
HAL Id: hal-02278298
https://hal.science/hal-02278298v1

Submitted on 4 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BB-RTE: a Budget-Based RunTime Engine for Mixed
and Safety Critical Systems

Sylvain Girbal, Jimmy Le Rhun

To cite this version:
Sylvain Girbal, Jimmy Le Rhun. BB-RTE: a Budget-Based RunTime Engine for Mixed and Safety
Critical Systems. ERTS 2018, Jan 2018, Toulouse, France. �hal-02278298�

https://hal.science/hal-02278298v1
https://hal.archives-ouvertes.fr


BB-RTE: A BUDGET-BASED RUNTIME ENGINE
FOR MIXED & TIME CRITICAL SYSTEMS

Sylvain Girbal
Thales Research & Technology

Palaiseau, France
sylvain.girbal@thalesgroup.com

Jimmy Le Rhun
Thales Research & Technology

Palaiseau, France
jimmy.lerhun@thalesgroup.com

Abstract—The safety critical industry is considering a shift
from single-core COTS to multi-core COTS processors for safety
and time critical computers in order to maximize performance
while reducing costs.

In a domain where time predictability is a major concern due
to the regulation standards, multi-core processors are introducing
new sources of time variations due to the electronic competition
when the software is accessing shared hardware resources, and
characterized by timing interference.

The solutions proposed in the literature to deal with timing
interference are all proposing a trade-off between performance
efficiency, time predictability and intrusiveness in the software.
Especially, none of them is able to fully exploit the multi-
core efficiency while allowing untouched, already-certified legacy
software to run.

In this paper, we introduce and evaluate BB-RTE, a Budget-
Based RunTime Engine for Mixed & Safety Critical Systems,
that especially focuses on mixed critical systems. BB-RTE aims at
guaranteeing the deadline of high-critical tasks 1) by computing
for each shared hardware resource a budget in terms of extra
accesses that the critical tasks can support before their runtime is
significantly impacted; 2) by temporarily suspending low-critical
tasks at runtime once this budget has been consumed.

I. INTRODUCTION

Safety-critical applications are usually characterized by
stringent real-time constraints, making time predictability a
major concern with regards to the regulation standards [11],
[12], [18] of the safety-critical and time-critical industries.

The industry is nowadays considering a shift from single-
core COTS (component off-the-shelf) to multi-core COTS
processors for safety-critical and time-critical products. Such
a shift is appealing both in terms of performance as well as in
terms of size, weight and power (SWaP) [4]. It also fits with
the exponential growth in terms of performance requirements
in the embedded domain.

However multi-core processor architectures are introducing
new sources of time variations, and the solution providers
can no longer rely on resource over-provisioning to enforce
time predictability. As a consequence, the industry is facing a
trade-off between performance and predictability [14], [16]. As
depicted in Figure 1, multi-core processors are characterized
by shared hardware resources such as some levels of caches,
the interconnect, the main memory or I/O controllers.

At hardware level, concurrent accesses on theses resources
are arbitrated, introducing jitter at application level defined as

core L1
cache

core L1
cache

core L1
cache

core L1
cache

L
2
sh
ar
ed

ca
ch

e
L
2
sh
ar
ed

ca
ch

e

in
te
rc
o
n
n
ec
t

DDR
Memory

I/O

x

x

x

Fig. 1. Timing Interference in multi-core architectures

timing interference [8]. Such interference, caused by elec-
tronic competition on shared hardware resources, are breaking
the timing isolation principles required by the regulation
standards [11], [12], [18] of time-critical software.

Several papers [5], [17] have studied the impact of timing
interference on the Worst-Case Execution Time (WCET). Their
authors have shown that not trying to tackle the interference
problem leads to a performance loss for worst-case that can
go far beyond the expected performance gain of using a multi-
core processor.

In a survey on Deterministic Platform Solutions [7]
the authors presented various solutions allowing some level
of time-deterministic usage of non-deterministic hardware
platforms. Two families of solutions are presented: control
solutions that aim at eliminating all interference by restricting
the usage of the hardware platform, and regulation solutions
that are focusing on keeping the impact of timing interference
below a harmful level.

By introducing over-provisioning or complex runtimes,
control solutions such as Marthy [13] or deterministic adaptive
scheduling [6] fail to efficiently exploit the multi-core perfor-
mance. Other solutions relying on execution models restrict
too much the usage domain. For instance, The AER model [8]
is easily applicable to distributed memory systems but lacks
strong guarantees with regular shared memory systems.

Regulation solutions, on one hand, offer a better per-
formance efficiency but lack the strong guarantees required
by domains such as avionics. On the other hand they are
perfectly adapted to less critical environments such as mixed-
critical systems where high-critical tasks are running conjointly
with low-critical tasks. In such systems, regulation solutions



offer the possibility to degrade low-critical tasks to guarantee
the timing behavior of high-critical tasks. To provide time
guarantees, regulation solutions usually rely on budgeting the
time with early deadlines or shifting time windows [15].

In this paper, we present the Budget-Based RunTime
Engine: a regulation solution relying on budgeting the number
of shared hardware accesses to guarantee time properties.
This is somehow similar to Memguard [21], [19] that pre-
allocate application bandwidth requirement in term of memory
accesses, but BB-RTE is especially focusing on the number of
accesses, is extended to every shared hardware resource in the
processor, and is performed per timeslot instead of as a whole.

