Florian Hacques
email: florian.hacques@etu.univ-nantes.fr

Hala Skaf-Molli

Pascal Molli

Sara El

Pascal Skaf

Molli

PFed: Recommending Plausible Federated SPARQL Queries

Keywords: Semantic Web, Federated SPARQL Query, Plausible, Joinable

Federated SPARQL queries allow to query multiple interlinked datasets hosted by remote SPARQL endpoints. However, finding federated queries over a growing number of datasets is challenging. In this paper, we propose PFed, an approach to recommend plausible federated queries based on real query logs of different datasets. The problem is not to find similar federated queries, but plausible complementary queries over different datasets. Starting with a real SPARQL query from a given log, PFed stretches the query with real queries from different logs. To prune the research space, PFed proposes semantic summary to prune the query logs. Experimental results with real logs of DBpedia and SWDF demonstrate that PFed is able to prune drastically the logs and recommend plausible federated queries.

Introduction

Following the Linked Open Data cloud (LOD) principles many datasets have been published. Federated SPARQL query engines [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Acosta | ANAPSID: an adaptive query processing engine for SPARQL endpoints[END_REF] have been developed to query multiple interlinked datasets hosted by remote SPARQL endpoints. However, finding federated queries over a growing number of datasets is challenging. This requires to fully understand the datasets and find potential joins among them. In this paper, we propose PFed, an original approach to recommend federated queries for end-users. Instead of using datasets to recommend federated queries, PFed recommends federated queries using query logs of different SPARQL endpoints. This is not a classical recommendation problem. In recommender systems [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art[END_REF], the problem is to recommend resources (or items) for users based on similar ones already seen by the users. In PFed, we start with a SPARQL query from a given log and we stretch this query with real queries from other existing query logs. The main advantage of using real logs rather than using datasets is to produce plausible federated queries, i.e. queries that generated by combining real queries. This is useful, especially for data portal owners who can recommend federated queries for end-users. Imagine a data portal such as Sage 1 , or LodLaundromat 2 hosting thousands of linked datasets. The portal owner can see that some users are looking for information about "United Kingdom" in DBpedia, others are looking for conferences in SWDF dataset. Using PFed, the portal owner can suggest to extended conferences with information about country.

To illustrate, consider queries extracted from real SPARQL query logs of SWDF (SWDF 2012) and DBpedia (DBpedia 3.5.1) 3 presented in Figure 1. ? c o u n t r y dbp : c a p i t a l ? c a p i t a l . ? c a p i t a l geo : l a t ? l a t . ? c a p i t a l geo : l o n g ? l o n g }# r e s u l t s : 4 Consider the Q1S from the log of SWDF, this query can be extended with the query Q1D from the log of DBpedia. The result is the SPARQL 1.1 federated Query Q1S1D given in Figure 2. Q1S1D is generated by joining the variable ?place of the query Q1S, i.e. the object of the predicate foaf:based_near with the variable ?country of the query Q1D, i.e. the subject of the predicates rdfs:label and dbpedia2:capital. The joined variable ?country has been renamed by ?place, in the generated query Q1S1D. The execution of this query over a federation of SWDF and DBpedia produces 1388 results.

The generated query Q1S1D can be recommended as a plausible federated query. In the same way, we can generate a more complex federated query such as the query Q2S2D shown in Figure 2b. Q2S2D is obtained by extending the query Q2S from the log of SWDF with the query Q2D from the log of DBpedia. The joining variable ?sameAs is renamed as ?person in Q2S2D.

Recommending plausible federated queries is challenging because the size of logs. The log of DBpedia contains 217 812 queries, and the log of SWDF contains 64 030 queries [START_REF] Saleem | Feasible: A feature-based sparql benchmark generation framework[END_REF]. To overcome this problem, we propose a semantic summary that allows to reduce drastically the size of logs by excluding non joinable queries. The main contributions of the paper are:

a new semantic summary for pruning query logs.

an algorithm to exclude non joinable queries from logs. Fig. 2: Plausible federated query generated from logs of SWDF and DBpedia in Figure 1 an algorithm for generating plausible federated queries using the pruned logs.

an experimentation using real queries logs of SWDF 2012 and DBpedia 3.5.1.

