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A B S T R A C T

Metallic implants have some limitations related to bioactivity and bacteria colonization leading to infections. In
this regard, calcium phosphate coatings can be used as carrier for drug delivery in order to improve the men-
tioned drawbacks. The present work proposes the introduction of an antibacterial agent in the course of a pulsed
and reverse pulsed electrodeposition. Calcium phosphate coatings were prepared in 30min using different pulse
waveforms (unipolar-bipolar), current densities (2–5mA/cm2) and temperatures (40–60 °C). Mechanical stabi-
lity of the as-coated surfaces was studied in order to select the optimal electrodeposition conditions.
Subsequently, selected coatings were loaded with an antiseptic agent, chlorhexidine digluconate (CHX), via a
single-step co-deposition procedure. CHX concentration added to the electrolyte was adjusted to 3mM based on
the antibacterial efficacy of the loaded coatings evaluated in vitro with Staphylococcus aureus and Escherichia coli
bacteria strains. Whereas the same chlorhexidine concentration was added to the electrolyte, results showed that
the amount of CHX loaded was different for each condition while release kinetics was maintained. The results of
this work demonstrate that a pulsed co-deposition strategy has great potential to modulate local delivery of
antibacterial agents such as chlorhexidine digluconate, which may prevent early phase infections of metallic
implants after insertion.

1. Introduction

Titanium and its alloys are the materials of choice for most ortho-
pedic and dental applications due to their good biocompatibility with
bone [1]. Poor osseointegration and infection around the implant,
however, can affect its successful implantation. Many strategies have
been proposed to either improve osseointegration or reduce bacteria
colonization on the implant surface [2,3]. Multifunctional coatings,
which can integrate both approaches, are a good option in order to
enhance cell colonization while minimizing bacteria adhesion and
proliferation [4,5]. In this regard, titanium (Ti) implants can be coated
with calcium phosphates (CaP), which are recognized to be bioactive,

and at the same time, this coating can be used as a drug delivery system
[6–9]. Calcium phosphate coatings can be obtained by several techni-
ques, including sol-gel synthesis, electrophoretic deposition, electro-
chemical deposition, plasma spraying and biomimetic process [10–12].
Among these coating processes, plasma spray deposition is the only
technique commercially used for coating implants [13], but it suffers
from certain drawbacks such as coating delamination, lack of uni-
formity and limited control of the layer composition and structure due
to the extremely high temperature processing [14]. Due to those lim-
itations, research has been focused on alternative methods of deposi-
tion.

In recent years, electrochemical deposition (ECD) has gained much
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attention due to the ability to deposit coatings on complex shape sub-
strates at low temperature and with accurate control of the thickness
and chemical composition, and it is relatively cheaper than other pro-
cesses [15]. However, during conventional electrochemical deposition
hydrogen bubbles (H2) are produced at the vicinity of the cathode
acting as a boundary layer which lowers the throughput of the ions. In
order to circumvent this issue, pulsed cathodic electrochemical de-
position has been used for coating titanium substrates [16–19]. Indeed
the relaxation time (time off) between two unipolar pulses reduces the
emission of H2. Furthermore during this period without current, ions
diffusion from the solution to the surface of the cathode is promoted,
thus the uniformity of the ion concentration from the bulk solution to
the cathode is increased [20–23]. As a result, a pulse cathodic elec-
trochemical deposition process could produce coatings with higher
uniformity and less porosity compared to direct current (DC) electro-
deposition methods [24,25]. Moreover, coating adhesion to the tita-
nium surface can be improved by using pulse reverse power. In this
regard, changing the polarity of the current for a short time can pro-
mote the growth of adherent particles from the coated layer [26–28].

Coated surfaces can prevent initial bacterial adhesion by a local
release of an antimicrobial agent [8]. Chlorhexidine digluconate (CHX)
is an antiseptic with activity against a wide of microorganisms, in-
cluding Gram-positive and Gram-negative bacteria, and has a low risk
of associated drug resistance [29]. One of the mechanisms that can
explain its efficacy is based on the adsorption of cationic CHX molecule
to phosphate groups of the bacterial cell wall [30]. CHX can be easily
adsorbed on calcium phosphate coatings by soaking the samples in a
CHX-loaded solution [31]. However, adsorbed CHX may be prone to be
quickly removed by body fluids preventing prolonged drug delivery at
the dose needed to avoid post-surgical infection development.

