order (e.g. Dormy 2016; Dormy et al. 2018). Dormy (2016) and
Dormy et al. (2018) were further able to observe close to the onset
of dynamo action a catastrophic runaway growth of the magnetic
field from viscously dominated weak-field dynamos to strong-field
dynamos in their models, similar to that predicted by asymptotic
studies of rotating magneto-convection. These conflicting interpre-
tations illustrate that not only the presumed force balance in the
Earth’s core but also the force balance obtained in current numeri-
cal models are still highly debated topics.

By performing a systematic survey of the numerically accessi-
ble parameter space, we attempt to enable a better understanding of
force balances. To this end, we will make use of the scale-dependent
force balance representations introduced in Aubert et al. (2017). Ad-
ditionally, we will introduce new tools to directly relate the phys-
ical scale at which the dynamo is organized locally to the govern-
ing force balance. Throughout this work, we adopt the following
naming conventions. Some authors use the term ‘magnetostrophic’
(strictly) to describe a zeroth-order MS balance (e.g. Roberts 1978;
Dormy 2016; Dormy et al. 2018). Other authors consider ‘magne-
tostrophic’ as the QG-MAC balance (e.g. Yadav et al. 2016; Aubert
et al. 2017). Here, ‘magnetostrophic’ will only refer to the zeroth-
order MS balance to avoid possible confusion between the two types
of force balances. Likewise, some authors refer to dynamos as be-
ing in the strong-field regime only in the presence of a � ∼ O(1)
magnetic field, that is, dynamos controlled by a zeroth-order MS
balance (e.g. Roberts 1978; Dormy 2016; Dormy et al. 2018). Many
other authors consider strong field simply as the magnetic energy
being much larger than the kinetic energy (e.g. Schaeffer et al.
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2017; Aubert et al. 2017). This is the definition that we will retain
here.

Section 2 presents the numerical models and methods. The results
are presented in Section 3, followed by a discussion in Section 4.

2 N U M E R I C A L M O D E L

We consider a spherical shell of thickness D = ro − ri and radius
ratio ri/ro = 0.35, where ri and ro are the inner and outer radii.
The shell rotates with angular frequency � about the axis ez . The
inclosed fluid of density ρ and (kinematic) viscosity ν is electrically
conducting and incompressible. Convection is driven by a fixed
superadiabatic temperature difference �T between the inner and
the outer boundary. Gravity g increases linearly with radius.

We solve the geodynamo equations in non-dimensional form
using the Boussinesq approximation to obtain the velocity field u,
magnetic induction B and temperature perturbation T. We adopt D
as reference length scale, the viscous diffusion time D2/ν serves as
time unit, temperature is scaled by �T and magnetic induction by√

ρμη�, where μ is the magnetic permeability and η the magnetic
diffusivity of the fluid. This results in the following set of equations:

∂u

∂t
+ u · ∇u + 2

E
ez × u = −∇ P + Ra

Pr

r

ro
T + ∇2u +

+ 1

E Pm
(∇ × B) × B, (4)

∂T

∂t
+ u · ∇T = 1

Pr
∇2T, (5)

∂B

∂t
= ∇ × (u × B) + 1

Pm
∇2B, (6)

∇ · u = 0, (7)

∇ · B = 0, (8)

where P is the pressure. The non-dimensional control parameters
of the system are the Ekman number

E = ν

�D2
, (9)

the hydrodynamic Prandtl number

Pr = ν

κ
, (10)

the magnetic Prandtl number

Pm = ν

η
(11)

and the Rayleigh number

Ra = αgo D3�T

νκ
, (12)

where κ is the thermal diffusivity, α the thermal expansion coeffi-
cient and go the gravity at the outer boundary.

Both boundaries are assumed to be electrically insulating with
vanishing velocity field (no-slip) and fixed temperature. All models
are simulated with the open-source numerical code MagIC (Wicht
2002; Gastine et al. 2016, https://github.com/magic-sph/magic),
which uses Chebychev polynomials in the radial direction and spher-
ical harmonic decomposition in the angular directions. MagIC relies

on the library SHTns (Schaeffer 2013, https://bitbucket.org/nschae
ff /shtns) for efficient calculation of the spherical harmonic trans-
forms. Diffusion terms are integrated implicitly in time using a
Crank-Nicolson scheme, while a second-order Adams-Bashforth
scheme is employed for the explicit treatment of the remaining
terms. For the explicit time stepping, numerical stability requires
the maximum allowable time step to satisfy a Courant criterion,
which is constrained by the spacing of the radial grid points (Chris-
tensen et al. 1999). To alleviate the time step restrictions due to
the Alfvén waves propagating close to the boundaries, we adopt
a mapping of the Gauss–Lobatto collocation grid points (Kosloff
& Tal-Ezer 1993). This leads to an increase of the maximum al-
lowable time step by up to a factor two and therefore results in a
significant reduction of the computational costs (e.g. Boyd 2001,
section 16.9).

To systematically study the force balance that drives the convec-
tion in geodynamo models, we perform a series of 95 numerical
simulations spanning the parameter range 10−6 ≤ E ≤ 10−4, 0.07
≤ Pm ≤ 15 and 1.5 × 106 ≤ Ra ≤ 2.66 × 1010 with Pr = 1. The
control parameters and relevant output parameters of the analysed
models are given in Table A1. Fig. 1 shows the regime diagrams
for the three different Ekman numbers considered here following
Christensen & Aubert (2006). The shaded regions represent areas
of the parameter space where no self-sustained dynamos could be
found. Depending on the geometry of the generated magnetic field
we distinguish between dipolar and multipolar dynamos. The tran-
sition between these two regimes appears to shift towards higher
supercriticalities (Ra/Rac) as the Ekman number decreases, while
the onset of dynamo action seems to remain approximately at con-
stant Ra/Rac. Decreasing the Ekman number also extends the region
of dynamo action (region of self-sustained dynamos) towards lower
Pm (Christensen et al. 1999; Christensen & Aubert 2006). None
of the investigated dynamo models in the dipolar regime exhibited
reversals of the magnetic field polarity. However, for our models
with strong magnetic turbulence we expect that reversals could oc-
cur, provided the simulations would cover long enough timescales
(e.g. Heimpel & Evans 2013). For the explored control parameters,
verifying this would be extremely demanding in terms of compu-
tational resources. Therefore, this is currently not feasible within
the scope of a systematic parameter space survey. To reduce the
duration of transients after the start of the simulations, the dynamo
models were initiated with an equilibrated solution with similar in-
put parameters whenever possible. Note that close to the transition
of the dipolar to the multipolar regime, bistable dynamos can be
found (Petitdemange 2018). This can be attributed to the strength of
the seed magnetic field. Similarly, some models close to the onset
of dynamo action do require a strong magnetic field at the outset for
convection to be able to sustain it. Such bistabilities that depend on
the initial conditions have been studied in detail by Petitdemange
(2018) for the same physical setup. In our study, however, we only
consider the dipole-dominated dynamos in all of these cases. To
obtain an extensive picture of the evolution of the force balance
when changing the control parameters, we reproduced several re-
cently published dynamo models (Yadav et al. 2016; Aubert et al.
2017; Dormy et al. 2018), as well as models covering the parameter
space that has been classically explored (e.g. Kutzner & Christensen
2002; Christensen & Aubert 2006).