This paper is organized as follows. Section 2 summarizes related works. Section 3 details PFed approach and algorithms. Section 4 presents our experimental results. Finally, conclusions and future work are outlined in Section 5.

Related Work

Many efforts have been done to automatically generate SPARQL queries, either for individual dataset [START_REF] Aluç | Diversified stress testing of RDF data management systems[END_REF][START_REF] Saleem | Feasible: A feature-based sparql benchmark generation framework[END_REF] or multiple datasets as Splodge [START_REF] Görlitz | SPLODGE: systematic generation of SPARQL benchmark queries for linked open data[END_REF] and Fed-Bench [START_REF] Schmidt | Fedbench: A benchmark suite for federated semantic data query processing[END_REF]. Federated queries benchmarks have been proposed for evaluating the performance of federated query engine. Existing benchmark rely either on hand-crafted queries or on automatically generated ones.

FedBench [START_REF] Schmidt | Fedbench: A benchmark suite for federated semantic data query processing[END_REF] rely on hand-crafted queries. The datasets of FedBench are real datasets preselected from the Linked Data Cloud, e.g. Life Science, Cross domain. FedBench is commonly used for the evaluation of federated query engines. FedBench is not designed to recommend plausible federated queries over a federation of SPARQL endpoints. LargeRDFBench [START_REF] Saleem | LargeRDFBench: A billion triples benchmark for sparql endpoint federation[END_REF] attempts to generate more realistic federated queries. The benchmark comprises a total of 32 queries for SPARQL endpoint federation. Queries are ranging from simple queries extracted from FedBench queries and large data queries created by the authors with the help of the expert domain. As FedBench, LargeRDFBench are designed for preselected datasets and queries are designed for specific domains and cannot be used for automatic generation of realistic federated queries.

Splodge [START_REF] Görlitz | SPLODGE: systematic generation of SPARQL benchmark queries for linked open data[END_REF] proposes heuristics for automatic query generation. Splodge generates only conjunctive queries of triple patterns, i.e., Basic Graph Patterns (BGP) with bound predicate, unbound subject and unbound object. Other SPARQL operators such as FILTER, OPTIONAL are not considered. However, recent analytical study of large SPARQL query logs [START_REF] Bonifati | An analytical study of large SPARQL query logs[END_REF] shows that 74.83% of studied queries have JOIN, FILTER and OPTIONAL and only 7.49% have JOIN alone (conjunctive queries). Consequently, the queries of Splodge cannot reflect the reality. Feta [START_REF] Nassopoulos | FETA: Federated QuEry TrAcking for Linked Data[END_REF] is a federated query tracker that computes Basic Graph Patterns from a federated log. It supposes the existence of a federated query log. In this work, we want to build and recommend federated queries rather than analyzing federated query logs.

Existing approaches of automatic generation of federated queries do not reflect reality and hand-crafted federated queries are designed for specific datasets with the purpose to stress the performance of a federated query engine. Benchmarks are not designed for recommending plausible federated queries.

Generation of Plausible Federated Queries

Intuitively, for generating a plausible federated query over n datasets, we propose to start by combing (joining) the query logs log 1 and log 2 of two datasets d 1 and d 2 , respectively. Then, we generate new federated queries by joining the resulting queries and the log log 3 of the dataset d 3 . We repeat the same process iteratively until processing the n query logs.

In the following, for simplicity, we restrict our discussion to the case of two real query logs. Given two queries Q 1 and Q 2 belong to different query logs, we want to build a plausible federated query F Q. We call F Q a plausible federated query because it is composed of two real queries. Our intuition is F Q is more likely to be a real query than a synthetic one.