In order to delay the CHX desorption, it has been proposed to cover
the CHX-loaded surfaces with a lipid layer [29]. Nevertheless, this
hydrophobic layer might also prevent cell adhesion resulting in poor
implant stability and osseointegration. An alternative approach for
loading the antibacterial agent is by co-deposition with CaP, a metho-
dology that incorporates CHX in the CaP coatings by adding CHX to the
electrolyte used in the electrodeposition process [32].

Although many authors have explored the deposition of CaP by
pulse electrodeposition, the present study is focused on the fabrication
of an adherent CHX-loaded CaP coating by using pulsed and reverse
pulsed current, working at low current densities and reduced processing
time (30min). To the best of our knowledge, so far there is no report on
co-deposition of CHX/CaP coatings obtained by pulsed and reverse
pulsed electrodeposition. The effect of temperature and current density
on the morphology as well as on the coating adhesion to the substrate
was evaluated on both unipolar and bipolar current waveforms. Based
on the results, process conditions providing improved layer adhesive-
ness were selected to study the CHX co-deposition. Furthermore, the
drug release profiles were modelled and compared. Finally, in vitro
biological assays were performed to determine both the cell adhesion

and the antibacterial response against S. aureus and E. coli.

2. Materials and methods

2.1. Sample preparation

Samples were prepared from grade 2 titanium (Ti) disks (10mm
diameter, 2 mm thickness) polished with silicon carbide papers from
400 to 1200 grit and finally colloidal silica to obtain a mirror finish
surface. Polished samples were ultrasonically cleaned in acetone,
ethanol and ultrapure water. Before electrodeposition, samples were
treated in NaOH 5M solution for 24 h at 60 °C [33], rinsed with ul-
trapure water and dried in a desiccator.

2.2. Pulsed electrodeposition

Pulsed electrodeposition of calcium phosphate coatings was per-
formed in a solution prepared by mixing 0.042M of Ca(NO3)2·4H2O and
0.025M of NH4H2PO4 with a Ca/P molar ratio of 1.67, at pH 4.2 [34].
The reagents were all analytical grade (Sigma-Aldrich, USA). The
electrochemical deposition was conducted in an individual cell using a
three electrode configuration, in which a platinum electrode acted as an
anode, a saturated calomel electrode (SCE) as reference electrode and
the titanium sample as cathode. Electrodeposition was carried out using
a potentiostat (PARSTAT 2273, Princeton Applied Research, Oak Ridge,
TN, USA) by pulsing the current for 30min. Two different pulse wave
forms were studied: unipolar pulse plating, hereafter termed PP, and
bipolar pulse reverse plating where anodic and cathodic pulses are
mixed, referred to as PRP (Fig. 1).

Different current densities and process temperatures were evaluated
(Table 1).

Then, chlorhexidine digluconate 20% (w/v) (Sigma-Aldrich) was
incorporated into the electrolyte solution at different concentrations:
0.3, 0.6, 1.5, 3, 6 and 12mM, for selected electrodeposition conditions.
After the electrodeposition, samples were removed from the electrolytic
cell, rinsed with distilled water and dried at room temperature [32].

Fig. 1. Schematic representation of unipolar and bipolar pulse waveforms.

Table 1
Electrochemical parameters used for calcium phosphate coatings.