For our following analysis we will mainly focus on four cases
which we consider to be representative for the investigated param-
eter space. Table 1 summarizes the control parameters of these
models, along with the coloured symbols used to locate them in the
regime diagrams presented in Fig. 1.
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Figure 1. Regime diagrams for E = 10−4, E = 10−5 and E = 10−6. Shaded regions represent areas of the parameter space where no self-sustained dynamos
exist (computationally too expensive to determine for E = 10−6). All dynamo models have been computed with Pr = 1. Circles represent dipolar, diamonds
represent multipolar and crosses represent failed dynamos. The dashed lines tentatively delineate the transition between dipolar and multipolar dynamos. The
control parameters of the dynamo models highlighted by coloured symbols are given in Table 1.

Table 1. Control parameters of four representative dynamo models with
coloured symbols to locate them in the regime diagrams (Fig. 1).

Model E Ra Ra/Rac Pm

A 10−6 2.66 × 1010 148.5 0.456
B 10−4 2.2 × 106 3.2 12
C 10−6 2 × 109 11.2 0.25

D 10−5 4 × 108 37.8 0.1

3 R E S U LT S

3.1 Force balance spectra

For our systematic study of the force balance, we follow the method
introduced by Aubert et al. (2017) and decompose each force into
spherical harmonic contributions:

F2
rms = 1

V

∫ ro−b

ri +b

�max∑
�=0

�∑
m=0

F2
�mr 2dr =

�max∑
�=0

F2
� , (13)

where b represents the thickness of the viscous boundary layers.
Viscous boundary layers are excluded from the calculations since
we are primarily interested in the force balance in the bulk of the
fluid. The resulting force balance spectra of the four cases given
in Table 1 are illustrated in Fig. 2. Most force balance spectra
of the dynamo models in the dipolar regime are structurally very
similar. Model A (see Fig. 2a), which is among the ‘path’-dynamos
analysed by Aubert et al. (2017), can be considered as a typical
example. At zeroth order, it is characterized by a quasi-geostrophic
balance between pressure and the Coriolis force. The ageostrophic
part of the Coriolis force is then balanced by buoyancy at small
spherical harmonic degrees and by the Lorentz force at large �.
This QG-MAC balance has been identified in several recent studies
(e.g. Yadav et al. 2016; Schaeffer et al. 2017; Aubert et al. 2017).
This balance is, however, quite significantly disturbed by inertia and
viscous forces since they are only one to two orders of magnitude
smaller than the leading-order forces.

Dormy (2016) recently suggested that dynamos governed by
a magnetostrophic balance at zeroth order can be attained even
in a computationally moderate regime by adopting a setup close
to the onset of convection to minimize inertial effects and with
large Pm to maintain a strong influence of the Lorentz force.

Our study confirms that in these dynamos the Lorentz force is
of approximately the same magnitude as the total Coriolis force.
Therefore, these models do indeed approach magnetostrophy when
considering volume-integrated forces. However, the length-scale-
dependent analysis of model B (which corresponds to one of the
configurations considered by Dormy et al. 2018) using the force
balance spectra (see Fig. 2b) reveals the same basic structure as
for the QG-MAC cases, that is, like for model A we observe a
geostrophic balance at zeroth order, followed by a first-order balance
between the ageostrophic Coriolis, buoyancy and Lorentz forces.
This indicates that these models do not represent a force balance
regime that is different from the one of most dipole-dominated
dynamos. Yet, due to the role of inertia getting minimized, the
separation between the Lorentz force and second-order forces in-
creases compared to QG-MAC cases at larger supercriticalities.
Therefore, one may refer to such dynamo models as strong-field
cases.

The only occurrences of dipole-dominated dynamos that cannot
be attributed to the QG-MAC regime can be found in regions of the
parameter space close to the onset of dynamo action. Model C (see
Fig. 2c) can be considered as an example for such dynamos at low
Pm, which are characterized by a significantly weaker Lorentz force
compared to typical QG-MAC cases. While the Lorentz force is still
larger than inertia and viscous forces at large scales, it becomes very
weak towards smaller scales and as a result does not balance the
ageostrophic Coriolis force at any point.

By increasing the vigour of convection one eventually reaches the
transition from the dipolar to the multipolar regime (e.g. Kutzner
& Christensen 2002; Christensen & Aubert 2006). Model D (see
Fig. 2d) is an example of a multipolar dynamo close to this transition.
Its force balance spectrum features a significantly weaker Lorentz
force than the QG-MAC cases. This decrease of the Lorentz force
might be related to the increasing role of inertia (Christensen &
Aubert 2006) or the breaking of the equatorial symmetry of the
flow (Garcia et al. 2017). For multipolar cases inertia becomes
a first-order contribution to the force balance, such that they are
controlled by a first-order CIA (Coriolis-Inertia-Archimedean) bal-
ance (Gillet & Jones 2006). At zeroth order these dynamos ex-
hibit a quasi-geostrophic balance again. Therefore, analogously
to QG-MAC, we refer to this type of force balance as QG-CIA
balance.
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Figure 2. Force balance spectra for examples of different types of force balances excluding the viscous boundary layers. The spherical harmonic contributions
of the r.m.s. forces are normalized with respect to the peak of the Coriolis force. The solid lines represent the time averages of the forces. The corresponding
shaded regions represent one standard deviation. (a and b) Examples of QG-MAC balances of dipole-dominated dynamos at E = 10−6 and E = 10−4. (c)
Example of a special case with control parameters close to the onset of dynamo action at E = 10−6. (d) Example of QG-CIA balance of a multipolar dynamo
at E = 10−5. The four coloured symbols refer to the locations of the dynamos in the parameter space (see Fig. 1). The vertical dashed lines correspond to the
cross-over length scales defined in Section 3.1.2.