Datasets capabilities

We can distinguish different type of join combinations: subject-subject or objectsubject leading to different query structures star-shaped, path-shaped, or hybrid queries [START_REF] Schmidt | Fedbench: A benchmark suite for federated semantic data query processing[END_REF]. To find joinable predicates, one can rely on the Vocabulary Of Interlinked Datasets VoID [START_REF] Alexander | Describing linked datasets[END_REF]. This vocabulary describes metadata about RDF datasets and the linkset. A linkset is a collection of RDF links between two datasets 4 . An RDF link is an RDF triple whose subject and object are described in different datasets. This corresponds to the joinable predicates in the example of the Figure 2. However, we cannot use VoID to detect joinable predicates because a large number of RDF datasets do not provide VoID [START_REF] Vandenbussche | Sparqles: Monitoring public sparql endpoints[END_REF], only 13.65% of datasets 5 (77/564) present a VoID description.

Another solution is to use the capabilities of data sources as defined in Hibiscus [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF] to check the possible existence of matching. According to [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF], the data summary of a source d ∈ D is the set CA(d) of all capabilities of that source. In Hibiscus, this summary is used to remove endpoints during the source selection during federated query processing The total number of capabilities of a source is equal to the number of distinct predicates in it. The definition of the authorities of a subject or an object relies on the analysis of the Unified Resource Identifier (URI) syntax. The URI syntax consists of a hierarchical sequence of components referred to as the scheme, authority, path, query, and fragment 6 . For example, the uri <http://dbpedia. org/ontology/Plant> contains a schema "http", an authority "dbpedia.org" and a path "ontology/Plant". To compute the set of capabilities for a source, the first two components (path, authority) are combined as the authority of the URI. Figure 3 presents a sample of the summary of SWDF 2012 and DBpedia 3.5.1. For instance, in Figure 3a, the first capability of SWDF data source is the predicate foaf:based_near, its subject authority is <http://data.semanticweb. org> and its object authorities are <http://dbpedia.org>, <http://www.w3. org>, <http://sws.geonames.org>, and <http://data.semanticweb.org>.

Authority summary allows to prune the query logs only if many predicates have different subjects or objects authority. However, this not always the case, especially for the subject authority. For instance, the majority of subjects of DBpedia have the authority <http://dbpedia.org>, only six predicates out of 39672 predicates of DBpedia 3.5.1 do not have <http://dbpedia.org> as a subject authority. Therefore, if a query Q 1 in SWDF query log is joinable with a query Q 2 in DBpedia query log on the subject authority <http://dbpedia. org>, then Q 1 will be joinable with a large number of queries in the log of DBpedia. Therefore, for query logs of SWDF and DBpedia, authority summary will prune mostly queries with unbounded predicates.

To further prune the log, we define new data summary that considers semantic of subjects and objects for finding joinable predicates. Intuitively, a subject or an object from one dataset could be joinable with a subject or object from another dataset, if they share some common types. More precisely, we define a new summary called Class summary. A class summary is a set of classes capabilities.

Definition 2 (Class Capability). Given a source d, a class capability is a triple (p, SC(d, p), OC(d, p)), which contains (1) a predicate p in d, (2) the set SC(d, p) of all distinct subject classes of p in d and (3) the set OA(d, p) of all distinct object classes of p in d.

Classes capabilities can be computed using SPARQL queries. But since entities are reused across datasets, types of the subjects and objects for predicates maybe not defined locally. Therefore, we need to perform a SPARQL federated query to compute classes capabilities. We use only the direct classes of subjects and objects to find common classes, we do not use inferences because schemas information are not always available [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for rdf queries with multiple joins[END_REF], and we restrict the computation to

Definition 4 (Predicate Joinable Path). joinableP ath(p

1 , p 2) = true, if OA(d 1 , p 1) ∩ SA(d 2 , p 2) = ∅ and OC(d 1 , p 1) ∩ SC(d 2 , p 2) = ∅.

Definition 5 (Predicate Joinable Star). joinableStar(p

1 , p 2) = true, if SA(d 1 , p 1) ∩ SA(d 2 , p 2) = ∅ and SC(d 1 , p 1) ∩ SC(d 2 , p 2) = ∅.
The hybrid join pattern is built as a mix of a path join pattern and a star join pattern. Figure 5 presents possible structures of hybrid federated queries. The query generated in Figure 5a is built from the path query of

p 1 ∈ Q 1 , Q 1 ∈ log 1 and p 3 ∈ Q 2 , Q 2 ∈ log 2 .
The query generated in Figure 5b built from the star query of

p 1 ∈ Q 1 , Q 1 ∈ log 1 and p 2 ∈ Q 2 , Q 2 ∈ log 2 .

