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 to the three associated port-Hamiltonian systems. Differential Algebraic Equations are obtained. The strategy proves very efficient to mimic the continuous Stokes-Dirac structure at the discrete level, and especially preserving the associated power balance. Anisotropic and heterogeneous 2D simulations are finally performed on the Lyapunov formulation to provide numerical evidence that this strategy proves very efficient for the accurate simulation of a boundary controlled and observed infinite-dimensional system.

INTRODUCTION

The port-Hamiltonian formalism provides a powerful way to model complex systems, including laws coming from different realms. It is based on the use of physically meaningful quantities, linked through two kind of equations, namely physical laws and constitutive relations. The system it then obtained by interconnecting each domain (mechanics, thermodynamics, electromagnetism, etc.) through their ports, describing the exchange of energy between them. Furthermore, the physical parameters are intrinsically taken into account in the model, allowing for anisotropy and heterogeneity. This formalism highlights an underlying mathematical structure, namely (Stokes-)Dirac structure, that guarantees a balance equation for the Hamiltonian functional: the power balance. The Hamiltonian often describes the physical energy, but other type of functionals can be used.

A recent topic of research is to provide accurate discretization methods (both in time and space) to preserve this powerful formalism, and especially the power balance. Several strategies have been proposed to this aim, as mixed finite element/Galerkin in [START_REF] Golo | Hamiltonian discretization of boundary control systems[END_REF]; [START_REF] Kotyczka | Structured discretization of the heat equation: Numerical properties and preservation of flatness[END_REF]; [START_REF] Kotyczka | Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems[END_REF], finite difference in [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF], finite volume in [START_REF] Kotyczka | Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems[END_REF]; [START_REF] Serhani | Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems[END_REF]. For time-domain discretization, Celledoni and Høiseth (2017) closely examine the question.

In view of these works, it seems that the partitionned finite element method (PFEM), first introduced in Cardoso-Ribeiro et al. (2018), is the most accurate way to proceed in space, as this work will try to prove.

PFEM relies on the fact that Hamiltonian systems in infinite dimension are used to formalize distributed parameters systems, hence including partial differential equations (PDE) given by physical laws. The idea is to write a variational formulation of the pHs, and integrate by parts only one of the equations of the weak form, accordingly with the desired control (it has to "appear" in the boundary term of the integration by parts). Then we use finite element to obtain a finite dimensional pHs, with accurate properties with respect to the infinite-dimensional one. PFEM has been succesfully used on various type of physical systems, such as acoustic pressure waves or plates in Brugnoli et al. (2019b,c); Serhani et al. (2019d).

In the following, the heat equation is considered in a bounded open connected set Ω ⊂ R n , n ≥ 1, with mass density ρ(x), for all x ∈ Ω; -→ n denotes the outward unit normal. We suppose that this domain does not change over time, i.e. we work at constant volume. No chemical reactions are to be found in the domain. The quantities of interest are denoted as: u the internal energy density, -→ J Q the heat flux, T the local temperature, β := T -1 the reciprocal temperature, s the entropy density, -→ J S := β -→ J Q the entropy flux, and C V := du dT V the isochoric heat capacity.

In the companion paper Serhani et al. (2019a), the authors proposed to model the heat equation, controlled and observed at the boundary of the physical domain, by means of three different Hamiltonians. The first two are thermodynamically founded: the entropy and the internal energy, while the third one is less meaningful physically speaking, but enjoys an interesting behavior on a mathematical level. Reference to an equation (X) in this companion paper will be denoted by (I.X) in the present one.

We aim to apply the structure-preserving scheme PFEM to spatially discretize the three systems proposed in Serhani et al. (2019a) modeling the boundary controlled (and observed) heat equation. In the three cases, thermodynamical laws (i.e. constitutive relations) are needed to close the system. However, with the port-Hamiltonian formalism, the discretization of these relations can be postponed after the discretization of the physical laws. They need however to be carefully handled, suitably with the discretization of the port-Hamiltonian system.

The paper is organized as follows. In Section 2, PFEM is applied as a structure-preserving scheme on the three systems of Serhani et al. (2019a), and proves to be accurate for the corresponding Hamiltonians and its power balance. The Lyapunov case is then numerically experimented in Section 3 with 2D simulations to show the efficiency of the method, both on an isotropic and homogeneous case with analytically known solution and on an anisotropic and heterogeneous case. We end the paper with highlights and discussion about the pros and cons of PFEM compared to usual space discretizations.