To be able to do so, first we perform at design time an
automatic standalone characterization of the critical applica-
tions to figure out the available budgets; and second we rely
on this budget to take scheduling decision about non-critical
applications at runtime.

The paper is organized as follows: The principles of BB-
RTE are presented in Section II and the full characterization
and monitoring process is presented in Section III. In Section
IV, we present the hardware target we considered, as well
as the monitoring facilities we relied on. The mixed-critical
software prototype is presented in Section V with its asso-
ciated timing requirements. Finally, Section VI proposes an
evaluation of the full process associated with the Budget-Based
Runtime Engine, followed by a conclusion section.

II. BUDGET-BASE RUNTIME ENGINE: PRINCIPLES

The principles of the approach consist in determining,
per timeslot, a maximum budget to allocate to low-critical
applications in terms of resource accesses. When this budget
is spent, low-critical applications are suspended until the next
timeslot, as depicted in first timeslot of Figure 2.

timefirst timeslot second timeslot

Hi-Critical

guaranteed
deadline

Hi-Critical

guaranteed
deadline

Lo-Critical Lo-Critical%
suspended after spending

maximum budget

!
completed below
maximum budget

budget

time

cu
m

u
la

ti
ve

a
cc

es
se

s budget

time

cu
m

u
la

ti
ve

a
cc

es
se

s

Fig. 2. BB-RTE Principles

The budget is computed per timeslot and per hardware re-
source to ensure that the critical applications will be matching
their deadline in each particular timeslot.

During the second timeslot of Figure 2, the low-critical
applications manage to terminate without spending the whole
allocated budget, again guaranteeing that the critical applica-
tions will match their deadlines during this timeslot.

With such a process based on budgeting, the major chal-
lenge consists in determining the budgets that guarantee the
time behaviour of high-critical applications.

III. PROCESS TO DETERMINE AND ENSURE BUDGETING

The process to determine resource budgeting, depicted in
Figure 3, is performed with two major steps.

First, both the architecture and the high-critical applications
are characterized in an offline characterization step with
regards to every hardware resources 1) to determine the total
available resource budget; 2) to quantify the resource require-
ments of the high-critical task; 3) to figure out the maximum
level of extra accesses to the resource before hampering the
high-critical tasks.

Second, in a runtime regulation step, from the charac-
terization information is inferred the maximum number of
resource accesses allowed for non critical tasks, these tasks
being suspended by a Budget-Based RealTime Engine once
they reach this maximum number of total access during a given
time slot.

A. Hardware characterization & budgeting

As introduced in Figure 3, in the first sub-step of the offline
characterization phase, we perform a characterization of the
target hardware platform. This hardware characterization con-
sists in defining a set of low-level (assembly code) Stressing
Benchmarks. Each of these stressing benchmarks is responsible
for stressing a particular hardware resource of the selected
multi-core target, by multiplying the number of accesses to
this particular resource.

By progressively stressing each resource while monitoring
both the execution time and the effective number of access to
this resource thanks to Performance Monitor Counters (PMC)
[20], we are able to determine the maximum available band-
width in terms of access to this resource, and that corresponds
to the total available budget for the resource.

By iterating over all the potentially shared hardware re-
source, we obtain a vector of such total budgets that fully
characterize the hardware limitations of the selected platform.

B. Critical application characterization & budgeting

During the second characterization sub-step of Figure 3, we
are characterizing the usage made by high-critical applications
of the shared hardware resources. To do so, we run the high-
critical applications concurrently with the stressing bench-
marks described above, progressively increasing the stressing
level, and only monitoring the effect in terms of runtime of
the high-critical applications.

It allows us to extract two different kinds of information:
First the required per-resource budget needed by our high-
critical applications; and second, the level of extra resource
access supported by our high-critical applications before being
significantly slowed down. This supported extra accesses is
the access budget that can be safely used by the low-critical
applications.

The process to determine the acceptable level of slow-
down and the associated extra access budget is depicted in
Figure 4. The y-axis represents, during the current timeslot,
the maximum observed runtime of the monitored application.
The x-axis represents the extra access load performed on the
associated hardware resource by the stressing benchmarks.



Platform
Characterization

Critical Applications
Characterization

Non-Critical
Applications Monitoring

Budget-based
Regulation Engine

offline phase determining budgets online phase performing regulation

Hardware
Platform

Critical
Applications

Non Critical
Applications

Stressing
Benchmarks

Total Avail-
able Budget

Required
Budget

Supported
Extra Budget

Monitored
Load

Fig. 3. Timing integrity process for mixed time-critical systems

0

cr
it
ic
al

m
ax
im

u
m

ru
n
ti
m
e

extra load

max standalone runtime

acceptable overhead

available budget for non-critical

Fig. 4. Determining an acceptable level of slowdown and the associated extra
access budget

The leftmost point in the chart corresponds to the applica-
tion running alone in isolation (with a null stressing benchmark
activity). It therefore corresponds to the classical WCET of
the application running in isolation. The rightmost point in
the chart corresponds to a permanent maximum load from
the stressing benchmark actually preventing the monitored
application to access the required resource.

Selecting an acceptable level of slowdown and the as-
sociated extra access budget is performed by selecting a
point on the chart. The projection of this point on the y-
axis then corresponds to the acceptable level of slowdown
and the projection on the x-axis directly provides the extra
access budget available for non-critical applications with an
acceptable impact on critical applications.