Algorithm 1: Joinable predicates

Input: AS1, CS1, AS2, CS2

Authorities and classes summaries for the two datasets Output: JP red Set of joinable predicates 1 Function JoinPred(AS1, CS1, AS2, CS2): The objective now is to prune query logs and conserve only joinable queries. First, the algorithm 1 uses summaries to conserve predicate joinable (predicate joinable path), then the algorithm 2 excludes non joinable queries from logs. For logs in Figure 3, the algorithm 1 keeps the couple (foaf:based_near,dbpedia2:capital) because they share http://dbpedia.org as object and subject authority, respectively, and they share Country, Place and PopulatedPlace as object and subject classes, respectively.

2 JP red ←-∅; 3 foreach cap1 ∈ AS1 do 4 foreach cap2 ∈ AS2 do 5 if AS1.objAuthority(cap1) ∩ AS2.sbjAuthority(cap2) = ∅ then 6 if CS1.objClasses(cap1) ∩ CS2.sbjClasses(cap2) = ∅ then 7 JP red ←-JP red ∪ (cap1.predicate, cap2.predicate);
To compute predicate joinable star, we only need to modify conditions in lines 5-6 of the algorithm 1 to compare subjects parts of both capabilities. With this modification, the algorithm will keep the couple (skos:prefLabel,dbo:abstract) as they share same authorities and classes as subjects. The algorithm 1 can be iteratively called to compute predicate joinable path or star for more than two datasets.

We use the result of the algorithm 1 to exclude non joinable queries as shown in the algorithm2. After the execution of the algorithm 2 for joinable path, Q1S Algorithm 2: Joinable queries Input: log1, log2, JP red Logs of both dataset and the set of corresponding joinable predicates Output: f eds Set of federated queries 1 Function GenFed(log1, log2, JP red): 11 End Function of SWDF and Q2D of DBpedia will be preserved, because they have the joinable predicates (foaf:based_near,dbpedia2:capital) as shown previously. We exclude Q3S because it cannot be joined with any query from dbpedia, i.e. no predicate in DBpedia has <http://data.semanticweb.org> as subject authority. We also eliminate Q3D because the capability of unbound predicate is undefined.

2 f eds ←-∅; 3 foreach Q1 ∈ log1 do 4 foreach Q2 ∈ log2 do 5 if ∃(p1, p2)|p1 ∈ Q1, p2 ∈ Q2 ∧ (p1, p2) ∈ JP red then 6 f eds ←-f eds ∪ (Q1, Q2)

Building plausible federated queries

We rely on the results of the algorithm 2 to build plausible federated queries. For sake of simplification, we start by illustrating the generating of minimal federated queries PFed min . A minimal federated contains one triple from log 1 and one triple from log 2 .

In order to construct a path (star) join, we substitute the object (subject) of p 1 and the subject of p 2 by the same value as given in the table 1. Figure 6a presents a minimal path-shaped federated query between foaf:based_near ∈ Q1S and dbpedia2:capital ∈ Q1D in Figure 3. Figure 6b presents a minimal star-shaped federated query between skos:prefLabel ∈ Q4S and dbo:thumbnail ∈ Q4D.

PFed min are not required to generate plausible federated queries. But they can help to reduce the number of potential joinable predicates by only keeping PFed min producing results. They can also be used to navigate through datasets. The construction of Q PFed is tricky, if the original queries contain OP-TIONAL operator. We have to construct only correct plausible federated query. A plausible federated query is correct if it is well designed [START_REF] Pérez | Semantics and complexity of sparql[END_REF] and servicesafeness [START_REF] Arenas | Federation and navigation in sparql 1.1[END_REF].

Definition 6 (Well designed[10]).