A STRUCTURE-PRESERVING NUMERICAL METHOD: PFEM

This method is a recent structure-preserving method for pHs, first published in [START_REF] Cardoso-Ribeiro | A structurepreserving partitioned finite element method for the 2D wave equation[END_REF], and more recently developped in [START_REF] Cardoso-Ribeiro | A partitioned finite-element method (PFEM) for power-preserving discretization of open systems of conservation laws[END_REF].

The principle of the method lies on an integration by parts on a partition of the set of equations of the weak formulation of the continuous model, in order to make appear the control in the boundary integral.

Let us begin by a presentation of PFEM on the Lyapunov formulation. The method on the two other formulations will only be sketched, as most of the involved matrices will already be defined.

PFEM for the Lyapunov formulation

To begin with, let us write the weak formulation of (I.14 

     Ω ρfuϕ dx = - Ω div -→ e Q ϕ dx, Ω -→ f Q • -→ ϕ dx = - Ω ---→ grad (eu) • -→ ϕ dx.
Integrating by parts the first line, one gets:

     Ω ρfuϕ dx = Ω -→ e Q • ---→ grad (ϕ) dx - ∂Ω -→ e Q • -→ n ϕ dγ, Ω -→ f Q • -→ ϕ dx = - Ω ---→ grad (eu) • -→ ϕ dx, (1) 
leading to the choice of heat flux contol v

∂ := -- → e Q • - → n | ∂Ω .
Alternatively integrating by parts the second line

     Ω ρfuϕ dx = - Ω div -→ e Q ϕ dx, Ω -→ f Q • -→ ϕ dx = Ω eu div -→ ϕ dx - ∂Ω eu -→ ϕ • -→ n dγ, (2) 
leads to the choice of temperature control v ∂ := e u| ∂Ω .

Assuming three finite-dimensional spaces

X := span{Φ} := span{(ϕ i ) 1≤i≤N }, X := span{ -→ Φ} := span{( -→ ϕ k ) 1≤k≤ -→ N }, X ∂ := span{Ψ} := span{(ψ m ∂ ) 1≤m≤N ∂ }, one can define f u,d (t, x) := Φ (x) • fu(t) := N i=1 f i u (t)ϕ i (x) fu(t, x), -→ f Q,d (t, x) := -→ Φ (x) • f Q (t) := -→ N k=1 f k Q (t) -→ ϕ k (x) -→ f Q (t, x),
and v ∂,d (t, γ) := Ψ (γ) • v ∂ (t) := N ∂ m=1 v m ∂ (t)ψ m (γ) v ∂ (t, γ).
Similarly, we define e u,d (t, x), -→ e Q,d (t, x) and y ∂,d (t, γ) in X , X , and X ∂ respectively.

The discrete weak formulation of (1) on

X × X × X ∂ reads    Mρfu(t) = De Q (t) + Bv ∂ (t), -→ M f Q (t) = -D eu(t), M ∂ y ∂ (t) = Ceu(t), (3) 
with the following definitions

Mρ := Ω Φ • Φ ρ dx ∈ R N ×N , -→ M := Ω -→ Φ • -→ Φ dx ∈ R -→ N × -→ N , M ∂ := ∂Ω Ψ • Ψ dγ ∈ R N ∂ ×N ∂ , D := Ω ---→ grad (Φ) • -→ Φ dx ∈ R N × -→ N , B := ∂Ω Φ • Ψ dγ ∈ R N ×N ∂ , C := ∂Ω Ψ • Φ dγ ∈ R N ∂ ×N ,
where ---→ grad (Φ) means the rectangular matrix of size N ×n, constituted of the gradient of each functions of Φ, i.e.