Conditions ion1 (mA/cm2) ton1/toff1 (s) ion2 (mA/cm2) ton2/toff2 (s) T (°C)

PP40_2 2 1/2 – – 40
PP40_5 5 1/2 – – 40
PP60_2 2 1/2 – – 60
PP60_5 5 1/2 – – 60
PRP40_2 2 1/1.6 −4 0.2/0.2 40
PRP40_5 5 1/1.6 −10 0.2/0.2 40
PRP60_2 2 1/1.6 −4 0.2/0.2 60
PRP60_5 5 1/1.6 −10 0.2/0.2 60



2.3. Physico-chemical characterization

The microstructure of the coatings was determined by X-ray dif-
fraction (XRD) using a monochromatic Cu Kα radiation (Bruker D8
Advance Instrument, Germany) at a scan rate of 1°/s, in the 2θ range of
4–80°. The incorporation of CHX was confirmed by micro-Raman
spectroscopy (LabRam Confocal Raman, Horiba Jobin Yvon, UK) with a
532 nm laser, a 600 grating and a ×100 magnification objective.
Spectra were obtained from three scans of 60 s each. Moreover, samples
before and after loading were also analyzed by micro-Raman to observe
changes on the chemical composition.

The surface morphology of the coatings was examined by Zeiss
Neon40 scanning electron microscope (SEM Carl Zeiss NTS GmbH,
Jena, Germany) at a potential of 2 kV. Furthermore, cross-sectional
SEM images of the different calcium phosphate coatings were obtained
for the estimation of coating thicknesses by partially covering the sur-
face of the samples during the electrodeposition.

The average surface roughness (Ra) was measured with a white-light
profiling system WYKO NT9300 (Veeco Instruments, Plainview, NY,
USA) in vertical scanning interferometry (VSI) mode using a 50× ob-
jective lens. Ten measurements were acquired for each sample at dif-
ferent positions.

Fig. 2. XRD diagrams of pulsed electrodeposited coatings: a) PP60_5, b) PP60_2, c) PP40_5, d) PP40_2, e) PRP60_5, f) PRP60_2, g) PRP40_5 and h) PRP40_2.

Fig. 3. Cyclic voltammetry under potentiodynamic conditions [scan rate:
2 mV/s].

Fig. 4. a) CaP coating on titanium by direct current without pulsing, b) PP40_5 condition, c) PRP40_5 condition.



Fig. 5. SEM micrographs showing crystal morphology of calcium phosphate coatings on titanium substrates obtained by pulse plating at 40 °C and 60 °C: a) PP60_5,
b) PP60_2, c) PP40_5 and d) PP40_2 and by pulse reverse plating at 40 °C and 60 °C: e) PRP60_5, f) PRP60_2, g) PRP40_5 and h) PRP40_2. A more detailed view (at
higher magnification) is presented in each inset.

Table 2
Coating thickness and adhesion strength values of different electrodeposition conditions. Samples with the same symbol indicate no statistically differences
(p < 0.05).

Conditions PP40_2 PP40_5 PRP40_2 PRP40_5 PP60_2 PP60_5 PRP60_2 PRP60_5

Thickness (μm) 11 ± 1* 15 ± 1#,& 12 ± 1*,# 17 ± 2&,§ 17 ± 2& 22 ± 1∞ 14 ± 1*,#,& 21 ± 2§,∞

Adhesion strength (MPa) 30 ± 1* 27 ± 3*,# 36 ± 4* 32 ± 1* 35 ± 1* 24 ± 1*,# 29 ± 3*,# 14 ± 9#



The adhesion strength of the CaP coatings to the substrate was
evaluated by tensile test according to the ASTM F1147 international
standard. Briefly, the coated Ti disks were bonded to cylindrical sample
holders with FM 300K epoxy adhesive film (Cytec Engineered
Materials, USA). The epoxy film was cured by heating the specimens up
to 175 °C in 30min and maintaining this temperature for 60min. The
tensile strength test was performed on a universal testing machine
(Microtest MT, Microtest, Spain) at a constant cross-head speed of
2.5 mm/min. Three samples for each coating condition were tested to
obtain average values of the adhesion strength. Coatings with higher
adhesion strength were used to carry out the biological assays.

