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Abstract—Achieving reliable observations of avalanche
debris is crucial for many applications including
avalanche forecasting. The ability to continuously monitor
the avalanche activity, in space and time, would provide
indicators on the potential instability of the snowpack and
would allow a better characterization of avalanche risk
periods and zones. In this work, we use Sentinel-1 SAR
(synthetic aperture radar) data and an independent in-
situ avalanche inventory (ground truth) to automatically
detect avalanche debris in the French Alps during the
remarkable winter season 2017-18. Convolutional neural
networks are applied on SAR image patches to locate
avalanche debris signatures. We are able to successfully
locate new avalanche deposits with as much as 77% con-
fidence on the most susceptible mountain zone (compared
to 53% with a baseline method). One of the challenges
of this study is to make an efficient use of remote
sensing measurements on a complex terrain. It explores
the following questions: to what extent can deep learning
methods improve the detection of avalanche deposits and
help us to derive relevant avalanche activity statistics at
different scales (in time and space) that could be useful
for a large number of users (researchers, forecasters,
government operators)?

I. INTRODUCTION

Remote sensing of avalanche debris in mountain ar-
eas offers new opportunities to improve our understand-
ing of avalanche activity and to evaluate the physical
models of avalanche hazard forecasts. The location of
avalanche debris and the estimation of their sizes are of
great interest for studies dealing with the stability of the
snowpack and also the variability of natural avalanche
activity, which could be related to climate change. In
addition, time series of avalanche events, with relevant
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time and space resolutions, would be highly relevant
to better identify avalanche risk zones and periods.
Such time series would be a great addition to the
existing databases, mostly based on visual observations.
Despite their great value, these in-situ data are scarce
and are limited by the terrain accessibility, the weather
conditions and the danger of avalanches themselves.
In this study we use backscatter coefficients at C-band
from the SAR onboard Sentinel-1A and -1B satellites
launched between 2014 and 2016. The French Alps are
observed every 6 days.

The study period covers the winter of 2017-18, which
was marked by particularly high avalanche activity
recorded in the French Alps. Microwave backscattering
over snow surfaces is complex because it combines
several phenomena including reflection on the snow
surface, scattering within the snowpack (which depends
on its layers properties) and reflection at the snow-soil
boundary. To detect avalanche debris, change detec-
tion methods are typically used to isolate avalanche
debris-like features based on the backscatter contrast
between avalanche debris and the surrounding undis-
turbed snowpack [1]. Debris detection is based on major
changes in the backscatter coefficients due to changes in
snow properties following the avalanche event (height,
density, roughness), Figure 1 shows an example of an
RGB composition map using 3 Sentinel-1 images at
VH polarization. The large avalanche event near "Les
Houches" can be seen in green.

Recent work [1], [2] demonstrated the potential of
Sentinel-1 SAR data for avalanche mapping on specific
examples. Karbou et al. [3] applied a change detection
method and combined Sentinel-1 ascending/descending
orbits to automatically detect avalanches at the scale
of a mountain chain. However, the complexity of the
interaction of the radar signal and the snow medium ne-
cessitate the development of more advanced algorithms
that are also able to better manage the consistent data
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Fig. 1: An RGB composition SAR image over the Mont Blanc chain (one of the 23 French alpine massifs of the
database) using 3 sentinel-1 VH images (R: 2017/08/24, G: 2018/01/15, B: 2018/01/09) highlighting avalanche
debris signatures in light green for events between the 09th and the 15th of January 2018, such as the avalanche
event occurred near les Houches (see zoom).

flow.

With the advances in machine learning, recent works
proposed classification methods for this task, using
a random forest classifier [4] or convolutional neural
networks [2]. The results are very promising; however
they both rely on expert labelling from the same SAR
imagery. This has two major limitations: i) no study
has been made on the accuracy of expert labelling
from SAR signals; ii) it is not possible to differentiate
between a new avalanche and an old one that is still
visible.