We used two different techniques to select this point: First
by directly selecting a maximum acceptable slowdown, but
doing so for every hardware resource led us to too much over-
provisioning, failing to fully exploit the multi-core efficiency.
Second, we defined a maximum slope for the curve. This
second solution allowed us to vary the level of slowdown
relatively to the shape of the curve, focusing on the hardware

resources the high-critical application was the most sensitive
to.

By repeating this procedure for each shared hardware
resource, we obtain again a budget in the form of a vector of
both the required amount of access by the critical application
(the leftmost point of the curve) and the number of supported
extra access (the selected point of the curve).

Characterization steps involve large-scale experimentation
due to the limited monitoring resources of multi-core proces-
sors. These architectures usually propose from tens to hundreds
of hardware events that can be monitored, but only allow
to monitor a few PMC at a given time (6 for ARM-v8
architectures for instance). As a consequence, testing all the
countable PMC events involves many days of experimentation,
and this characterizations phases have to be performed off-line.
Anyhow this characterization only needs to be performed once
per critical application for a particular hardware target, and
such a characterization could also provide useful informations
for the qualification or certification documents.

C. Budget-Based RunTime Engine (BB-RTE)

Once the characterization phases are over and all budgets
have been gathered, both high-critical and low-critical applica-
tions can be deployed on the hardware target together with the
runtime engine. As shown in Figure 3, the online regulation
phase happens during the execution and consists in two sub-
steps.

First, using the same process as the characterization phases,
the low-critical applications are monitored with PMC counters,
this time not to compute a budget, but to monitor the load in
terms of hardware resource accesses.

Second, the BB-RTE runtime engine compares this load
with the maximum extra budgets to decide if, during the
current timeslot, non-critical task may continue executing or
if they need to be suspended until the next timeslot. Doing
so makes sure the slowdown of critical tasks does bot hamper
their ability to match their deadlines.

One of the specific challenge of the BB-RTE runtime
engine for time-critical systems is that time intrusiveness of



the associated monitoring features has to be kept minimal,
not to bias the time characterization results. Also the BB-
RTE itself should make a minimal usage of shared hardware
resources to not impact the resource access budgets. The final
intrusiveness footprint of both the monitoring features and the
BB-RTE engine will be presented in the result section.

IV. EXPERIMENTAL SETUP

The BB-RTE engine has been developed on top of PikeOS
[1] which is both a hypervisor and a real-time operating system
relying on partitioning.

We relied on the METrICS toolsuite [9] to perform the
characterization steps and implemented the runtime engine as
a native PikeOS partition, altering the scheduling in real-time
as the monitoring information is gathered.

A. Target Architecture

The results presented in the Section VI of the paper were
evaluated on an ARM Juno board [3] embedding a big.LITTLE
architecture composed of a cluster of 2 high-performance
Cortex A72 cores and a cluster of 4 more predictable Cortex
A53 cores. The block diagram of the architecture is presented
in Figure 5.

CoreSight
(Debug &

Trace)

System
Control

Processor

Mali
T624
GPU

CoreLink
MMU-400

USB 2.0
EHCI

NIC-400 Interconnect

Fig. 5. Simplified block diagram of the ARM Juno Board

The highlighted parts in the figure correspond to the shared
memory path from the cores towards the main memory that
are prone to timing interference. Other initiators like the MALI
GPU, the PCI express links and the DMA controllers can also

create contention on these shared resource, but for this paper
we will only focus on memory contention from the cores.

Alongside this memory path, the shared hardware resource
are: The shared L2 cache that is shared by all the cores
of each cluster. The CCI-400 cache-coherent interconnect
(a high-bandwidth crossbar interconnect combining routing
and coherency functions), and two DDR3 controllers served
through the AMBA-compliant DMC-400 memory controller.

TABLE I. JUNO BOARD MEMORY STRUCTURE SIZES

A72 cluster A53 cluster
Number of cores 2 4
IL1 cache size 48KB 32KB
IL1 cache line size 64B 64B
IL1 associativity 3 2
DL1 cache size 32KB 32KB
DL1 cache line size 32B 64B
DL1 associativity 2 4
L2 cache size 2MB 1MB
L2 cache line size 64 64
L2 associativity 16 16

The sizes of the memory structures alongside this path are
presented in Table I. This information will be useful when
trying to design stressing benchmarks dedicated at stressing a
particular hardware resource.

B. Monitoring facilities

In Section III, we stated that the budget characterization is
performed by using Performance Monitor Counters (PMCs).

The ARM-v8 architecture includes a Performance Monitors
Unit (PMU), a non-invasive resource primarily used for debug-
ging that provides information about the internal operations in
the core. It includes a 64-bit cycle counter and 6 performance
monitor counters able to count the occurrence of around 60
different events.

Among these events we selected a subset of 13 events
that correspond to either private or shared hardware resource
composing the memory path, listed in Table II. The description
appearing in the table is the level of details provided by the
documentation on each countable event.

TABLE II. HARDWARE EVENTS MEASURED WITH PERFORMANCE
MONITOR COUNTERS

Performance counter Counting
inst retired Instruction architecturally executed
cpu cycles Cycles
L1I cache Level 1 instruction cache access
L1I cache refill Level 1 instruction cache refill
L1D cache Level 1 data cache access
L1D cache refill Level 1 data cache refill
L1D cache wb Level 1 data cache write-backs
L2D cache Level 2 cache access for data
L2D cache refill Level 2 cache refill for data
L2D cache wb Level 2 cache write-backs for data
bus access Bus access
mem request Memory access
prefetch Linefill because of prefetch

A trial and error experimental process was therefore nec-
essary to understand the exact meaning of each of these



counters. inst_retired corresponds to the number of
executed instructions whereas cpu_cycles corresponds to
the number of CPU cycles measured so far. Therefore the
ratio of the two correspond to the regular instruction per
cycle (IPC) measurement commonly used to determine an
application performance.