2.4. Biological characterization

2.4.1. Cell adhesion and coating degradation
Cell adhesion was conducted with Ti disks coated with the previous

selected conditions without CHX. The assay was performed with human
osteoblast-like SaOS-2 cells (ATCC, USA) cultured in McCoy's 5A
medium (Sigma-Aldrich) supplemented with 10% v/v fetal bovine
serum (FBS), 50 U/mL penicillin, 50 μg/mL streptomycin, 20mM
HEPES and 2mM L-glutamine, all from Invitrogen. Seeding was con-
ducted at a density of 2 · 104 cells/well, on triplicate specimens, and
incubated for 6 h in a 48-well culture plate. Cells were lysed with

mammalian Protein Extraction Reagent (m-PER; Pierce, Rockford, IL,
USA). The number of attached cells was quantified by using the cyto-
toxicity detection kit LDH (Roche Applied Science, Germany). The
lactate dehydrogenase (LDH) activity was determined by measuring the
absorbance using a microplate reader (Synergy™ HTX Multimode
reader, USA) at 492 nm and then, a calibration curve was used in order
to obtain the results as cells number. Uncoated Ti samples were used as
controls.

The degradation of the coatings was evaluated by quantifying the
calcium and phosphate ions content on the cell adhesion assay super-
natants (medium in contact with samples). Calcium concentration was
studied by o-cresolphthalein complexone method [35,36]. This tech-
nique is based on the formation of a colored complex with o-cre-
solphthalein complexone in an alkaline medium. Absorbance was
measured at 570 nm (Infinite M200 Pro, Tecan, Switzerland). On the
other hand, phosphate colorimetric assay kit (Sigma-Aldrich) was used
for measuring (650 nm) the amount of phosphate present in the sample
supernatants.

2.4.2. Bacteria growth curves
The antimicrobial activity was tested against gram positive S. aureus

(CCUG 15915, Culture Collection University of Göteborg, Sweden) and
gram negative E. coli (CECT 101, Colección Española de Cultivos Tipo,
Spain). Both bacterial strains were grown and maintained in Brain-
Heart Infusion (BHI, Scharlab, Spain). Before each assay, bacteria were
cultured and incubated overnight. Bacterial growth curve assay was
performed in double-well culture plates [37]. Samples were immersed
in 2mL of diluted bacterial suspension adjusted to an absorbance of
0.02 ± 0.01 at 600 nm (106 colony-forming units (CFU)/mL) using a
photometer (Laxco MicroSpek™ DSM, USA). The absorbance was
monitored for 16 h by measuring absorbance at 600 nm with a multi-
mode microplate reader (Synergy™ HTX Multimode reader, USA).
Medium without bacteria and bacterial suspension were used as nega-
tive and positive controls, respectively.

2.4.3. Agar diffusion test
The diffusion assay was carried out by adding 100 μL of inoculum to

agar and BHI poured into petri dishes. Previously, optical density of
each bacterial suspension (S. aureus and E. coli) was adjusted to
0.20 ± 0.01 at 600 nm, corresponding approximately to 108 CFU/mL.
Triplicates of each condition were placed on the surface of the agar
plates and incubated for 24 h at 37 °C. Untreated titanium samples and

Fig. 6. SEM micrograph of PP60_2 coating cross-section.

Fig. 7. Raman spectra indifferent wavenumber domains of CHX and CHX-loaded coatings: A) CHX in PRP40_2CHX, PP60_2CHX and 20% w/v CHX B) PRP40_2 and
PRP40_2CHX and C) PP60_2 and PP60_2CHX.



coated disks without CHX-loading were used as controls. The result of
inhibition was calculated by measuring the width of the inhibited zone
around each sample.

2.5. In vitro drug release

The drug release was performed by immersing samples loaded with
CHX (hereafter named PRP40_2CHX and PP60_2CHX respectively) in
1mL of Tris(hydroxymethyl)methylamine buffer solution (TRIS, VWR
International Ltd., UK) at physiological pH and 37 °C, under sink con-
ditions [38]. At each time point, solution was withdrawn and replaced
by fresh TRIS. The amount of CHX was determined from a calibration
curve obtained by monitoring the absorbance of known concentration
of CHX in TRIS buffer solution with a UV-spectrophotometer (Shimadzu
model 3600, Tokyo, Japan; λ=254 nm). Triplicates of each condition
were used. Moreover, unreleased CHX was quantified by immersing one
sample of each condition (from the final time point) in 1mL of HNO3

0.1M and then measuring the absorbance of the fully dissolved CHX-

loaded CaP coating using the corresponding calibration curve [29].
These values added to the total released CHX showed the real amount of
CHX loaded into the CaP coating. After release, samples morphology
was studied by scanning electron microscope (SEM, Quanta 450,
Bruker, USA).