We propose in this paper to couple the SAR data with
an independent ground truth database which would an-
swer both issues. Specifically, we used an avalanche in-
ventory covering more than 3000 avalanche corridors in
the French Alps, which are collected by forest rangers
from ONF (Office National des Forêts) and stored by
Irstea research institute. From the partial information
available in the inventory (the specific delineation of the
avalanche is not accessible), we automatically cropped
some image patches containing the zone of deposition
for every avalanche in the database. We then con-
structed and trained a convolutional neural network
model able to classify the satellite image patches as
avalanche or no avalanche. By using the SAR acqui-
sitions of both current time and previous acquisition (6
days earlier), we trained our network for detecting only
the new avalanches. From a database of more than 1300

samples from 16 mountain chains (out of 23 for the
whole alps), we were able to detect new avalanches. We
compared our results with a baseline method. Moreover,
we performed an analysis to generate insights on the
types of avalanches that can be identified.

II. METHOD

A. Data Processing

a) Avalanche inventory: The EPA (Enquête Per-
manente sur les Avalanches) database includes field
observations on more than 3000 paths (mountain corri-
dors where avalanches occur). Avalanche occurrences
are recorded, along with quantitative and qualitative
data (runout altitudes, release cause, damages, etc.).
We used more than 4000 avalanche events annotated
from the 2017-18 season and attributed to the different
EPA paths. With SAR data, we can observe a rela-
tive increase of the backscatter due to snow deposit.
Consquently, we automatically extracted the lowest
elevation parts of the EPA corridors, where most of
the avalanches would have their zone of deposition.

b) Sentinel-1 SAR imagery: We extracted the
Sentinel-1 synthetic aperture radar (SAR) polarizations
VV and VH on the whole region from the descend-
ing relative orbit 139, with a 20m resolution1. SAR

1We used the Level-1 Ground Range Detected (GRD)
products made available through the Copernicus web site
https://scihub.copernicus.eu/dhus/.
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Fig. 2: Avalanche detection pipeline. From an independent ground truth labelling, 50% positive and 50% negative
SAR satellite image patches are feeding a convolutional neural network composed of convolutional layers (Conv)
and fully connected layers (FC). The 3 input channels are V V ∗, V V ∗

old from the previous satellite acquisition (6
days earlier), and V Hdiff = V H∗ − V H∗

old.

data have been processed using the ESA Sentinel-
1 Toolbox (speckle filtering, radiometric calibration,
terrain correction, etc.). With one acquisition every 6
days, we collected a total of 32 dates in the season.
Sentinel-1 has a side-looking imaging geometry which
causes geometric distortion occurrences in mountains
including shadow, layover and foreshortening effects.
These areas are screened out. We calculated the im-
ages ratio (with respect to snow-free summer im-
ages): V V ∗ = 10 log 10(V V/V Vsummer) and V H∗ =
10 log 10(V H/V Hsummer) as well as the difference
V Hdiff = V H∗ − V H∗

old with the previous satellite
acquisition (6 days earlier).

c) Label maps: For every SAR acquisition date,
we calculated a label map where a zone is positive if an
avalanche was monitored between the last acquisition
and this one (6-day window); negative if not. The zones
outside of the EPA corridors (thus not monitored) are
considered as unknown and not labelled. Moreover,
if the uncertainty on the date at which the avalanche
occurred was larger than the 6 days between the acqui-
sitions, the zone was also not labelled.

B. Learning Framework

a) Satellite image patches: Because the zone of
deposition of every event is roughly localized (from
the corridors of the EPA map), a segmentation task
is not possible. That is why we used satellite image
patches (of 50x50 pixels, so 1km2) centered on the
lowest elevation part of the corridors, assuming that
any snow deposit would be included. We stored 3
feature image channels: V V ∗, V V ∗

old (from the previous

acquisition 6 days earlier) and the difference V Hdiff .
658 positive patches (containing an avalanche) were
available, and we randomly extracted the same number
of negative patches from non-active corridors. The 1316
samples were randomly separated into 3 sets as follows:
train (60%) / valid (20%) / test (20%), where different
acquisitions (dates) of a same corridor were kept in a
unique set.