---→ grad (Φ) := ---→ grad ϕ 1 , • • • , ---→ grad ϕ N .
Note that the mass matrices M ρ , -→ M and M ∂ are obviously symmetric. Furthermore, M ρ discretizes the inner product of L 2 ρ (Ω). Finally, C = B , hence (3) can be rewritten under the classical finite-dimensional pHs form, including the interconnection ports into the structure

M d -→ f d = J d -→ e d , (4) 
with M d a symmetric matrix and J d a skew-symmetric matrix, both of size

N + -→ N + N ∂ . More precisely -→ f d := fu, f Q , -y ∂ , -→ e d := eu, e Q , v ∂ , M d := Mρ 0 0 0 -→ M 0 0 0 M ∂ , J d := 0 D B -D 0 0 -B 0 0 .
Note that the skew-symmetry of J d and (4) imply

-→ e d M d -→ f d = 0. ( 5 
)
Now we want to define the discrete Hamiltonian and provide a discrete version of the balance equation (I.15).

Since

f u (t, x) := ∂ t u(t, x) in L 2 ρ (Ω), this leads to Ω ρ(x)fu(t, x)ϕ(x) dx = Ω ρ(x)∂tu(t, x)ϕ(x) dx.
With the discrete family Φ, this becomes

Mρfu(t) = Mρdtu(t).
(6)

In the same way, e u := u(t,x) C V (t,x) in L 2 ρ (Ω) leads to

Mρeu(t) = M ρC -1 V (t)u(t), (7) 
where M ρC -1

V (t) := Ω Φ • Φ ρ C V (t,•) dx.
Denoting u d (t, x) the discrete counterpart of the internal energy density in X , one can define the discrete Hamiltonian by

H d (t) := 1 2 Ω ρ(x) (u d (t,x)) 2 C V (t,x) dx, leading to H d (t) = 1 2 u (t)M ρC -1 V (t)u(t).
Hence

dtH d (t) = dtu (t)M ρC -1 V (t)u(t) + 1 2 u (t)dtM ρC -1 V (t)u(t).
From ( 6) and ( 7), one immediatly gets

dtH d (t) = fu (t)Mρeu(t) + 1 2 u (t)dtM ρC -1 V (t)u(t).
Since dtM ρC -1

V (t) = -M ρC -1 V (t)dtM -1 ρC -1 V (t)M ρC -1 V (t)
, and ( 7)

gives u (t)dtM ρC -1 V (t)u(t) = -eu (t)MρdtM -1 ρC -1 V (t)Mρeu(t).
The two above equalities and (5) lead to the discrete counterpart of (I.15):

dtH d (t) = -e Q (t) -→ M f Q (t) + v ∂ (t)M ∂ y ∂ (t) - 1 2 eu (t)MρdtM -1 ρC -1 V (t)Mρeu(t). (8)
At this stage, constitutive relations have not been used. Assuming C V to be time-invariant and u = C V T , as in the Dulong-Petit model, leads in a weak sense to

Ω ρ(x)u(t, x)ϕ(x) dx = Ω ρ(x)C V (x)T (t, x)ϕ(x) dx, giving Mρfu(t) = M ρC V dtT (t), (9) 
where

M ρC V := Ω Φ • Φ ρC V dx.
Of course, the definition of e u given by ( 7) then simply becomes

Mρeu(t) = MρT (t). ( 10 
)
Fourier's law (I.5) writes

Ω -→ J Q (t, x) • -→ ϕ (x) dx = - Ω λ(x) • ---→ grad (T (t, x)) • -→ ϕ (x) dx, leading to -→ M e Q (t) = -→ Λ f Q (t), (11) 
where

-→ Λ := Ω -→ Φ • λ • -→ Φ dx ∈ R -→ N × -→
N , which is symmetric by assumption on λ. Hence (8) becomes

dtH d (t) = -f Q (t) -→ Λ f Q (t) + v ∂ (t)M ∂ y ∂ (t), (12) 
the discrete counterpart of (I.16).

Following the same strategy, we obtain the discrete formu-

lation of (2) in X × X × X ∂    Mρfu(t) = De Q (t), -→ M f Q (t) = -D eu(t) + Bv ∂ (t), M ∂ y ∂ (t) = Ce Q (t), (13) 
with the following additional definitions

D := - Ω Φ • div -→ Φ dx ∈ R -→ N ×N , C := B := - ∂Ω -→ Φ • -→ n • Ψ dγ ∈ R -→ N ×N ∂ ,
where div

- → Φ (resp. - → Φ • - → n ) is the (column) vector of size -→
N , constituted of the divergence (resp. the normal trace) of each functions of the family -→ Φ.

Note that it is again possible to write this system under the form (4), with

J d :=   0 D 0 -D 0 B 0 -B 0   .