3.1.1 ‘Strong-fieldness’

To evaluate, based on the force balance spectra, which of the dy-
namos can be attributed to the strong-field regime, we introduce
the ‘strong-fieldness’ δ. This parameter quantifies the separation
between the Lorentz force and the second-order forces (inertia and
viscous forces) and is defined as

δ =
√√√√ ∑�max

�=1 F2
Lorentz,�∑�max

�=1 max
(
F2

inertia,�, F2
viscous,�

) . (14)

Figs 3(a) and (b) show extrapolated contour levels of δ for the inves-
tigated parameter space at E = 10−4 and E = 10−5. For E = 10−6, the
limited number of simulations does not allow a meaningful linear
interpolation required to draw the contour lines. As a consequence,
only the data points are displayed as a scatterplot in Fig. 3(c). We
observe that δ reaches its maximum for dynamos at low Ra/Rac and
high Pm for all three Ekman numbers. This confirms the results by
Dormy (2016) and Dormy et al. (2018) who suggested that strong-
field dynamos can be attained for this parameter range. The smallest
values of δ are found close to the onset of dynamo action and in the

multipolar regime where the Lorentz force falls below the level of
inertia. Decreasing the Ekman number from E = 10−4 to E = 10−6

leads to an overall increase of δ. In parallel, the parameter region
of dynamos with δ � 1, which corresponds to QG-MAC dynamos,
gradually extends towards lower values of Pm.

The influence of viscous forces on δ decreases strongly with de-
creasing Ekman number. As a consequence, δ can be approximated
by the ratio between the magnetic and kinetic energies M:

M = Emag

Ekin
= B2

ρμU 2
, (15)

which represents a proxy for the relative magnitudes of the Lorentz
force and inertia. The linear interpolations of M for the explored
parameter space are shown in Figs 3(d)–(f). Comparison of the inte-
gral diagnostic M to δ shows a broad agreement. The discrepancy
in the amplitude between the two parameters can be explained by
the independence of M on length scales, while they are inherently
included in the definition of δ due to the explicit calculation of the
forces. Additionally, viscosity still represents a sizeable contribution
at large Ekman numbers.
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Figure 3. Regime diagrams for Ekman numbers E = 10−4, E = 10−5 and E = 10−6 with linear interpolations of the ‘strong-fieldness’ δ (eq. 14, panels a–c)
and the ratio of the magnetic and kinetic energies M (eq. 15, panels e–f). The light grey dashed lines correspond to a value of 1. The symbols are filled with the
values computed from the simulation output. The meaning of the symbols is the same as in Fig. 1. The symbols of the models given in Table 1 are highlighted
by coloured edges.

3.1.2 Cross-over length scale

Following Aubert et al. (2017) we use the spectral representations
of the forces to introduce the cross-over length scales d⊥. These are
defined as the length scales where two forces are of equal amplitude.
This implies that these forces are in balance under the constraint of
some remainder of the Coriolis force. Hence, this scale corresponds
in fact to a three-term balance. To obtain the cross-over length scale
which corresponds to the first-order force balance, we therefore
determine the spherical harmonic degree, �MA, where buoyancy and
the Lorentz force are of equal magnitude in the case of QG-MAC
dynamos. Analogously, we also identify the cross-overs between
buoyancy and inertia, �IA, and buoyancy and viscous forces, �VA, for
QG-CIA and QG-VAC (Quasi-Geostrophic Viscous-Archimedean-
Coriolis) dynamos, respectively. Hence, we determine the three
following spherical harmonic degrees:

�MA = min
�

(|FLorentz,� − Fbuoyancy,�|
)
, (16)

�IA = min
�

(|Finertia,� − Fbuoyancy,�|
)
, (17)

�VA = min
�

(|Fviscous,� − Fbuoyancy,�|
)
. (18)

For our example cases (see Table 1), the cross-overs are high-
lighted by vertical dashed lines in Fig. 2. The associated length
scales are defined as d⊥ = π /�⊥. Note that none of the investi-
gated models exhibits a first-order QG-VAC balance since we ex-
clude viscous boundary layers from the integration of the forces
and the bulk viscosity is too small to enter the first-order force
balance. Several dynamos close to the onset of dynamo action
feature force balances where the Lorentz force, inertia and buoy-
ancy are of the same order of magnitude. Due to the lack of

separation between the three forces, it does not make sense to
define a cross-over length scale based on one individual force
in such cases. Dynamos featuring a force balance with ill-posed
cross-overs, for example, model C (see Fig. 2c), also do not
allow the determination of a unique relevant cross-over length
scale.

3.2 Convective pattern

To qualitatively analyse the effect of the governing force balance
on the dominant length scale of the convective flow, we turn to the
equatorial planes of the radial velocity of the dynamos, which are
presented in Fig. 4.