b) Convolutional neural networks (CNN) model:
Because of the limited number of samples, we de-
veloped a transfer learning method that uses a pre-
trained CNN network which is then fine-tuned for
our specific problem. Following recent studies [2], [5],
we used the VGG 16 network [6] (composed of 13
convolutional layers) trained on the ImageNet database,
and optimized only the 3 fully connected (FC) layers
(see Figure 2). We used a cross-entropy loss as criterion
for the classification task. To reduce over-fitting, each
sample was subject to random augmentation: flipping
of axes and 50x50 cropping from a 64x64 initial patch.
Moreover, we also used a 50%-rate dropout on the
FC layers. The evaluation was repeated three times
and an average score was computed in order to assess
the robustness of the random weights initialization. We
used an early-stopping model selection on a maximum
of 250 epochs.

III. EVALUATION

a) Quantitative results: Once the best model us-
ing the validation set selected, we present in Table I
the results of the test set (kept hidden). We compared
our results with the thresholding method [3]. In order
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TABLE I:
Comparison between our method and the baseline
(thresholding method). Test set: 211 samples from

which 1/4 are from the Haute Maurienne chain.

Haute Maurienne All Alps

CNN Baseline CNN Baseline

Accuracy 0.77 0.53 0.69 0.58

Precision 0.81 0.51 0.69 0.57

Recall 0.74 0.72 0.69 0.59

F1-score 0.78 0.6 0.69 0.58

TABLE II:
Examples of classification results. RGB composition
of the 2 VV images (as R: V Vsummer, G: V V , B:
V Vsummer) given as input. The light green should

reflect avalanche deposits.

V V V Vold Label Prediction

1 1

0 0

1 0

to automate the threshold for image classification, we
calculated the number of positive threshold pixels per
image that gave the best result on the validation set
(above which the whole patch is considered as positive),
and used this parameter on the test set. We can see
that our method outperforms the baseline on all of
the metrics (accuracy, recall, precision and F1-score).
We can see that the results in the Haute Maurienne
chain (77% accuracy), containing a quarter of the total
number of samples, are clearly better than the result
on the whole 16 mountain chains (69% accuracy). This
seems to indicate that it is easier to detect avalanches
in zones where we have a good amount of data, even if
the corridors in the test set were unseen. Table II shows
three examples of classification in an RGB composition
where the green should reflect avalanche deposits.

b) Analysis: The results were then further ana-
lyzed, in order to understand what types of avalanches
can be detected. We observe no significant difference in
terms of season (month) and local slope between true
positives (TP, avalanches correctly detected) and false
negatives (FN, avalanches missed). Yet, we noticed that
the small avalanches (area< 70m2 according to the EPA
database) were more missed than others (40% of them
were not detected). We also noticed a difference in the
orientation of the mountain patches. The proportion of
FN patches facing East is 69%, while it is only 44%
for TP. This might be due to the angle at which the
satellite is facing the mountain (seeing better the slopes
facing West for the descending orbit). Lastly, as we
have seen with Haute Maurienne, the mountain chains
with the larger number of samples had the best results,
probably because different conditions (orientation, pre-
processing of the signal,ect.) are dependent on the
mountain zone. This is currently a limitation of the
method, however it should be resolved by (i) increasing
the size of the database with more seasons (since 2015),
(ii) increasing the confidence on the result by combining
several satellite orbits (4 relevant ascending/descending
orbits in our test zone), for a better coverage of the
mountains.

CONCLUSION

This is the first quantitative study combining SAR
imaging data with an independent in-situ avalanche
inventory. The complexity of the SAR signal and the
uncertainty on the labels make this problem particularly
challenging. We showed that by selecting some patches
centered on the lower part of inventoried avalanche
corridors, a convolutional neural network can detect the
presence of avalanche debris with an accuracy of up to
77% in the most susceptible mountain zone. Moreover,
we identified two causes of misclassification: the size of
the avalanche debris, and the orientation of mountains.
These new insights can help to make an efficient use of
remote sensing measurements on this complex terrain.
This is an encouraging first step towards a efficient use
of remote sensing for avalanche forecasters and local
policies.
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