The events L1D_cache, L1I_cache and L2_cache
indicate the number of accesses to the L1 data cache, L1
instruction cache and L2 cache by load/store requests respec-
tively. The refill counterparts indicate how many time a
cache line was obtained from a higher memory structure (e.g.
the number of time a cache line was provided to the L1 cache
by the L2 cache) so it is a good measure of the cache misses
that indicates that a higher memory level in the datapath is
accessed.

The write-back counterparts indicate how many time a
modified cache line was written back to higher level memory
so that the local cache line could be freed to fit a new data.
This write back traffic, not appearing directly in the source
code could be a significant part of the memory traffic.

The events bus_request and mem_request are re-
spectively counting the requests on the local bus connecting
core and caches, and the number of requests leaving the core
to be send to the CCI-400 interconnect. This local bus traffic
does not only correspond to memory accesses in the code, but
also to instruction fetches and to the coherency traffic.

Finally, prefetch indicates the number of time a cache
line of the L2 cache is filled due to an automatic hardware
prefetch of the cache line. This feature has proven to be very
problematic for our stressing benchmarks later presented in
this section as the prefetching was limiting the stress level, as
shown in the evaluation section of the paper.

Some of the other hardware resource appearing in Figure 5
also provide some debugging support, but the documentation
if often lacking or only available under NDA, and restricted to
third-party providers of debugging probes such as Lauterbach.
We definitely want to monitor these SoC-level events in the
future, but we considered them out-of-scope for this paper.

C. Target Environment

In order to measure precise execution times and to sample
hardware performance counters, we used our Measurement
Environment for Time Critical Software (METrICS). Its main
concept is to sample performance counters (including the
cycle-count register) with a very short timing overhead, before
and after the code sequences to monitor.

The METrICS toolsuite is composed of several elements:
a kernel driver used to configure the hardware performance
counters (as this requires privileged instructions), a library
providing measurement probes to the application, and a Collec-
tor performing various initialization and transmission of mea-
surement results. We heavily modified this latter component
to include the part corresponding to the Run Time Engine.
In addition, the METrICS suite includes host-side scripts and
tools for measurement campaign automation, post-processing
of raw data, and visualization.

The latency of a METrICS probe has been evaluated to
be less than 392ns at worst. This whole probe thus has a

comparable latency to a system call, and is precise enough
considering the millisecond deadlines we have in the mixed-
critical prototype presented in Section V.

The initial behaviour of the collector component was to
run out of the monitored application operational cycles, to
minimize the impact it had on the application timings. More
precisely, it was 1) performing initialization and performance
counter selection prior to running the monitored applications,
2) being completely suspended during the application oper-
ational cycles, 3) being activated again at the end of the
application to dump the collected data to the host.

As appearing on Figure 6, we transformed in the BB-RTE
context the collector component into the runtime engine. It
is now also running during the application operational cycle
to monitor resource usage, and to suspend low-critical tasks
when they have consumed all their budgets. In the experimental
context, we kept the third dumping phase to also collect the
applications runtime and performance counter data including
the number of deadline misses observed during the applicative
phase.

Realtime
application

Realtime
application

Realtime
application

Realtime
application

...
RunTime
Engine
(RTE)

PikeOS scheduler
Hardware
Monitor
Driver

ARM64 v8 PSP

ARM Juno board

Fig. 6. METrICS infrastructure in the context of BB-RTE

The application deployment also appear in Figure 6. We
dedicated the two A72 cores to running both the operating
system and the runtime engine. Several tests have shown
that it was more efficient to run the RTE on the same core
as the operating system due to the large number of system
calls required to alter the scheduling. We therefore reserved
the more deterministic A53 cores to the applications. Further
deployment details for this cores will be provided in the
evaluation section.

D. Stressing benchmarks

The mixed-critical applications we will use for the evalua-
tion are described in Section V, but the characterization steps
described in Figure 3 also involve stressing benchmarks.

These benchmarks are simple applications performing re-
peated accesses to a shared resource. This involves executing a
number of load or store instructions with regards to a memory
region or a memory-mapped peripheral. In order to focus the
stress applied by these benchmarks on a particular resource,
we developed them in assembly language, thus allowing the
greater control on the low-level behaviour of the stressing
benchmark.

The accesses are parametrized in four ways: the direction of
the transfer, the amount of data transferred, the address offset
between consecutive accesses, and the repetition rate. The
first parameter is either read or write. The second parameter,
representing the buffer size, spans from 1KB to 2MB in power
of 2 increments. This allows us to experiment the behaviour



of data fitting or not in L1 and L2 caches. The address offset,
called stride, is either 4 bytes for continuous accesses, 32 bytes
to stress A72 L1 cache lines, or 64 bytes to stress A53 L1 and
L2 cache lines. To vary the amount of accesses performed in a
given time, we add a configurable number of NOP instructions
(modeling calculations performed in isolation) per load or store
instruction. This parameter spans from 0 (full stress) to 100
NOPs per access.