CHX release profiles were fitted to different mathematical models
(Korsmeyer-Peppas, Higuchi and Kopcha). Korsmeyer-Peppas model
(KP) can provide insights regarding the limiting drug release me-
chanism. The concentration of drug released was correlated to Eq. (1),
where Mt is the drug amount released at time t, M∞ is the maximum
amount released from the material in these experimental conditions, k
is a constant incorporating characteristics of the network system and
the drug, and n is the released exponent that is indicative of the limiting
transport mechanism. Mt/M∞ was calculated for each specimen and
averaged for each condition using the concentration and time data of
the first 60% of the fractional release in which the equation is valid
[39].

=∞M /M ktt
n (1)

Higuchi model is represented by Eq. (2), where a is the diffusion
constant. This model offers a good correlation with release patterns
where Fickian diffusion is the predominant mechanism [40].

=∞M /M att
0.5 (2)

Kopcha model can be used to study the contribution of the diffusion
(A) and erosion (B) mechanisms. When the ratio A/B is higher than 1,
the contribution of the diffusion is predominant (Eq. (3)).

= +M At Btt
0.5 (3)

Moreover, the release profiles of the two studied conditions have
been compared using the difference factor f1 and the similarity factor f2
from the model independent approach described by the FDA (Food and
Drug Administration) and the EMA (European Medicines Agency). In
Eqs. (4) and (5), n is the number of time points, Rt and Tt are the dis-
solution values of the reference and the batch respectively, at time t
[41].

∑ ∑= ⎡⎣ − ⎤⎦ ⎡⎣ ⎤⎦= ={ }f |Rt Tt| / Rt ·1001 t 1

n

t 1

n

(4)

Fig. 8. a) Cell adhesion of SaOS-2 cells after 6 h of incubation. Statistically significant differences versus control samples are indicated with an asterisk. Evolution of
ionic concentration in the cell culture medium b) calcium ions and c) phosphate ions. Symbols indicate samples with statistically significant differences (p < 0.05).

Fig. 9. Box plot of roughness measurements.
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2
0.5

(5)

The value of these factors should be between 50 < f2 < 100 and
0 < f1 < 15 in order to consider the two release profiles comparable,
as reported by other authors [42].

2.6. Statistical analysis

All data presented in this study are given as mean value ± standard
deviation. At least triplicate samples (n=3) were used for statistical
analysis, except for roughness study where ten samples were analyzed.
One-way ANOVA followed by the Student's test was used to analyze the
significant differences (p < 0.05) between group average values.

3. Results and discussion

3.1. Selection of coating conditions before CHX-loading

Selection of coating conditions was performed with samples without
Chlorhexidine. Electrochemical deposition is based on the pH-depen-
dent solubility of CaP. The pH is increased near the cathode due to the
presence of hydroxyl ions generated by the reduction of water (Eq. (6)
[43]. Consequently, acid-base and precipitation reactions lead to the
formation of different CaP phases depending on the process conditions
(Eqs. (7) and (8)) [20].

+ ⟶ +− −2H O 2e H 2OH2 2 (6)

+ + ⟶+ −Ca HPO 2H O CaHPO ·2H O2
4

2
2 4 2 (7)

+ + + ⟶+ − −8Ca 2HPO 4PO 5H O Ca (HPO ) (PO ) ·5H O2
4

2
4

3
2 8 4 2 4 4 2 (8)

Phase composition of the as-coated samples was studied by XRD
(Fig. 2). The results confirmed the presence of sharp peaks

Fig. 10. Bacteria growth curves a) PRP40_2CHX with S. aureus, b) PRP40_2CHX with E. coli, c) PP60_2CHX with S. aureus and d) PP60_2CHX with E. coli.