A graph pattern P is well designed if for every occurrence of a sub-pattern P' = (P1 OPT P2) of P and for every variable ?X occurring in P, the following condition holds: if ?X occurs both inside P2 and outside P', then it also occurs in P1.

The federated query in Figure 7c is not well designed because the variable ?o2 occurs in P2 and outside the P' (i.e. clause SERVICE <dataset2>), but it not occurs in P1.

The service-safeness provides condition that ensures that a SPARQL query containing SERVICE operator can be safely evaluated. Our generated queries ensure service-safeness because each SERVICE clause has only bounded service, i.e., during the construction the URI of the SPARQL endpoints are known.

The main issue is to build well designed queries to avoid cartesian products as illustrated in Figure 7c. If Q 2 does not have a mapping for ?o2, a result will still produced. To avoid this problem, we define the following strategy:

-If Q 1 and Q 2 are conjunctive queries (a.k.a BGPs) then Q PFed = Q 1 Q 2 , Q PFed is a simple concatenation of queries (Q 1 . Q 2),

Evaluation

The objective of the evaluation is to answer empirically the following questions: We observe also an important reduction in the number of minimal federated queries PFed min (Table 5). This reduction is important as each PFed min contributes to many federated queries.

With Authorities

With authorities and classes path-shaped star-shaped path-shaped star-shaped 1 146 687 352 432 We generate star-shaped plausible federated queries based on skos:prefLable from SWDF and dbpedia:thumbnail from DBPedia (see table 6). The 42 generated queries are executed correctly and 28 of these queries produce results.

Conclusion and Future Work

We presented PFed an approach for automatic generation of plausible federated queries based on real query logs. PFed starts by pruning the logs to exclude non joinable queries using data summaries. The first one is based on the authorities and the second is based on the type of subjects and objects of predicates. Experimentations with real query logs of SWDF and DBpedia demonstrate that PFed is able to prune considerably the logs and generate plausible federated queries.

As future work, we would like to experiment PFed with more real query logs and produce plausible federated queries over a large number of SPARQL endpoints. Finally, we plan to extend PFed with statistical information to generate only queries that return results.

Q1S:

 SELECT * WHERE { ? i n s t r d f : t y p e ? d C l a s s . ? i n s t f o a f : b a s e d _ n e a r ? p l a c e }# r e s u l t s : 5 0 2 5 Q3S : SELECT * WHERE { {? p a p e r s w r c : a u t h o r ? a u t h o r } UNION {? p a p e r f o a f : maker ? a u t h o r } OPTIONAL {? p a p e r s w r c : a b s t r a c t ? a b s t r a c t } }# r e s u l t s : 2 1 6 4 9 (a) SWDF query log Q1D : SELECT * WHERE { ? c o u n t r y r d f s : l a b e l " U n i t e d Kingdom " @en .

Q3D:Fig. 1 :

 1 Fig. 1: SPARQL queries from the logs of SWDF and DBpedia

SELECTFig. 6 :

 6 Fig.6: Minimal federated queries generated from pruned logs of SWDF and DBpedia in Figure3

Fig. 7 :

 7 Fig. 7: A non well designed federated query

:Country, dbo:Place, dbo:PopulatedPlace,

	[] a ds:Service ;	[] a ds:Service ;
	ds:url <http://swdf-2012> ;	ds:url <http://dbpedia-3.5.1> ;
	ds:capability [ds:capability [
	ds:predicate foaf:based_near ;	ds:predicate dbpedia2:capital ;
	ds:sbjAuthority <http://data.semanticweb.org> ;	ds:sbjAuthority <http://dbpedia.org> ;
	ds:objAuthority <http://dbpedia.org>,	ds:objAuthority <http://dbpedia.org> ;] ;
	<http://www.w3.org>, <http://sws.geonames.org>,	ds:capability [
	<http://data.semanticweb.org> ;] ;	ds:predicate dbo:birthDate ;
	ds:capability [ds:sbjAuthority <http://dbpedia.org> ;] ;
	ds:predicate owl:sameAs ;	ds:capability [
	ds:sbjAuthority <http://data.semanticweb.org> ;	ds:predicate rdfs:comment ;
		ds:sbjAuthority <http://dbpedia.org> ;] ;
		ds:capability [
		ds:predicate foaf:name ;
		ds:sbjAuthority <http://dbpedia.org> ;] ;
		ds:capability [
		ds:predicate dbo:abstract ;
		ds:sbjAuthority <http://dbpedia.org> ;] ;
		ds:capability [
		ds:predicate dbo:thumbnail ;
	(a) SWDF data summary	
		[] a ds:Service ;
		ds:url <http://dbpedia-3.5.1> ;
		ds:capability [
		ds:predicate: dbpedia2:capital ;
		sbjClasses:
] ;	
	ds:capability [
	ds:predicate: skos:prefLabel ;	
	sbjClasses: foaf:Organization, foaf:Person,	
	skos:Concept, swc:WorkshopEvent ;] ;	
	(c) SWDF classes summary	