In the equatorial planes of both QG-MAC dynamos (models
A and B) one can observe elongated structures of the scale of
the system size despite the large difference in the input parame-
ters (see Figs 4a and b). Since model A is far more supercritit-
cal than model B, it also shows a greater range of length scales
with small-scale features developing close to the outer boundary
(e.g. Sakuraba & Roberts 2009). The equatorial plane of model
C (see Fig. 4c) features a rather abrupt change in the size of
the convective cells as it transitions from large elongated struc-
tures in the interior of the shell to very small scales towards
the outer boundary. Yadav et al. (2016) also observed such lay-
ers of small-scale convection in their simulations at E = 10−6,
which they attributed to a weak Lorentz force in these regions. The
equatorial plane of the multipolar dynamo (model D, see Fig. 4d)
shows mostly small convective scales, which resemble that of non-
magnetic convection due to inertia being much stronger compared
to the Lorentz force (see Fig. 2d; e.g. Gillet & Jones 2006; Gastine
et al. 2016). A gradual decrease of the convective scale with ra-
dius can also be observed in the equatorial plane of the multipolar
dynamo.
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Figure 4. Radial velocity in the equatorial plane for the four simulations highlighted in Fig. 1. The abrupt change of the convective length scale towards the
outer boundary in the equatorial plane of model C (panel c) is highlighted by a dashed circle at radius r ∼ 0.8 ro.

The dominant length scales of these models can be characterized
by the peaks of the poloidal kinetic energy spectra:

�pol = max
�

(
Epol

)
. (19)

Comparison of the cross-over length scales to the observed num-
ber of up- and downwellings, as well as to �pol, shows a satisfactory
agreement for the QG-MAC cases (models A and B). This becomes,
however, more challenging for models C and D due to the overall
smaller convective cells and the additional strong radial dependence
of the length scales. This suggests that analysing the radial depen-
dence of the force balances will help to fully understand how the
cross-over length scales relate to the observed convective scales.

3.3 2-D force spectra

Changes of the convective length scale in the radial direction, like in
the equatorial plane of case C (see Fig. 4c), suggest an underlying
change in the dominant force balance with radius. To quantify this
effect, we introduce a measure of the local forces defined as

F2
� (r ) =

�∑
m=0

F2
�m . (20)

The resulting 2-D force spectra of the dynamo models discussed
above are illustrated in Fig. 5. We exclude pressure and Coriolis
forces from this representation since all investigated models are,
on global scales, quasi-geostrophic at zeroth order, and restrict our
focus on the contributions of first- and second-order forces.
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Figure 5. 2-D force balance spectra of the dynamo models highlighted in Fig. 1. The geostrophic balance formed by pressure and Coriolis force is omitted
since it is on a global scale present in all of the investigated dynamo models. The 2-D force spectra of each model are normalized by the maximum of the
forces excluding the viscous boundary layers. The vertical dashed lines at r ∼ 0.8 ro in panel (c) correspond to the change of the convective length scale that
can be observed in the equatorial plane of model C (see Fig. 4c).

The 2-D spectra of the QG-MAC dynamos (models A and B,
see Figs 5a and b) show a balance between the ageostrophic Cori-
olis force and buoyancy on large scales (small spherical harmonic
degrees) and by the Lorentz force on small scales (large �) for all
radii (excluding viscous boundary layers). In model A the Lorentz
force is very strong throughout the entire volume. Yet, one can ob-
serve a maximum close to the inner boundary from which it tends
to decrease with increasing radius. Model B also displays a strong

Lorentz force throughout the entire shell, however, with a local-
ized maximum towards the outer boundary at intermediate length
scales. Note that buoyancy only slightly depends on radius in model
A, while in model B it is significantly larger in the inner part of the
volume compared to the boundaries. This is expected as the lower
vigour of convection in models with Rayleigh numbers close to the
onset of convection leads to an overall less efficient heat transport,
and therefore to the formation of thick thermal boundary layers.
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In the 2-D force spectra of model C (see Fig. 5c), the ageostrophic
Coriolis force is balanced by buoyancy and Lorentz force for radii r
� 0.8 ro, therefore exhibiting a first-order QG-MAC balance which
explains the elongated flow structures in this portion of the volume.
However, the Lorentz force is overall considerably weaker on small
length scales compared to most QG-MAC dynamos. For larger radii,
we observe a significant decrease of the Lorentz force. Additionally,
inertia and viscosity increase towards the outer boundary. As a
consequence, the ageostrophic Coriolis force is in the outer part
of the shell almost entirely balanced by buoyancy and to a smaller
extent by inertia and viscous forces. Since inertia and viscous forces
are slightly larger than the Lorentz force in this region, the force
balance of the dynamo is close to a QG-CIA/QG-VAC regime which
appears to be the reason for the layer of small-scale convection that
is visible in Fig. 4(c). This change in the governing force balance
depending on the radius also explains why the cross-over length
scale in the fully integrated force balance spectrum is ill-posed for
model C (see Fig. 2c).

In the multipolar dynamo (model D, see Fig. 5d), the ageostrophic
Coriolis force is largely balanced by buoyancy and inertia at all
radii. The Lorentz force remains smaller than inertia throughout the
entire shell, and therefore does never contribute to the first-order
force balance. As a consequence, the dynamo is controlled by a
QG-CIA balance throughout the entire shell.

The 2-D force spectra of all four models show that the viscosity
is predominantly confined to the inner and outer boundaries, which
justifies our decision to exclude the viscous boundary layers when
calculating the integrated forces (see eq. 13). While at E = 10−4

the viscous boundary layers still extend into the shell, they become
very thin at lower Ekman numbers like E = 10−6. At E = 10−4,
both the bulk viscosity and inertia are only about one order of
magnitude smaller than the leading order forces. Hence, they may
still significantly influence the overall force balance. Decreasing the
Ekman number to E = 10−6 leads to the bulk viscosity and inertia
being two to three orders of magnitude lower than the first-order
forces.

3.3.1 Cross-over length scales of 2-D force spectra

The 2-D force spectra further allow us to determine the cross-over
length scales at each radial level. To obtain an idea on how well these
match the convective scale in the equatorial plane, we compare
them to �pol(r). Fig. 6 illustrates the 2-D spectra of the poloidal
kinetic energy for the four example cases, along with the cross-over
length scales linked to the different types of force balances for each
radial level. While it is generally possible to determine the scales at
which the buoyancy-inertia and buoyancy-viscous pairs are of equal
magnitude for nearly all radii, the crossing between buoyancy and
Lorentz force becomes ill-posed in the thermal boundary layers,
where buoyancy is weak. This is especially the case for the strong-
field dynamos that are run at low supercritical Rayleigh numbers
and are therefore only weakly driven, which leads to the formation
of thick thermal boundary layers. In several multipolar dynamos
and dynamos close to the onset of convection it is also not possible
to determine �MA in some parts of the volume, or in a few cases
even the entire shell, because of the Lorentz force being too weak
relative to buoyancy.