Fig. 11. Agar diffusion test of PRP40_2CHX and PP60_2CHX samples against a) S. aureus and b) E. coli. Symbols indicate significant differences (p < 0.05).



corresponding to brushite phase (DCPD, CaHPO4·2H2O, according to
JCPDS n. 72-0713 brushite standard). Furthermore, the presence of
peaks associated with octacalcium phosphate (OCP,
Ca8(HPO4)2(PO4)4·5H2O, according to JCPDS n. 79-0423 octacalcium
phosphate standard) was confirmed. This can be due to an increase of
hydroxyl ions concentration in the electrolyte which promotes the
precipitation of OCP [20,44]. These calcium phosphate phases might
have an influence in bone growth since they are known as precursors of
HA formation [45].

Peaks were also assigned to the alpha titanium substrate (JCPDS
card no. 89-2762). It is noteworthy that the peaks relative intensity can
differ from standard patterns. This is described in the literature to occur
in electrochemical processes due to the favored growth of the crystal
perpendicularly to the substrate surface [46,47].

The microstructure of the coatings was observed by SEM. The
images showed uniform surfaces without the presence of porosity. This
was expected due to the reduction of H2 bubble formation near the
surface of the cathode during the pulse and reverse pulse electro-
deposition [48]. To confirm this effect, a cyclic voltammetry test was
carried out. As shown in Fig. 3, for values under −1.3 V the linear

increase in the cathodic current density evidences the electrolysis of
water and the formation of hydrogen bubbles [49]. The effect of the H2

bubbles is evidenced in Fig. 4a, representative of the CaP coating
achieved on titanium by direct current (DC) without pulsing, in mean
current conditions equivalent to those of samples PP40_5 and PRP40_5.
As a comparison, samples treated in pulsed regimes, either without
reverse pulse (PP40_5, Fig. 4b) or with reverse pulse (PRP40_5, Fig. 4c)
do not show any of the surface defects evident on the DC-treated
sample.

In the SEM analyses shown in Fig. 5, two crystal morphologies are
observed for all treated surfaces: a region composed of large platelet-
like crystals of approximately 30 μm in length and a region composed of
needle-like crystals of around 5 μm in length. The pulse waveform and
current density do not seem to present a significant effect on the coating
morphology. Conversely, the smaller crystals exhibit morphologic dif-
ferences when the temperature of the process is modified. As the tem-
perature is increased, the platelet-like morphology observed at 40 °C
(Fig. 5c, d, g, h) is replaced with a needle-like morphology (Fig. 5a, b, e,
f). This can be attributed to the increased diffusion rate of the ions in
the electrolyte when temperature increases, promoting the nucleation
and growth of needle-like crystals.

Coating thickness of samples obtained in different conditions were
evaluated based on cross-section SEM images, with values ranging from
10 to 24 μm (Table 2).

Results showed that, with increasing temperature up to 60 °C, the
coating thickness increases. This is attributed to change of diffusion and
reaction rate that can promote the layer formation [50]. Correspond-
ingly, the thickness of the deposited films was increased by raising the
current density (Fig. 6). This result was expected since the change of
polarity may act as a stripping time in the PRP cycle, which selectively
redissolve less adhered CaP particles [26].

Adhesion of the CaP coatings to the substrate is of the utmost im-
portance for the implant to function properly in physiological condi-
tions. The adhesion strength for PRP40_2 coating obtained by com-
bining reverse pulses with low temperature and low current density was
about 36 ± 4MPa. Similarly, coatings obtained in PP60_2 conditions
showed an adhesion strength of 35 ± 1MPa (Table 2). Both conditions
exceed the 22MPa in tensile strength required by FDA Guidance for
Metallic Plasma Sprayed Coatings on orthopedic implants [51]. Con-
versely, thicker coatings obtained in PP60_5 and PRP60_5 conditions
present both lower adhesion strength, probably due to coating dela-
mination [11]. According to these results, the best electroplating de-
position conditions were established to be at PRP at 40 °C and 2mA/
cm2 and PP at 60 °C and 2mA/cm2. In this regard, both coating

Fig. 12. Release of CHX from PRP40_2CHX (reversed pulses at 40 °C and 2mA/
cm2) and PP60_2CHX (pulses at 60 °C and 2mA/cm2).