V. MIXED CRITICAL PROTOTYPE

To evaluate the Budget-Based runtime Engine, we set up a
multi-domain mixed-critical software prototype composed of a
high-critical application representative of the avionic domain,
and low-critical control-command applications from the indus-
try domain. The characterization of these applications as well
as the evaluation of these applications running concurrently
while supervised by the BB-RTE run-time engine will be
provided in Section VI.

A. High-critical Application: Flyance

As the high-critical application, we selected Flyance, a
mark-up Flight Management System (FMS) application mim-
icking the real-time behaviour of a regular FMS from the
avionics domain.

The purpose of a Flight Management System (FMS) in
modern avionics is to provide the crew with centralized con-
trol for the aircraft navigation sensors, computer-based flight
planning, fuel management, radio navigation management,
and geographical situation information. Taking charge of a
wide variety of in-flight tasks, the FMS allows to reduce the
workload of the flight crew.

The FMS is especially responsible for services that allow
in-flight guidance of the plane. From pre-set flightplans (take-
off airport to landing airport), the FMS is responsible for
plane localization, trajectory computation allowing the plane
to follow the flightplan, and reaction to pilot directives.

Flyance is composed of 25 time-critical tasks that are
regrouped into different task groups as presented in Figure
7. The Sensors task group is in charge of generating all the
localization data from various sensors. The Localization task
group is in charge of computing the most probable position
of the aircraft (BCP) by merging sensor information with
different trustworthiness levels. The Nearest Airports task
group continually builds a list of the nearest airports during the
flight. The Flightplan task group is in charge of managing and
processing modification requests on the flightplans that are pre-
set routes used to guide the airplane. The Trajectory task group
aims at computing both lateral and vertical profiles for the
three flightplans set by the flightplan task. The lateral profile is
composed of waypoints as well as leg information (path before,
after and between the waypoints). The vertical profile provides
altitude information (cruise altitude interceptions, crossing
altitudes and slope angles) as well as performance information
(estimated time of arrival, estimated fuel on board).

The FMS application also embeds a large Navigation
Database that does not fit in any cache structure. It is both
linearly and regularly accessed by a task from the Nearest
airport task group, as well as randomly and sporadically

accessed by tasks of the Flightplan task group. Accesses to
this database in the main memory is very timing interference
prone.

All the tasks composing the FMS have stringent real-time
requirements presented in Table III. Additionally, aperiodic
tasks have 100ms deadlines and can not be activated more
than twice every 200ms.

TABLE III. FLYANCE TIMING REQUIREMENTS

Task Period Deadline
SENSC1 200 ms 200 ms
LOCC1 200 ms 200 ms
LOCC2 1600 ms 1600 ms
LOCC3 1200 ms 1200 ms
LOCC4 1000 ms 1000 ms
TRAJR1 200 ms 200 ms
TRAJR2 300 ms 200 ms
TRAJR3 300 ms 200 ms
NEARP1 1000 ms 1000 ms

During the evaluation, one A53 core of the Juno board will
be dedicated to running the Flyance application.

B. Low-critical Application: BiQuad

As the low-critical real-time application for the mixed-
critical prototype, we selected Biquad: a control-command
application implementing bi-quadratic on some streamed data
acquired from analog sensors. Such an application is repre-
sentative of classical distributed control system applications
commonly found in the industry.

Generator Splitter

Low Pass
Filter

High Pass
Filter

Low Pass
Filter

High Pass
Filter

Aggregator Actuator

Fig. 8. Software architecture of the BiQuad application

The software architecture of the application is presented in
Figure 8. BiQuad is composed of eight tasks: the Generator
producing input data, either through generation on the first
pass, or iterating on the received data on the next passes; the
Splitter routes the data to the filtering tasks; the four Filters
respectively apply their bi-quadratic filter on the data; and the
Aggregator fuses the filtered data and sends it back as feedback
to the generator task. The fused data is also periodically driving
the Actuator task.

The timing requirement of this application is uniform
across all the tasks: each task has a period of 200ms and a
deadline equal to the next period.

For the evaluation, several instances of the BiQuad appli-
cation can run at the same time, each running on a different
A53 core.



Sensor Group Localization Group

Nearest Airports Group

Flightplan Group

Trajectory Group

SENSC1

2

AnemoBaro
Config.

2

GPS Config

2

IRS&HYB
Config

2

Doppler
Config

Sensors
Data

SENSA1 SENSA2 SENSA3 SENSA4

LOCA1

2

BCP
Config.

LOCC1 LOCC2

LOCC3 LOCC4

High
freq. BCP

Low
freq. BCP

Magnetic
Declination

Performance

LOCA2

5

MagVar
Config.

LOCA3

5

Performance
Config.

NEARP1
Nearest

Airport List

FPLNA1 FPLNA2 FPLNA3 FPLNA4 FPLNA5

Active
Fpln

Temporary
Fpln

Secondary
Fpln

FPLNA6 FPLNA7 FPLNA8

database
Navigation

TRAJR1

TRAJR2

TRAJR3

Active
Profile

Secondary
Profile

Temporary
Profile

Feedback
Info

TRAJA1

Auto Pilot

fe
ed
b
ac
k

TASKS

periodic

aperiodic

BUFFERS

dual
buffer

fifo

Fig. 7. Software architecture of the Flyance application

VI. EVALUATION

This section first reports the budget characterization results
obtained following the process described in Section III and
summarized by Figure 3. Then, it presents an evaluation of the
runtime engine, by comparing the results in terms of deadline
misses compared to an unregulated run of the same set of
applications.