Figs 6(a) and (b) show that for both QG-MAC dynamos (models
A and B) �MA is in good agreement with �pol in the bulk of the
volume. In addition, �IA and �VA do not match �pol with the excep-
tion of the viscous boundary layers, where viscosity and therefore

�VA becomes relevant. The separation between the length scales
corresponding to the different force balances is larger in model A
compared to model B since it operates at a lower Ekman number.

For model C (see Fig. 6c), �MA is close to �pol for most of the
interior of the volume. Although close to the inner boundary it is not
possible to determine a relevant crossing as the spectral contribu-
tions of the Lorentz force and buoyancy overlap. This corresponds,
however, only to a small portion of the total volume. For the outer
region �MA starts to deviate from �pol at r � 1.3. Beyond this radius,
�IA and �VA corresponding to a CIA and VAC balance, respec-
tively, start to match the peaks of the poloidal energy better. This
confirms what we observe in the 2-D force spectra (see Fig. 5c),
which revealed a QG-MAC balance in the interior of the shell and a
QG-CIA/QG-VAC regime towards the outer boundary. Hence, the
agreement of the different cross-over length scales with �pol, that
is, the convective length scales, indeed appears to reflect the force
balance at the given radius.

For the multipolar dynamo (model D, see Fig. 6d), �IA fits �pol

best. This is expected since the first-order force balance corresponds
to a CIA balance. Due to the weak Lorentz force it is not possible
to determine �MA for this dynamo.

These results suggest that by quantifying the agreement between
the peak of the poloidal kinetic energy spectra and the harmonic
degrees of the different types of crossings, we can obtain a measure
for the type of force balance that controls the dynamo. Therefore,
we calculate the volumetric relative misfit between �pol and the
crossings �⊥ (�MA, �IA and �VA) using the following formula:

χi =
√

4π

V

∫
r

(
�pol (r ) − �⊥ (r )

�pol (r )

)2

r 2dr , (21)

where i = [MAC, CIA, VAC]. We again exclude viscous boundary
layers. Additionally, we restrict the computation of the misfits of
all three types of crossings to the part of the volume where �MA is
defined. Since the focus of our study is on finding dynamo models
with a force balance relevant to the Earth’s core conditions, a simple
classification in QG-MAC and non-QG-MAC dynamos is sufficient
at first. Therefore, we normalize the misfit that we obtain for the
QG-MAC balance by the one for the next best fitting force balance
(either QG-CIA or QG-VAC), that is,

χnorm = χMAC

min (χCIA, χVAC)
. (22)

This allows us to quantify the discrepancy between the misfit of the
cross-over length scales corresponding to a QG-MAC balance and
the other types of force balances and therefore essentially whether
the dynamo is controlled by a QG-MAC balance or not. Linear inter-
polations of χ norm for the investigated parameter space are shown in
Fig. 7. Comparison of Fig. 7 to the same type of representation for δ

and M (see Fig. 3) shows that in the region of the parameter space
at low Ra/Rac and high Pm, where one can find the strong-field
dynamos, we also observe the smallest values for χ norm, that is, the
best agreement between �pol and �MA. One notable difference is that
δ and M transition generally quite smoothly throughout the param-
eter space from large to small values as indicated by the equidistant
spacing of the contour lines. For χ norm, however, the smaller values
found in the region of strong-field dynamos extend to lower values
of Pm, before decaying rather steeply near the onset of dynamo
action and close to the transition from the dipolar to the multipolar
regime. Therefore, χ norm seems to allow for a better distinction be-
tween the different force balance regimes. Decreasing the Ekman
number gradually extends the boundaries of the QG-MAC regime
towards lower Pm and higher Ra/Rac.
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Figure 6. 2-D-spectra of the poloidal kinetic energy of the dynamo models highlighted in Fig. 1. Each 2-D-spectrum is normalized by its maximum value. The
solid blue line connects the peaks of the poloidal kinetic energy spectra (�pol) for each radial level. The dashed lines are the harmonic degrees of the crossings
in the corresponding force balance spectra; yellow: �MA, scale at which buoyancy and Lorentz force are equal; red: �IA, scale at which buoyancy and inertia
are equal; grey: �VA, scale at which buoyancy and viscous forces are equal. The vertical dashed line at r ∼ 0.8 ro in panel (c) corresponds to the change of the
convective length scale that can be observed in the equatorial plane of model C (see Fig. 4c).

Figure 7. Regime diagrams for Ekman numbers E = 10−4, E = 10−5 and E = 10−6 with linear interpolations of χnorm (eq. 22), with small values of χnorm

corresponding to QG-MAC dynamos and large values to non-QG-MAC dynamos. The symbols are filled with the values computed from the simulation outputs.
The meaning of the symbols is the same as in Fig. 1. The symbols of the models given in Table 1 are highlighted by coloured edges.

4 D I S C U S S I O N

Dynamo action in the Earth’s outer core is expected to be con-
trolled by a balance between pressure, Coriolis, buoyancy and
Lorentz forces, with marginal contributions from inertia and

viscous forces (e.g. Roberts & King 2013). Current numeri-
cal simulations of the geodynamo, however, operate at much
larger inertia and viscosity because of computational limita-
tions. This has led to conflicting interpretations of the classical
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Figure 8. Sketch of the three different force balance regimes attained in
our study independent of the Ekman number. The dashed line marks the
transition between the dipolar and multipolar regimes.

data set, casting some doubt on the physical relevance of these
models.