Table 3
Parameters obtained from Korsmeyer-Peppas, Higuchi and Kopcha modelling of
PRP40_2CHX and PP60_2CHX release curves.

Korsmeyer-Peppas model Higuchi model Kopcha model

n R2 a R2 A/B R2

PRP40_2CHX 0.422 0.998 0.074 0.996 ≫1 0.997
PP60_2CHX 0.250 0.991 0.056 0.949 ≫1 0.951

Fig. 13. SEM micrographs of PRP40_CHX coating a) before and b) after 15 days of release test in TRIS buffer.

Table 4
Factors of difference and similarity of PRP40_2CHX and PP60_2CHX conditions.

PRP40_2CHX/PP60_2CHX Specifications

f1 14.5 0–15
f2 53 50–100



difference could be probably due to the effect of the reverse pulses
which may present a higher increase of the pH at the vicinity of the
cathode. For that reason, PRP40_2CHX condition may reduce the so-
lubility of CHX which will result in a higher concentration of CHX in the
coating [32]. These results are in accordance with the major anti-
bacterial activity observed by PRP40_2CHX condition, which is 13%
greater against S. aureus and 47% for E. coli (Fig. 11).

Cumulative release of CHX from the coated specimens was studied
(Fig. 12). PP60_2CHX presented a burst release of CHX and showed the
fastest release for the first 48 h, during which 61 ± 7% of the drug
loaded was released. The stationary state was reached after 7 days. The
drug released by PRP40_2CHX also presented a burst release for the first
8 h, although less pronounced than for PP60_2CHX. At this time point,
the amount of CHX released was 28 ± 4%. After 3–4 days, the
PP60_2CHX profile presented a less pronounced increase compared
with PRP40_2CHX. These drug delivery systems provided a CHX sus-
tained release compared with antibiotic loaded by conventional dipping
method, since in the last case more than 80–90% of the antibiotics are
released from calcium phosphate coatings within the first hour [56].

To characterize the release mechanism, the amount of drug released
from each coating group was fitted with the different model equations
(Table 3). Resulting squared multiple correlation coefficient R2 showed
that all studied models provided a better goodness of fit for
PRP40_2CHX condition. For KP model, the value of n lower than 0.5,
especially for PP60_2CHX showed that pseudo-Fickian diffusional me-
chanism controlled the release of drug from coating [57].

Considering the dissolution of the coating observed by SEM at the
end of the release studies (Fig. 13b), it was necessary to deepen the
investigations and understanding of the mechanisms of drug release
using other models as those proposed by Higuchi and Kopcha.

The A/B ratio obtained in the Kopcha model showed that if erosion
phenomena exist, it is the diffusion mechanisms that prevail and lead to
the release of chlorhexidine [58]. This information is confirmed by the
results obtained with the Higuchi model. This model also showed that
by ignoring the first hour of release (burst effect), the coefficient of
Higuchi is higher for PRP40_2CHX than for PP60_2CHX showing a
faster release for PRP40_2CHX.

Despite the differences in the release kinetic profiles of
PRP40_2CHX and PP60_2CHX, the statistical factors f1 and f2, showed
that the two kinetic profiles are statistically similar since f1 < 15 and
f2 > 50 (Table 4).

4. Conclusions

In this work, adherent calcium phosphate coatings loaded with CHX
have been obtained by a one-step electrodeposition process on titanium
substrates. The presence of DCPD and OCP was confirmed by XRD and
Raman analyses. In addition, the presence of different phases in the
coating can allow tuning its stability and resorption properties.
Moreover, the amount of loaded-CHX can be modulated by adjusting
the coating conditions without altering the release kinetics. Although
erosion of the coating was observed after 14 days in a buffered solution,
CHX is predominantly released by diffusion mechanism. This study also
showed that CHX co-deposited with CaP did not alter the antimicrobial
agent since both coatings exhibited a noteworthy in vitro antibacterial
activity against S. aureus and E. coli.
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conditions were selected for incorporating CHX and studying drug re-
lease and biological response.