PFEM for the energy formulation

Now the aim is to discretize the system related to the internal energy U as Hamiltonian, i.e. system (I.11). Its variational formulation reads

             Ω ρfsϕ dx = - Ω div -→ e S ϕ dx - Ω eσϕ dx, Ω -→ f S • -→ ϕ dx = - Ω ---→ grad (es) • -→ ϕ dx, Ω fσϕ dx = Ω esϕ dx.
Practically, it seems legitimate here to control the temperature, and thus integrate by parts the second line

             Ω ρfsϕ dx = - Ω div -→ e S ϕ dx - Ω eσϕ dx, Ω -→ f S • -→ ϕ dx = Ω es • div -→ ϕ dx - ∂Ω es -→ ϕ • -→ n dγ, Ω fσϕ dx = Ω esϕ dx.
Following the same strategy as for the Lyapunov formulation, the following matrix form is computed

     Mρfs(t) = De S (t) -M eσ(t), -→ M f S (t) = -D es(t) + Bv ∂ (t), M fσ(t) = M es(t), M ∂ y ∂ (t) = Ce S (t),
where

M := Ω Φ • Φ dx ∈ R N ×N . ( 14 
)
The pHs form (4) then reads

   Mρ 0 0 0 0 -→ M 0 0 0 0 M 0 0 0 0 M ∂       fs f S fσ -y ∂    =    0 D -M 0 -D 0 0 B M 0 0 0 0 -B 0 0       es e S eσ v ∂    . The discrete Hamiltonian is U d (t) := Ω ρ(x)u d (t, x) dx = u (t)M ρ 1, where 1 ∈ R N is a vector full of ones.
The aim is to show that U d enjoys a similar balance equation as U , i.e. similar to (I.13).

Gibbs formula (I.3) in a weak form reads

Ω ρ(x)∂tu(t, x) dx = Ω ρ(x)T (t, x)∂ts(t, x) dx,
which gives at a discrete level with the pHs variables

dtu (t)Mρ1 = fs (t)Mρes(t). ( 15 
)
From the definition σ :=

---→ grad (β) • -→ J Q , one easily gets that T σ = - ---→ grad (T ) • -→ J S . This leads to Ω T (t, x)σ(t, x) dx = - Ω ---→ grad (T (t, x)) • -→ J S (t, x) dx,
which then reads once discretized, in the pHs variables -eσ (t)M fσ(t) = e S (t) -→ M f S (t). This implies that (5) reduces to es (t)Mρfs(t) = v ∂ (t)M ∂ y ∂ (t). From (15), one gets the discrete counterpart of (I.13), namely:

dtH d (t) = v ∂ (t)M ∂ y ∂ (t).
To close the system, and be able to solve it, we need accurate constitutive relations, according to the physical system under study, as done in the Lyapunov case.

PFEM for the entropy formulation

Now, we discretize the system related to the entropy S as Hamiltonian, i.e. system (I.8). Practically, it seems legitimate here to control the boundary heat flux. In pHs variables, this is exactly the same system to discretize as for the Lyapunov formulation with boundary heat flux control. The difference lies in the definition of e u and -→ f Q . Thus we have again system (13).

The discrete Hamiltonian is S d (t) := Ω ρ(x)s d (t, x) dx = s (t)Mρ1. From Gibbs formula (I.3), as for ( 15), we get dts (t)Mρ1 = fu (t)Mρeu(t). From ( 5):

eu (t)Mρfu(t) + e Q (t) -→ M f Q (t) = v ∂ (t)M ∂ y ∂ (t). Finally, the definition σ := ---→ grad (β) • -→ J Q can be directly discretized by σ (t)M 1 = -f Q (t) -→ M e Q (t).
Hence the discretized counterpart of (I.9)

dtS d (t) = v ∂ (t)M ∂ y ∂ (t) -f Q (t) -→ M e Q (t).

SIMULATION RESULTS

We now test PFEM on 2D examples. Simulations are performed on four cases: with heat flux boundary control or temperature boundary control, both for an isotropic homogeneous case where an analytical solution is known, and an anistropic heterogeneous case. We work with the Lyapunov Hamiltonian H under the hypotheses leading to (12). This choice was made as this is the usual "energy functional" in the applied mathematics literature.

The chosen geometry is the rectangle Ω := (0, 2) × (0, 1).