By performing a systematic survey of the numerically accessible
parameter space, we attempted to provide a better understanding of
the force balances controlling the flow dynamics in dynamo models.
To this end, we resorted to the length-scale-based approach intro-
duced by Aubert et al. (2017) and decomposed the amplitudes of
the forces into spherical harmonic contributions. We extended this
method by additionally looking at the radial dependence of a lo-
cal force balance measure to analyse possible transitions within the
fluid volume. Based on the agreement of the thereby obtained cross-
over scales, that is, scales where three forces are in balance, and the
convective scales, we introduced a measure that allows to categorize
the force balances into three end-member cases. In agreement with
recent studies (e.g. Yadav et al. 2016; Aubert et al. 2017; Schaef-
fer et al. 2017), we find that the majority of the dipole-dominated
dynamos are at leading order controlled by a quasi-geostrophic bal-
ance between pressure and the Coriolis force. The ageostrophic part
of the Coriolis force is then balanced by buoyancy on large scales
and the Lorentz force on small scales. This QG-MAC balance seems
to be very stable throughout the parameter space, with the exception
of boundary regimes. Beyond the transition from the dipolar to the
multipolar regime inertial effects become more significant so that
inertia now balances the ageostrophic Coriolis force at small scales,
while the Lorentz force becomes secondary. The resulting dynamos
are therefore governed by a QG-CIA balance at leading order. Close
to the onset of dynamo action the Lorentz force also falls onto or be-
low the level of inertia and viscous forces. As a result the QG-MAC
balance is lost in these regions for at least parts of the fluid volume.
Therefore, one may refer to these dynamos as QG-Hybrid cases.
These three different force balance regimes are summarized in a
sketch in Fig. 8. Decreasing the Ekman number extends the region
of dynamos controlled by a QG-MAC balance towards lower values
of Pm, while the transition to the QG-CIA regime (the multipolar
regime) moves towards higher supercriticalities.

Analysis of the ‘strong-fieldness’ and the ratio of magnetic and
kinetic energies of the dynamos confirms that the strongest-field
dynamos can be found in the parts of the parameter space with
high Pm and low Ra/Rac as suggested by Dormy (2016). This is
mainly a result of the role of inertia being minimized at low su-
percriticalities. When decreasing the Ekman number, this region
of strong-field dynamos will therefore by construction expand to
larger supercriticalities due to the increase of rotational effects on

the fluid. These strong-field dynamos do indeed approach magne-
tostrophy when considering volume-integrated forces. However, the
introduction of a finer length-scale-dependent force balance analy-
sis revealed that these cases are actually controlled by a QG-MAC
balance comparable to most dynamo models published to date.

Most dynamo models feature a nearly radially independent force
balance. However, in several QG-MAC dynamos a gradual decrease
of the convective scale can be observed towards the outer boundary.
This can be attributed to a smaller Lorentz force in this region (e.g.
Yadav et al. 2016). Yet, it does not involve a change of the leading-
order force balance. However, by lowering Pm dynamos can be
found for which the convective length scale changes very abruptly
from elongated structures in the interior of the shell to small-scale
convection in the outer part. The 2-D analysis of the force balance
spectra showed that for these cases the force balance changed from
a QG-MAC balance in the interior to a mixed QG-CIA/QG-VAC
balance towards the outer boundary. By further decreasing Pm the
QG-MAC balance is gradually lost in larger parts of the volume.
This stands in contrast to a common strategy in dynamo modelling,
which is to decrease Pm as much as possible to approach Earth’s
core conditions (e.g. Sheyko et al. 2016). Our results, however,
show that following this approach may lead to a significant decrease
of the Lorentz force and therefore to the loss of the physically
relevant force balance when getting too close to the onset of dynamo
action. Strategies such as employed by Dormy (2016) and Aubert
et al. (2017), which aim at preserving the governing force balance
when decreasing the Ekman number (by keeping a constant relation
between the control parameters), are immune to this.

Future work should focus on asserting the Ekman number de-
pendence of the boundaries of the different force balance regimes.
It would also be of interest to perform a more in depth analysis of
length scales.
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Table A1. Summary of the relevant parameters of the numerical models that were analysed for this study. All dynamo models have been computed with Pr =
1 and ri/ro = 0.35. Nu is the Nusselt number, Rm the magnetic Reynolds number, fohm the ohmic dissipation fraction and fdip the relative dipole strength as
defined in Christensen & Aubert (2006). �⊥ corresponds to the spherical harmonic degree at which buoyancy and Lorentz forces are of equal magnitude. For
cases where this crossing is ill-posed, or the Lorentz force is of the same magnitude or weaker than inertia and/or viscous forces no value is provided.

Ra Pm Nu Rm � M δ χnorm fohm fdip �pol �⊥ (Nr, �max)