3.2. Presence of chlorhexidine

Coatings loaded with 3 mM of chlorhexidine added in the electro-
lyte were analyzed by Raman spectroscopy. For both coated surfaces, 
the incorporation of CHX was confirmed by the presence of a sharp 
peak at 1597 cm−1 in the Raman spectrum due to the C]C stretching 
of aromatic ring (Fig. 7A) [52]. Raman spectra also confirmed the 
presence of OCP (958 cm−1, 967 cm−1) for both coating conditions and 
DCPD (986 cm−1) for PP60 [53]. Moreover, loaded CHX has no sig-
nificant effect on the phase composition of the coatings (Fig. 7B and C).

3.3. Biological assays

3.3.1. Cell adhesion
Cell adhesion was studied for PRP40_2 and PP60_2 conditions in 

order to evaluate the cell attachment on coated surfaces without CHX 
(Fig. 8). Both coating procedures enhance cells attachment to the sur-
face after 6 h of incubation. A significant difference was observed in 
cells attached on PP60_2 and PRP40_2 surfaces compared to titanium 
control. Topography and surface roughness were shown to affect os-
teoblast-like cell adhesion (Fig. 8a). In this regard, PP60_2 had the 
highest surface roughness (Ra = 3.32 ± 0.39 μm) compared with that 
of PRP40_2 sample (Ra = 2.07 ± 0.48 μm). In addition, both results 
contrasted with the roughness of raw titanium samples 
(Ra = 38.3 ± 4.5 nm) (Fig. 9). The increase of the average surface 
roughness for CaP-coated titanium may contribute to favor cell at-
tachment [54]. Supernatant medium in contact with coated samples 
revealed a lower concentration of calcium ions compared with the in-
itial medium and the medium after contact with Ti samples (Fig. 8b). 
However, phosphate concentration is quite stable, which could indicate 
that a process of dissolution and reprecipitation is taking place (Fig. 8c).

3.3.2. Bacteria growth curves
In order to adjust the CHX concentration that should be added to the 

electrolyte solution, bacteria growth curves were studied in presence of 
increased CHX concentrations (Fig. 10). For PP60_2CHX, CHX con-
centrations in the electrolyte above 0.6 mM for S. aureus and 3 mM for 
E. coli were needed to inhibit bacteria growth. In contrast, PRP40_2CHX 
required a lower concentration of CHX to prevent bacteria proliferation. 
These results allowed determining that 3 mM was the minimal CHX 
concentration in the electrolyte needed to avoid bacteria growth.

3.3.3. Agar diffusion test
In vitro antibacterial activity of coated titanium disks with co-de-

posited CHX was evaluated by measuring the width of the inhibition 
zone around the samples (Fig. 11). All coated samples with CHX con-
centrations in the electrolyte above 3 mM displayed antibacterial ac-
tivity for both bacteria strains. These findings are in accordance with 
results obtained for the bacteria growth curves assay. Results also re-
vealed that CHX was more active against Gram-positive bacteria than 
Gram-negative bacteria which is in conformity with literature [55]. 
Compared with Gram-positive bacteria, Gram-negative bacteria have 
an outer cell wall membrane that should probably increase its re-
sistance to physical disruption and reduce susceptibility to CHX [30]. In 
line with the obtained results, the CHX concentration that should be 
incorporated in the electrolyte solution was chosen equal to 3 mM.

3.4. In vitro drug release

Even if the CHX concentration added to the electrolyte was the same 
for both conditions (3 mM), the total amount of CHX co-deposited was 
found to be higher for PRP40_2CHX samples (45 ± 19 μg/mL) com-
pared to that for PP60_2CHX condition (14 ± 4 μg/mL). This
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