A. Platform characterization and Total available budget

Performing the hardware platform characterization of Fig-
ure 3 involves concurrently running stressing benchmarks until
some saturation phenomenons are observed.

On the first A53 core, we run a monitored stressing bench-
mark with a fixed number of iterations and a full stressing
profile (zero NOPs). On the other 3 A53 cores, we run the
stressing benchmark as an infinite loop, starting it before the
monitored one to be sure that the monitored benchmark is
run under stress. For these stressing cores, we are varying the
buffer size and the stride concurrently with the monitored core.
We are also varying independently the number of NOPs (and
therefore the amount of concurrent access to the resources).

By varying the stride, we impact which memory structure
and therefore which part of the architecture will be exercised:
With a 4-byte stride, we will will exercise the L1 cache maxi-
mizing the number of L1 hits, while strides larger than the L2
cache line size will mostly produce L1 and L2 cache misses,
actually exercising the DDR controller and the memory.

Table IV shows the runtime results of such a characteri-
zation, varying the buffer size (how well the data will fit in
the different cache structures), as the stressing level varying

to maximum stress (no NOP instruction) to no stress (no load
instructions).

TABLE IV. RUN-TIME VARIATION OBSERVED ON THE MONITORED
CORE WITH A 4-BYTE STRIDE

runtime (cycles)
Buffer size stress min 25% median 75% max
16384 none 12338 12352 12360 12369 13101
16384 max 12338 12352 12360 12369 13175
32768 none 24680 24786 24839 24959 26129
32768 max 24679 24785 24838 24960 26272
65536 none 49340 49951 50300 50338 52499
65536 max 49339 49531 49752 50759 52795
524288 none 393962 394096 394219 394633 417123
524288 max 393978 394535 394785 395224 421488
1048576 none 789994 791536 792055 792817 827872
1048576 max 787995 791789 793538 795033 823978
2097152 none 1599528 1601997 1603697 1606266 1751393
2097152 max 1577078 1603203 1605720 1607560 1732193

Selecting a 4-byte stride puts the L1 data cache under
pressure, but this cache structure is private to each core. As
a consequence, results presented in Table IV show very small
variations while increasing the number of NOPs, the runtime
only varying as the buffer size grows. Due to the high L1 hit
ratio, having large buffer size not fitting in the L1 does not
impacts the performance either.

Selecting larger stride values allows us to characterize
further hardware components shared by all the A53 cores
starting with the L2 cache and even with the A72 cores beyond
the CCI 400.

As we were limited to count core-related events with the
Performance Monitor Counters, we mainly focused on the level
2 cache, that is also the first hardware memory resource shared
by all the cores of the A53 cluster.



TABLE V. RUN-TIME VARIATION OBSERVED ON THE MONITORED
CORE WHILE PERFORMING L2 CACHE MISSES

runtime (cycles)
Buffer size stress min 25% median 75% max
16384 none 818 826 832 839 2883
16384 max 818 824 831 839 4975
32768 none 1728 1866 1902 1955 9739
32768 max 1734 1883 1929 2006 7382
65536 none 6772 8237 8885 10131 19378
65536 max 6720 9080 9771 10777 20170
524288 none 79625 107638 108660 111344 179419
524288 max 97018 109665 110268 110897 177007
1048576 none 169753 210845 214317 229595 366017
1048576 max 207393 227506 237746 242661 353066
2097152 none 478261 522073 526574 529720 725379
2097152 max 500723 547663 551346 553397 705256

Table V presents the running time distribution on the
monitored core while varying again the buffer size and the
number of NOP instructions, to compare standalone versus
maximum stress deployments.

Whereas the results should allow us to observe timing
interference with an expected runtime variability of fully-
stressed versus standalone larger than x4, we still observe
very little difference between the two standalone and stressed
versions.

Further tests, including unrolling the stressing benchmark
loop to further increase the load or store ratio did not signifi-
cantly change the above results. We therefore focused on the
results corresponding to the maximum stress condition (2MB
buffer size, with 0 NOP per iteration on the unrolled version)
and studied the associated hardware counters presented in
Table VI.

TABLE VI. PERFORMANCE MONITOR COUNTERS RELATED TO THE
L2 CACHE UNDER STRESSING CONDITION

counter min median max
l2d cache 33645 34654 35129
mem request 32473 32636 32863
prefetch 30304 31716 32001

In the worst case, out of the 35K data accesses to the
L2 cache, 32K accesses are going to the external memory
interface, meaning that our configuration successfully maxi-
mizes the number of L2 cache misses in order to maximize
the interference on the interconnect. However, we can also
observe 32K occurrence of prefetch, meaning that the hardware
prefetcher successfully manages to capture the access pattern
of our stressing benchmark and was able to anticipate nearly
all of the external memory accesses. As a consequence, our
stressing benchmark fails to effectively continuously stress the
hardware resource.

In such a configuration the hardware prefetcher, instead
of worsening runtime variability, smooths the contention on
memory accesses. This seems to be a case of unexpected
positive contribution to determinism from a dynamic, non-
deterministic mechanism.

We tried to disable the hardware prefetcher, unfortunately
we observed that it is periodically turned back on. We suspect
the System Control Processor to be responsible for that.
However, from our real time system, we have no control nor
access on this particular core.

An alternative approach would be to develop another stress-
ing benchmark, performing accesses that are more difficult
for the prefetcher to predict. This would for example involve
pseudo-random address increments.