We propose to use P 2 Lagrange finite element for Φ, RT 1 Raviart-Thomas finite element for -→ Φ and P 2 Lagrange finite element for Ψ. The corresponding degrees of freedom (Dof) are represented on Figure 1. This leads to N = 204 Dof for Φ, -→ N = 470 Dof for Φ and N ∂ = 50 Dof for Ψ. The temperature T is approximated in the basis Φ. The discretization process will lead, either to an ordinary differential equation (ODE), or to a differential algebraic equation (DAE). To perform the simulations, we also need solvers to integrate in time these finite-dimensional differential equations. We use existing libraries to do it, without looking for time schemes which do not add numerical dissipation (as symplectic schemes for ODEs).

The simulations are carried out in Python 3, using FEniCS [START_REF] Alnaes | The FEniCS Project Version 1.5[END_REF]) for the finite element libraries. The time integration for the ODEs is performed with the Runge-Kutta RK45 scheme, and with IDA (SUNDIALS) for DAEs. Note that the resolution of the DAE needs compatible initial data, which can be a drawback. 

Analytical solution

In this case, all the parameters are taken constant equal to one, i.e. ρ = C V ≡ 1, λ ≡ 1 0 0 1 . Let x := x 1 , x 2 and

T (t, x) := 4t + x 2 + 3x 1 -5x 2 . Moreover, define -→ J Q (t, x) := - ---→ grad (T (t, x)) = -2x 1 + 3, 2x 2 -5 . It is clear that ∂tT (t, x) = -div -→ J Q (t, x) = ∆T (t, x), ∀t ≥ 0, x ∈ R 2 .
Let us define the following function as boundary control:

v ∂ (t, γ) :=    5, x 2 = 0, 7, x 1 = 2, -3, x 2 = 1, -3, x 1 = 0, ∀t ≥ 0, γ ∈ ∂Ω. (16) 
Then T defined above is the solution of the following heat equation with boundary heat flux control

∂tT (t, x) = ∆T (t, x), ∀t ≥ 0, x ∈ Ω, T (0, x) = x 2 + 3x 1 -5x 2 , ∀x ∈ Ω, ---→ grad (T (t, γ)) • -→ n (γ) = v ∂ (t, γ), ∀t ≥ 0, γ ∈ ∂Ω. (17) 
The associated observation is then given by

y ∂ (t, γ) =      4t + x 2 1 + 3x 1 , x 2 = 0, 4t + x 2 2 -5x 2 + 10, x 1 = 2, 4t + x 2 1 + 3x 1 -4, x 2 = 1, 4t + x 2 2 -5x 2 , x 1 = 0, ∀t ≥ 0, γ ∈ ∂Ω. (18) 
A straightforward computation gives

H(t) = 16t 2 + 52 3 t + 1301 90 . Hence dtH(t) = 32t + 52 3 . Also Ω ---→ grad (T (t, x)) 2 dx = 256 
3 , and ∂Ω v ∂ (t, γ)y ∂ (t, γ) dγ = 32t + 320 3 , from which one verifies (I.16).

Boundary heat flux control

Equation ( 17) is the prototype of linear parabolic PDE with Neumann boundary condition. Discretizing it by the finite element method is a classical exercise which can be found in any lecture notes on FEM. It only makes use of the family Φ. It gives rise to the following ordinary differential equation (ODE)

M dtT (t) = -AT (t) + L(t), ∀t ≥ 0,
where M is defined in (14),

A := Ω ---→ grad (Φ) • ---→ grad (Φ) dx ∈ R N ×N ,
and

L(t) := ∂Ω v ∂ (t, γ)Φ (γ) dγ ∈ R N .
This gives a first way to simulate T , called ODE-FEM in the sequel.

The second way is to solve the DAE constituted of (3)-( 9)-( 10)-( 11). This method will be refer to as DAE-PFEM.

Finally, after substitutions, the above DAE leads also to the following ODE for the temperature

M ρC V dtT (t) = -D -→ M -1 -→ Λ -→ M -1 D T (t) + Bv ∂ (t),
i.e. using isotropy, homogeneity and the values given to the parameters: M dtT (t) = -D -→

M -1 D T (t) + Bv ∂ (t). We will refer to this method as ODE-PFEM.