E = 10−4

1 1.500 × 106 12.000 1.40 209.6 8.50 23.9 20.02 0.07 0.60 0.82 5 5.93 (49, 96)
2 1.600 × 106 12.000 1.42 205.2 11.02 32.5 22.07 0.09 0.66 0.84 5 5.57 (49, 96)
3 1.800 × 106 12.000 1.48 203.5 19.24 57.5 28.92 0.03 0.73 0.82 5 4.73 (49, 96)
4 2.000 × 106 12.000 1.60 238.5 25.10 54.3 30.08 0.05 0.73 0.77 5 4.46 (61, 106)
5 2.000 × 106 15.000 1.64 312.1 35.16 55.6 29.32 0.04 0.71 0.72 4 3.46 (65, 128)
6 2.200 × 106 12.000 1.71 267.9 29.87 51.0 29.20 0.03 0.72 0.76 5 4.51 (61, 106)
7 2.400 × 106 5.000 1.63 153.3 3.67 8.1 13.76 0.12 0.52 0.86 6 8.35 (49, 96)
8 2.400 × 106 12.000 1.83 299.8 34.08 46.4 26.44 0.06 0.71 0.74 4 4.51 (61, 106)
9 2.440 × 106 2.000 1.37 66.3 0.03 0.2 0.41 1.03 0.04 0.97 5 — (41, 85)
10 2.750 × 106 12.000 1.99 353.7 38.94 38.0 24.12 0.08 0.70 0.72 5 4.53 (61, 106)
11 2.790 × 106 2.000 1.55 72.3 0.42 1.6 3.47 0.41 0.28 0.93 6 17.32 (41, 85)
12 3.200 × 106 3.000 1.78 120.5 2.12 4.4 10.20 0.1 0.48 0.88 7 9.87 (41, 96)
13 3.200 × 106 7.000 2.07 234.8 21.26 27.5 23.86 0.05 0.71 0.78 6 4.94 (61, 106)
14 3.200 × 106 12.000 2.18 416.0 44.11 31.2 22.06 0.05 0.67 0.69 5 4.61 (61, 106)
15 3.500 × 106 1.000 1.86 46.4 0.45 2.1 2.64 0.48 0.36 0.97 8 23.87 (41, 85)
16 3.750 × 106 1.000 1.97 48.4 0.69 3.0 3.72 0.5 0.44 0.96 7 16.54 (41, 85)
17 4.830 × 106 3.000 2.46 154.8 8.54 10.9 15.17 0.05 0.67 0.86 6 6.70 (41, 96)
18 4.830 × 106 5.000 2.65 263.1 18.52 13.6 17.97 0.08 0.66 0.76 7 5.20 (61, 106)
19 4.830 × 106 9.500 2.80 507.7 43.33 16.2 16.74 0.06 0.63 0.67 5 5.00 (49, 106)
20 4.880 × 106 1.000 2.35 57.8 1.55 4.7 5.57 0.34 0.55 0.96 7 10.92 (41, 85)
21 6.500 × 106 0.500 2.84 43.6 0.49 1.3 1.23 1.29 0.31 0.97 5 — (41, 85)
22 7.500 × 106 0.500 3.25 50.4 0.60 1.2 1.22 1.01 0.31 0.96 6 — (41, 64)
23 7.500 × 106 1.000 3.16 84.6 2.70 3.8 5.01 0.08 0.54 0.95 6 10.91 (41, 85)
24 7.500 × 106 3.000 3.44 249.7 11.87 5.8 10.31 0.1 0.59 0.78 7 8.19 (49, 106)
25 7.500 × 106 9.000 3.64 726.6 53.23 9.2 12.92 0.12 0.56 0.63 6 5.67 (49, 106)
26 7.500 × 106 12.000 3.67 957.0 77.88 10.3 14.16 0.05 0.55 0.60 6 5.30 (65, 128)
27 7.500 × 106 15.000 3.68 1195.4 99.66 10.6 13.38 0.08 0.53 0.58 7 5.08 (65, 133)
28 8.250 × 106 7.000 3.83 622.6 39.97 7.3 11.94 0.09 0.56 0.64 6 6.32 (49, 106)
29 8.500 × 106 0.500 3.64 57.9 0.64 1.0 1.08 1.01 0.29 0.95 7 — (41, 85)
30 1.125 × 107 1.000 4.28 127.0 3.41 2.1 3.58 0.08 0.48 0.91 8 12.29 (41, 85)
31 1.125 × 107 3.000 4.51 366.1 14.37 3.2 6.95 0.15 0.53 0.73 6 8.92 (49, 106)
32 1.125 × 107 5.000 4.59 594.4 29.30 4.2 8.89 0.18 0.53 0.66 7 8.40 (49, 106)
33 1.125 × 107 7.000 4.61 814.6 46.53 5.0 10.36 0.15 0.53 0.62 7 6.78 (61, 128)
34 1.500 × 107 1.000 5.90 227.7 0.49 0.1 0.36 5.48 0.11 0.31 6 — (41, 85)
35 1.500 × 107 2.000 5.41 324.0 9.27 1.8 4.12 0.16 0.47 0.77 12 11.23 (41, 85)
36 1.500 × 107 3.000 5.46 473.0 16.21 2.2 5.45 0.15 0.48 0.71 9 10.38 (49, 106)
37 1.500 × 107 5.000 5.46 757.2 33.83 3.0 6.87 0.19 0.48 0.64 6 8.82 (49, 106)
38 1.500 × 107 7.000 5.47 1038.1 53.11 3.5 7.77 0.16 0.48 0.59 8 8.35 (61, 128)
39 1.500 × 107 9.000 5.45 1309.4 74.79 4.0 8.80 0.14 0.47 0.57 7 8.28 (65, 133)
40 1.500 × 107 15.000 5.38 2108.2 147.91 5.1 9.75 0.12 0.42 0.52 6 6.71 (65, 133)
41 1.750 × 107 1.000 6.53 255.2 0.66 0.1 0.38 6.08 0.12 0.31 6 — (61, 106)
42 1.750 × 107 2.000 6.09 381.5 8.83 1.2 3.28 0.11 0.43 0.75 14 13.01 (61, 106)
43 1.750 × 107 4.560 5.98 785.2 32.62 2.4 6.14 0.19 0.47 0.65 11 8.91 (61, 106)
44 1.750 × 107 8.000 5.96 1327.8 69.66 3.2 7.85 0.15 0.45 0.57 8 8.43 (61, 128)
45 2.100 × 107 2.000 7.21 522.6 4.05 0.3 1.21 1.61 0.26 0.28 6 — (61, 128)
46 2.100 × 107 7.000 6.61 1353.1 63.08 2.4 6.50 0.17 0.45 0.58 6 8.69 (81, 133)

E = 10−5

47 3.300 × 107 5.000 1.83 271.5 3.74 27.4 36.83 0.03 0.75 0.27 8 7.70 (81, 133)
48 3.300 × 107 7.000 1.87 346.2 7.15 42.5 37.42 0.05 0.78 0.75 9 6.79 (97, 133)
49 4.000 × 107 2.000 1.33 104.1 0.09 1.7 3.54 0.67 0.26 0.97 12 31.88 (81, 133)
50 4.000 × 107 7.000 2.12 303.1 23.01 180.8 61.43 0.02 0.88 0.84 6 4.92 (97, 133)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/219/Supplem

ent_1/S101/5480467 by guest on 04 Septem
ber 2019



S114 T. Schwaiger, T. Gastine and J. Aubert

Table A1. Continued

Ra Pm Nu Rm � M δ χnorm fohm fdip �pol �⊥ (Nr, �max)