B. Critical application characterization and Extra supported
budget

The characterization of the critical application was per-
formed by running the FMS application on the first A53
core. Again, thanks to METrICS, we instrumented the FMS
application by inserting probes around each task composing
the application, and at the level of a full operational cycle
from the sensor task to the trajectory computation.

We first ran the the FMS application standalone, with
the other core being idle, to collect the budget in terms of
L2 accesses required by each timeslot of the application.
Contrary to the stressing benchmarks, that are regular in their
behavior and throughput requirements, the observed runtimes
and resource requirements vary a lot with the FMS application,
as all the tasks are not triggered in every 200ms timeslots due
to heterogeneous periods.

The LOCC4 task for instance is only executed in 1 out of
5 periods, whereas the LOCC1 task is executed every period.
As expected the timeslots corresponding to the least common
multiple of all the periods, during which all the tasks must
execute, is the one with the larger observed runtime and L2
access count, as pointed out by Figure 9.

Fig. 9. Variation of the runtime (in blue x) and L2 accesses (in red +) while
running the FMS application standalone

The next step, as defined in Figure 3, would have been to
run the FMS application on the first A53 core, while running
stressing benchmarks on the other A53 cores to build a figure
looking like Figure 4. Such experiments led to the same issue
as presented in the previous section, with the benchmarks
failing to successively stress the architecture.

As a consequence, we failed to build such a figure with
well identified asymtotes, and had to rely on an alternative
technique:

Let R = [R0, R1, . . . , RN ] be the set of all the required
access budget per timeslot for the critical FMS application
running standalone without any activation of the asynchronous



tasks. We set E = [E0, E1, . . . , EN ] the set of per-timeslot
extra supported budget such as Ei = (max(R)−Ri)× 20%.

Doing so is not representative of the total budget available
on the target platform, but this way the supported extra budget
is inversely proportional to the resource usage performed by
the critical application, as it should really be.

C. RTE Evaluation

As a baseline for the evaluation of the runtime engine we
started to deploy the FMS application on the first A53 core, and
the BiQuad applications on the remaining A53 cores. Doing
so, we observed a deadline miss ratio (number of timeslot
with a deadline miss compared to total number of timeslots)
of 24.7%.

We then run the same application deployment, this time
supervised by the Budget Based Runtime Engine. As a budget,
we used the previously computed budget E. And again we
ran the FMS application without any asynchronous tasks. The
deadline miss ratio decreased to 2.6% while the number of
slots with suspended non-critical tasks increased to 30.9%,
proving the ability of the Runtime Engine to suspend low-
critical tasks when they are endangering the high-critical ones.

The high-critical application normally also encompass
some asynchronous tasks that we ignored so far. However
some of these sporadic task have a huge memory footprint,
especially the tasks from the Trajectory task group that are
performing random accesses to the 100MB large navigation
database.

It would make no sense to have a preset static scenario,
forcing in which timeslot each asynchronous task would be
triggered. It would be similar to considering these tasks as
periodic with a very large period. On the other hand a random
scenario will raise a reproductability issue as we are gathering
the timeslot statistics.

As a consequence, we created randomly two static sce-
narios for asynchronous task triggering, one was used during
the characterization phases to compute a R′ extra supported
budget set, and the second one was used while running under
the supervision of the runtime engine. In such a scenario we
observed a final miss ratio of 13.0% and a suspend ratio of
52.7%.

One one hand, the increase in suspend ratio is due to the
over-provisioning of the timeslots with some asynchronous
tasks in E′, leading to unnecessary suspends at runtime. One
the other hand, the increased deadline miss ratio could be
explained by the lack of such provisioning in the timeslots
were the asynchronous tasks finally occur.

D. Limitation of the approach

Beyond the issues related to the characterization phases
because of the hardware prefetcher preventing our dedicated
benchmarks to sufficently stress the hardware resources, we
identified a set of issues and limitations while evaluating the
runtime engine.

First relying on Performance Monitor Counters restricts us
to the hardware resources within the cores. As a consequence
we were not able to evaluate shared hardware resources such as

the DDR controller. With the prefetchers disabled, furthermore
increasing the stride of the stressing benchmarks would have
caused memory page reloads at the level of the memory
controller, causing extra delays. These sources of interference
have not yet been evaluated.

A more fundamental limitation is the issue caused by the
aperiodic tasks. When pre-computing budgets with characteri-
zation phases, we face the same issue as with machine learning
with both over-learning, and outlier issues, and as a result are
facing either deadline misses or unnecessary suspends.

Also having per-timeslot budget is not practical for real
applications running for hours. During our evaluation, the
FMS ran for up to 5 minutes. With 200ms timeslots, that
involves 1500 different budgets for this critical application.
Also, because of unpredictable aperiodic tasks, it is not really
possible to identify a shorter repeating patterns.

We performed test with an average timeslot budget, but
doing so only reduces the number of deadline misses by
2.04%. Using a maximum timeslot budget on the other hand
eliminates all the deadline misses but the low-critical tasks are
systematically suspended.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a regulation solution based on
budgeting that aims at guaranteeing the temporal behavior of
high-critical tasks in a mixed critical system, while degrading
the behaviour of non critical tasks.