ds:objAuthority <http://dbpedia.org>, ...] ; ds:capability [ds:predicate swc:hasLocation ; ds:sbjAuthority <http://data.semanticweb.org>; ds:objAuthority <http://data.semanticweb.org>, <http://dbpedia.org> ;] ; ds:capability [ds:predicate swrc:author ; ds:sbjAuthority <http://data.semanticweb.org> ; ds:objAuthority <http://data.semanticweb.org> ;] ; ds:capability [ds:predicate foaf:maker ; ds:sbjAuthority <http://data.semanticweb.org> ; ds:objAuthority <http://data.semanticweb.org> ;] ; ds:capability [ds:predicate swrc:abstract ; ds:sbjAuthority <http://data.semanticweb.org> ;] ; ds:capability [ds:predicate skos:prefLabel ; ds:sbjAuthority <http://dbpedia.org>, ...] ; ds:sbjAuthority <http://dbpedia.org> ; ds:objAuthority <http://upload.wikimedia.org> ;] ; ds:capability [ds:predicate foaf:depiction ; ds:sbjAuthority <http://dbpedia.org> ; ds:objAuthority <http://upload.wikimedia.org> ;] ; ds:capability [ds:predicate dbpedia2:party ; ds:sbjAuthority <http://dbpedia.org> ; ds:objAuthority <http://dbpedia.org>, <http://www.xat.org> ;] ; (b) DBpedia data summary [] a ds:Service ; ds:url <http://swdf-2012> ; ds:capability [predicate: foaf:based_near ; sbjClasses: foaf:Person, ...] ; objClasses: dbo...] ; ds:capability [ds:predicate: owl:sameAs ; objClasses: dbo:Person, dbo:Scientist, ...

dbo:Country, dbo:Place, dbo:PopulatedPlace,

...] ; objClasses: dbo:City, dbo:Place, dbo:PopulatedPlace, ...] ; ds:capability [ds:predicate: dbo:birthDate ; sbjClasses: dbo:Person,dbo:Scientist, ...] ; ds:capability [ds:predicate: dbo:abstract ; sbjClasses: foaf:Person, dbo:Ship, ...] ; (d) DBpedia classes summary Fig. 3: Sample of authorities and classes summaries of logs of SWDF and DBpedia Definition 1 (Authority Capability). Given a source d, an authority capability is a triple (p, SA(d, p), OA(d, p)), which contains (1) a predicate p in d, (2) the set SA(d, p) of all distinct subject authorities of p in d and (3) the set OA(d, p) of all distinct object authorities of p in d.

Table 1 :

 1 All substitution values possible to create path join. ?x, ?y are variables and a, b are constants (URIs or literals)

	tp1 object tp2 subject substitution value
	?x	?y	?x
	?x	a	a
	a	?x	a
	a	b	null

 as in figure2, Q1S1D = Q1S Q1D.-If Q 1 contains binary operators like UNION or OPTIONAL, we distinct two cases:• If a joinable predicate is outside binary clauses of Q 1 , we add Q 2 in the BGP part of Q 1 . • If a joinable predicate of Q 1 is inside the UNION or OPTIONAL clauses,we append Q 2 inside this clause after the substitution of the join variables (subject or object of the triple) according to table1. -If a joinable predicate of Q 2 is inside an OPTIONAL clause, we make sure to not generate non well designed queries like query shown in 7c.