Remark that in ODE-PFEM, the matrix D -→ M -1 D is not sparse, contrarily to matrix A in ODE-FEM. One can appreciate on Figure 2 the efficiency of the two PFEM approaches, leading to a relative error of 10 -4 , and still decreasing in time, whereas ODE-FEM seems to grow asymptotically to a relative error close to 10 -1 .

Furthermore, it has to be noted that ODE-FEM and ODE-PFEM have the same size and are integrated in time with the same scheme. Thus, despite the non-sparsity of the finite element matrix D -→ M -1 D leading to an overhead in CPU time and memory storage, there is still some interest in following this approach.

Boundary temperature control Now, the control v ∂ and the observation y ∂ respectively defined in ( 16) and ( 18) are switched, i.e. the heat equation is controlled by a prescribed temperature at the boundary of the domain (y ∂ ) and the heat flux is observed (u ∂ ).

The ODE-FEM approach has now a drawback, since the boundary temperature does not show up when integrating by part the weak formulation of (I.6). Thus, one needs a suitable scheme to impose the boundary control, such as lifting (time consuming since the control is timedependent), or Lagrange multiplier. We use the latter in our simulations.

The DAE-PFEM approach only consists of solving the DAE constituted of ( 13)-( 9)-( 10)-( 11), while substitutions allows again an ODE-PFEM approach

M dtT (t) = -D -→ M -1 D T (t) + D -→ M -1 Bv ∂ (t).
Figure 3 shows again the efficiency of PFEM, but only for the DAE resolution which gives a relative error at the computer precision. Remark that the error for ODE-PFEM, despite is value (10 -13 ) is not better than ODE-FEM. However, in long time, ODE-PFEM also reaches the computer precision while ODE-FEM stands still. 

Anisotropic heterogeneous case

For this case, the parameters are taken to be

ρ(x) := x(2 -x) + 1, C V := 3, λ(x) := 5 + x 1 x 2 (x 1 -x 2 ) 2 (x 1 -x 2 ) 2 3 + x 2 x 1 + 1 .
The initial temperature is taken as a centered Gaussian, such that both temperature and heat flux are null at the boundary. Then a control is imposed either for the heat flux, or the temperature. It is taken to be under the form v ∂ (t, γ) = f (t)g(γ), with f (t) ∼ t t+1 and g(x 1 , x 2 ) = x 1 + x 2 at the boundary.

As an analytical solution would be difficult, not to say impossible, to compute, we compare the L 2 (∂Ω) relative error between the target control, and the effective value at the boundary of the approximation. Boundary temperature control Figure 5 shows that the control is far better imposed with the classical Lagrange multiplier method. This can be explained by the fact that the Lagrange multiplier method strongly imposes the condition, while PFEM approaches weakly impose it.

CONCLUSION AND PERSPECTIVES

To conclude this paper, we summarize what has been done. The heat equation has been written in the pHs formalism, with three different Hamiltonian (Serhani et al. (2019a)). Two of them are thermodynamically founded, namely the entropy and the internal energy, and the third is a weighted L 2 norm, usually used in applied mathematic. PFEM has been applied on the obtained systems and it proves to be an accurate way to spatially discretize them, leading to finite-dimensional pHs. In particular, this leads to an accurate discretization of the chosen Hamiltonian. The main difficulty lies in the discretization of the constitutive relations, which has to be suitably adapted to the discretization of the flows and efforts. We finally perform simulations in 2D, under usual hypothesis (Fourier's law and time-invariant isochoric heat capacity) for the Lyapunov formulation. We show on the one hand, the efficiency of PFEM to simulate the system, first compared to an analytical solution in a simple case, and for an anisotropic heterogeneous case. On the other hand, we observed that solving directly the DAE system seems to be more relevant, although it involves a bigger system, and suitable time schemes.

Some numerical analysis should be made, as this is done in [START_REF] Serhani | Numerical analysis of a semi-discretization scheme for the n-D wave equation in port-Hamiltonian system formalism[END_REF] for the wave equation, leading to an optimal choice for the finite element families.

Furthermore, a deeper investigation of the theoretical relations between the finite-dimensional pHs and the continuous one would be of great benefit, in particular concerning the family of Dirac structures (as function of the mesh size parameter), for a better understanding of the underlying geometrical structures; see e.g. Serhani et al. (2019c).
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