The budgeting approach is performed offline and per
timeslot. If the approach worked well with purely periodic
tasks, high-overhead aperiodic or sporadic tasks caused some
major problems: either over-provisioning if considered during
the offline characterization phase, causing very low budget for
high-critical tasks and as a consequence a high rate of low-
critical suspend rate; or causing high-critical deadline misses
if occurring at runtime during an unprepared timeslot.

In single-core systems, it is common practice to have a
dedicated periodic slot to deal with sporadic asynchronous
tasks. The applicability of such a practice for multi-core
architecture depends on the way the applications are deployed
in the system to benefit from parallelism: an option is to
parallelize inside applications / partitions, granting all the
cores to a single application during each time slot. Such a
deployment is compatible with the usual way of dealing with
aperiodic tasks. But it also forces to re-write the applications,
which performance will then be constrained by the Amdahl’s
law [2].

Another option is to run different independent applications,
running partitions in parallel. If such a scheme is good for
software development that could carry on producing single-
thread applications, and even though it could bring better
performance, exploiting the Gustafson’s law [10] and not being
hampered by data dependency. It does not allow anymore to
have dedicated timeslots for a particular kind of traffic or tasks,
unless introducing costly synchronization.

As a consequence, before selecting the most adequate
control or regulation solution to deal with timing interference
on multi-core, a first step should be to consider the possible



deployment of the applications, figuring out which kind of
parallelism will be exploited. This choice has consequences on
the timing interference level, on the visibility of interference
(from white-box in case of intra-partition parallelism as they
are coming from well known other tasks of the application, to
black-box when coming from a potentially unknown indepen-
dent application in case of inter-partition parallelism).

ACKNOWLEDGMENT

The research leading to this work has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 644080 (SA-
FURE).

REFERENCES

[1] SYSGO AG. PikeOS 4.2: RTOS with hypervisor-functionality, March
2017.

[2] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the Spring Joint
Computer Conference, pages 483–485, Atlantic City, April 1967. ACM.

[3] ARM Limited. Versatile Express: 64 Bit Juno r2 ARM Development
Platform, Nov 2015.

[4] Thomas G. Baker. Lessons learned integrating COTS into systems.
In Proceedings of the First International Conference on COTS-Based
Software Systems, ICCBSS ’02, pages 21–30, 2002.

[5] Jingyi Bin, Sylvain Girbal, Daniel Gracia Perez, Arnaud Grasset, and
Alain Merigot. Studying co-running avionic real-time applications
on multi-core cots architectures. Embedded Real Time Software and
Systems conference, Feb 2014.

[6] Stuart Fisher. Certifying Applications in a Multi-Core Environment:
The World’s First Multi-Core Certification to SIL 4, 2013.

[7] Sylvain Girbal, Xavier Jean, Jimmy Le Rhun, Daniel Gracia Pérez, and
Marc Gatti. Deterministic Platform Software for hard real-time systems
using multi-core COTS. In Proceedings of the 34th Digital Avionics
Systems Conference, DASC’2015, 2015.

[8] Sylvain Girbal, Daniel Gracia Pérez, Jimmy Le Rhun, Madeleine
Faugère, Claire Pagetti, and Guy Durrieu. A complete toolchain
for an interference-free deployment of avionic applications on multi-
core systems. In Proceedings of the 34th Digital Avionics Systems
Conference, DASC’2015, 2015.

[9] Sylvain Girbal, Jimmy Le Rhun, and Hadi Saoud. METrICS: a
measurement environment for multi-core time critical systems. In
Embedded Real Time Software and Systems (under review), ERTS ’18,
2018.

[10] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM,
31(5):532–533, May 1988.

[11] International Electrotechnical Commission. IEC 61508: Functional
safety of electrical, electronic, or programmable electronic safety-
related systems, 2011.

[12] International Organization for Standardization (ISO). ISO 26262: Road
Vehicles Functional Safety, 2011.

[13] Xavier Jean, David Faura, Marc Gatti, Laurent Pautet, and Thomas
Robert. Ensuring robust partitioning in multicore platforms for ima sys-
tems. In Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA
31st, pages 7A4–1. IEEE, 2012.

[14] Raimund Kirner and Peter Puschner. Obstacles in worst-case execution
time analysis. In Proceedings of the 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, pages 333–339, 2008.

[15] Angeliki Kritikakou, Claire Pagetti, Christine Rochange, Matthieu
Roy, Madeleine Faugère, Sylvain Girbal, and Daniel Gracia Pérez.
Distributed run-time WCET controller for concurrent critical tasks
in mixed-critical systems. In Proceedings of the 22th International
Conference on Real-Time and Network Systems (RTNS’14), pages 139–
148, 2014.

[16] E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis.
In Proceedings of the 11th International Workshop on Worst Case
Execution Time Analysis (WCET2011). 2011.

[17] Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing
architectures in avionics. European Dependable Computing Conference,
pages 42–52, 2012.

[18] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-297:
Software, electronic, integrated modular avionics (IMA) development
guidance and certification considerations.

[19] Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-
Ki Yoon, Rodolfo Pellizzoni, Heechul Yun, Russel Kegley, Dennis
Perlman, Greg Arundale, et al. Single Core Equivalent Virtual Machines
for Hard Real-Time Computing on Multicore Processors. Technical
report, University of Illinois at Urbana-Champaign, Nov 2014.

[20] Brinkley Sprunt. The basics of performance-monitoring hardware.
Micro, IEEE, 22(4):64–71, 2002.

[21] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui
Sha. Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013 IEEE
19th, pages 55–64. IEEE, 2013.