Table 2 :

 2 Do authorities summaries prune non joinable predicates? Do classes summaries prune further non joinable predicates? Does PFed able to generate plausible federated queries?All data, codes, and generated query are available at the project web page7 . Real Datasets and real logs We use SWDF 2012 and DBPedia 3.5.1 datasets and clean queries of Feasible 8 . We use only SELECT queries to construct plausible federated queries. Table2reports statistics about the datasets and query logs. It is strange that the query log of SWDF contains more predicates than the original dataset hosted at the SPARQL endpoint. Some queries in the logs use predicates that are not defined in the dataset. As they appear inside OPTIONAL or UNION, they do not stop queries from returning results. Using DBpedia to generate plausible federated queries is challenging because DBpedia dataset has a high number of predicates and the log of DBpedia has a high number of queries.

	dataset	|triples| |dataset predicates| |original log| |SELECT queries| |log predicates|
	SWDF	242 256	170	64 030	37 592	201
	DBPedia 232 542 405	39 672	217 812	127 812	247
	4.1 Experimental Setup			
	Dataset and Queries:			

Table 3 :

 3 Logs pruning using authorities summariesDo authorities summaries prune non joinable predicates ? Table3presents the results of pruning using authorities summaries. As we can see, the reduction is 62.75% for SWDF query log for path-shaped queries (all path refers to path from SWDF to DBpedia) and by 42.82% for star-shaped. The reduction is only 2.15% for DBpedia log for both path-shaped queries and star-shaped generation. This reduction is not significant because most of predicates in DBPedia has the authority <http://dbpedia.org>.

			path-shaped			star-shaped	
	dataset |predicate joinable | |pruned log| % reduce |predicate joinable | |pruned log| % reduce
	SWDF	3	9 355	75.12	3	21 495	42.82
	DBPedia	139	36 522	71.42	83	36 449	71.48

Table 4 :

 4 Logs pruning using authorities and classes summariesDo classes summaries prune further non joinable predicates?We now use our classes summaries on top of authorities summaries. We observe in Table4that the sizes of logs are reduced. The reduction is impressive for DBpedia, it is about 72 %. Therefore, classes summaries are affective for pruning non joinable queries.

Table 5 :

 5 Number of PFed min generated using Authorities and Classes summaries

	p1	|p1|	p2	|p2| |PFed| |with result| %
	PFed path foaf:based_near 9 dbpedia2:capital 5	24	19	79.17
	PFed star skos:prefLabel 3 dbo:thumbnail 14	42	14	33.33

Table 6 :

 6 PFed path and star, p 1 ∈ SWDF and p 2 ∈ DBPedia Does PFed generate plausible federated queries ? Due to the size of the pruned logs, we can generate a large number of plausible federated queries. In our experimentation, we focus on the generation of path-shaped between foaf:based_near from SWDF and dbpedia2:capital from DBPedia. The pruned SWDF query log contains 2 866 queries that contains foaf:based_near. Many of these queries have the same structure but with different literals and variables. Therefore, instead of producing 2866 × 14 = 40124 queries where 14 is the number of queries that contains dbpedia2:capital in pruned DBpedia log, we define patterns for foaf:based_near queries. We differentiate 9 patterns for foaf:based_near queries and we generate 24 queries. All generated queries are executed correctly and 19 of these queries have non empty results set (see table6).

https://www.w3.org/TR/void

http://sparqles.ai.wu.ac.at/

URI Syntax Components: https://tools.ietf.org/pdf/rfc3986.pdf

https://github.com/GDD-Nantes/PFed

https://github.com/dice-group/feasible

Acknowledgement

This work is part of the multidisciplinary project Sedela, funded by CominLabs, that brings together three laboratories: LS2N, CREAD and Lab-STICC.

All information about logs, and prefixes are available at the project site: https: //github.com/GDD-Nantes/PFed

Pruning query logs

Based on authorities summaries and classes summaries, we can prune the logs of corresponding datasets by retaining only joinable queries.