51 5.000 × 107 1.000 1.52 72.6 0.09 1.8 3.03 0.58 0.33 0.96 14 39.73 (81, 133)
52 5.000 × 107 2.000 1.43 132.9 0.16 1.8 5.10 0.68 0.30 0.87 12 28.63 (81, 133)
53 5.000 × 107 3.000 2.05 240.9 2.21 12.1 23.33 0.06 0.69 0.76 8 10.46 (81, 133)
54 6.000 × 107 5.000 2.81 337.2 26.37 117.5 57.82 0.01 0.87 0.80 7 4.93 (97, 170)
55 7.500 × 107 0.500 2.22 60.8 0.20 2.8 2.96 0.98 0.44 0.90 13 — (81, 133)
56 7.500 × 107 2.000 2.49 194.1 3.27 17.6 33.57 0.05 0.77 0.91 8 8.96 (81, 133)
57 8.000 × 107 1.000 2.46 120.0 0.93 6.5 12.55 0.13 0.63 0.84 10 12.50 (81, 133)
58 1.000 × 108 1.000 3.06 140.5 1.76 9.1 14.19 0.11 0.69 0.91 9 11.10 (81, 133)
59 1.000 × 108 2.000 3.67 225.5 11.35 45.3 36.12 0.09 0.86 0.91 6 6.39 (81, 133)
60 1.000 × 108 3.000 3.90 341.1 21.15 55.4 37.40 0.04 0.85 0.83 6 5.65 (97, 170)
61 1.000 × 108 7.000 4.07 779.9 63.63 74.9 31.72 0.04 0.80 0.75 6 4.96 (97, 170)
62 1.100 × 108 0.200 3.01 39.6 0.07 0.9 0.45 — 0.23 0.99 12 — (97, 170)
63 1.500 × 108 0.200 4.10 51.0 0.19 1.4 0.86 1.41 0.33 0.96 14 — (97, 170)
64 1.500 × 108 0.300 4.28 72.6 0.42 2.4 2.11 0.31 0.44 0.91 13 — (81, 133)
65 1.500 × 108 0.500 4.45 116.9 1.03 3.8 4.54 0.09 0.56 0.90 12 16.08 (81, 133)
66 1.500 × 108 2.000 5.13 346.3 15.87 26.8 29.72 0.04 0.82 0.87 7 7.39 (97, 170)
67 2.000 × 108 0.150 6.31 55.8 0.24 1.2 0.62 3.78 0.34 0.98 12 — (97, 170)
68 2.000 × 108 1.000 6.02 240.4 7.03 12.3 15.42 0.06 0.77 0.94 8 9.60 (97, 170)
69 2.000 × 108 2.000 6.31 451.4 19.88 19.7 24.82 0.05 0.80 0.84 9 8.18 (97, 170)
70 2.000 × 108 5.000 6.57 1107.2 63.20 26.1 24.92 0.05 0.74 0.74 7 6.60 (97, 170)
71 3.000 × 108 0.150 9.90 78.8 0.55 1.3 0.69 2.32 0.43 0.96 13 — (97, 170)
72 3.000 × 108 0.200 9.89 99.3 0.99 2.0 1.33 0.35 0.51 0.96 14 — (97, 170)
73 3.000 × 108 0.300 9.34 136.8 1.70 2.8 2.48 0.1 0.58 0.94 12 15.72 (97, 170)
74 3.000 × 108 0.500 8.43 202.0 3.16 3.9 5.11 0.08 0.65 0.95 12 12.83 (97, 192)
75 4.000 × 108 0.100 12.38 89.3 0.10 0.1 0.22 — 0.19 0.25 7 — (97, 192)
76 4.000 × 108 0.150 12.52 98.8 0.89 1.4 0.84 1.27 0.48 0.97 12 — (97, 192)
77 4.000 × 108 1.000 10.33 432.5 13.02 7.0 9.80 0.07 0.74 0.90 11 9.71 (121, 256)
78 4.000 × 108 2.000 10.55 845.0 30.59 8.6 13.97 0.07 0.73 0.81 10 8.96 (121, 256)
79 5.000 × 108 0.070 14.70 77.9 0.07 0.1 0.16 — 0.17 0.24 7 — (97, 192)
80 5.000 × 108 0.150 14.28 116.8 1.07 1.2 0.87 0.91 0.49 0.97 12 — (97, 192)
81 7.000 × 108 0.200 18.93 236.2 0.86 0.3 0.59 9.28 0.36 0.30 9 — (121, 256)
82 7.000 × 108 0.500 15.35 375.5 8.28 2.9 4.70 0.15 0.68 0.94 11 8.95 (121, 256)
83 7.000 × 108 1.440 15.64 1018.0 27.55 3.8 6.94 0.11 0.68 0.85 12 10.42 (121, 256)
84 7.000 × 108 5.000 15.18 3286.8 131.81 6.2 7.86 0.12 0.56 0.70 9 8.87 (121, 256)

E = 10−6

85 8.000 × 108 2.000 1.37 243.0 0.04 1.5 3.27 0.68 0.23 0.91 39 72.58 (161, 341)
86 1.000 × 109 1.000 1.67 141.9 0.15 7.6 15.12 0.76 0.63 0.81 29 25.77 (161, 426)
87 2.000 × 109 0.150 2.84 57.1 0.04 1.8 0.82 — 0.32 0.93 22 — (161, 341)
88 2.000 × 109 0.250 3.42 97.9 0.14 3.5 3.70 1.33 0.49 0.77 24 — (193, 426)
89 2.000 × 109 0.500 4.93 176.5 1.22 19.8 19.65 0.21 0.82 0.90 17 16.90 (161, 426)
90 2.000 × 109 1.000 4.98 340.9 2.65 22.9 37.09 0.03 0.84 0.92 12 13.22 (193, 426)
91 2.000 × 109 2.000 5.69 525.9 11.74 85.3 83.90 0.02 0.91 0.93 11 8.86 (193, 426)
92 2.800 × 109 0.500 6.98 259.5 1.72 12.8 16.58 0.03 0.78 0.88 18 15.63 (193, 426)
93 5.500 × 109 0.400 12.78 358.0 3.61 11.3 12.36 0.12 0.80 0.88 22 11.07 (289, 426)
94 1.000 × 1010 0.500 20.05 580.9 11.53 17.2 17.52 0.02 0.87 0.94 13 9.64 (321, 512)
95 2.660 × 1010 0.456 41.22 1085.6 30.10 11.8 11.11 0.04 0.90 0.94 11 8.76 (361, 512)
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