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Abstract—In this work, necessary and sufficient conditions
for empirical coordination of vector-valued Witsenhausen coun-
terexample two terminal setups with non-classical information
structure are derived. Vector-valued processing allows to involve
coding in the design of the control strategies. Optimal charac-
terizations are obtained for the non-causal encoding and causal
decoding case as well as causal encoding and non-causal decoding
case. Necessary and sufficient conditions are provided for the
case with both non-causal encoding and decoding. The feasible
set of target distributions can serve as optimization domain
for characterizing the optimal average cost, in particular using
Witsenhausen’s cost function.

Index Terms—Witsenhausen counterexample, empirical coor-
dination, feasible target distributions, non-causal and causal
coding strategies

I. INTRODUCTION

The design of optimal decision strategies in distributed

stochastic networks with non-classical information structures

is a long-standing difficult problem. The famous counterex-

ample of Witsenhausen introduced in 1968 in [1] showed that

non-linear strategies can outperform the best linear strategy

[2]. Until today the setup serves as primary study object

to develop a better understanding on the impact of the in-

formation structure, on the optimal decision strategy design

problem [3]. The fundamental structure of the best decision

strategies for the Witsenhausen counterexample problem have

been reproduced in several different numerical optimisation

attempts, while the currently best result is achieved with an

iterative source-channel coding approach in [4].

Another approach, more information-theoretic, is to con-

sider a multi-letter version of the problem. In a series of

works, [5], [6], [7] to mention a few, Grover et al. studied

the setup where the decision makers have access to a sequence

of observations enabling block-coding strategies. This allowed

them to transfer advanced coding techniques [8], [9], [10], [11]

to the vector-valued Witsenhausen counterexample problem.

In one of their last works [7], which also provides a good

literature overview, they extended the concept of dual (role

of) control to triple roles by adding an explicit communication
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Fig. 1. The information source P(x0), the channel P(x1, y1|x0, u1) and
the final state P(x2|x1, u2) are i.i.d. distributed. The encoder C1 and the
decoder C2 may be causal or non-causal

task to the problem highlighting the fundamental tension

among the tasks. Previously, in [6] approximately lattice-based

optimal solutions were obtained for the finite-length vector

case. Recently, improved asymptotic bounds have been found

in [12] using a new vector quantization scheme. Choudhuri

and Mitra characterized the optimal power-distortion trade-off

for the vector-valued Wistenhausen problem in [13], which

prove the optimality of the coding scheme by Grover et al.

in [5] combining linear coding and Costa’s dirty-paper-coding

[14]. Much less work has been done considering the vector-

valued Witsenhausen problem with causal processing although

in several coding techniques have been extended to the causal

case, e.g. causal state communication in [15] or estimation

with a helper in [16].

In [17], Cuff and Zhao considered empirical coordination

for a cascade of controllers that act on its observed signals

where the empirical coordination criterion is a probabilistic

statement on the statistics of the joint sequences. In particular,

they point out that given a reward function, then the optimal

average reward can be found by optimizing over the coordi-

nation set. An extension to more abstract alphabets has been

done in [18] introducing a new definition of typical sequences

and deriving properties using the Glivenko-Cantelli theorem.

Originally, the problem of coordination between agents was

introduced in [19], Gossner et al. for a two-player team game

with asymmetric information. They also discussed the case of

noisy observations, which relates to the case of noisy commu-

nication channels. In [20] the concept has been generalized



and the notion of coordination capacity (region) has been

introduced, which can be used to characterize the joint behav-

ior of distributed nodes, given communication constraints. In

particular, results for simple multi-source settings considering

empirical and strong coordination have been obtained. In [21],

Cuff and Schieler investigated the case where the action of

terminal one has also to be coordinated with the state and

terminal two’s action. Interestingly, the achievability proof

relies on a hybrid coding strategy which conceptually can be

seen as the multi-letter extension of the best Witsenhausen

counterexample decision strategy.

In [22], [23], [24], [25], and [26] empirical coordination

capacity results for two terminal settings with side information

have been derived considering state-dependent channels as

well as causal and non-causal encoding and decoding. In [23],

necessary and sufficient conditions for the non-causal encoding

and decoding case for a cascade setting have been presented,

which includes the results of the lossless decoding case with

correlated source and state presented in [22]. Optimal results

have been obtained for the perfect channel case with two-

sided side information and the case with independent source

and channel. Further, optimal results have been presented for

causal/non-causal encoding and decoding including sketches

of the achievability and converse proofs, while full proofs

were provided in [24] and [27]. In contrast, the authors of

[25] characterize optimal conditions for a setting where both

terminals (a.k.a. agents) provide a channel input whose output,

that also depends on the system state, is observed by terminal

two only. Next, they consider the special case without any

channel input from terminal two for which they characterize, in

[25, Theorem 3], the optimal solution for non-causal encoder

and causal decoder.

An improved understanding of the fundamental distributed

decision making problem is of great value due to its wide

applications. For instance, Larrousse et al. applied in [28], [29]

the coordination approach to a two agents distributed power

allocation problem where only one agent is knowledgable

about a state and informs the second agent through its actions.

The idea of (state) communication through actions is usually

known as dual control where control actions have a second

purpose. In [30] coordination in a two-agent setting with

common average payoff function where each agent can control

only one variable is considered. Such payoff function includes

the Witsenhausen cost function as special case. The authors

assumed standard Borel spaces to justify the transfer of coding

results, from finite alphabets to continuous alphabets.

In this work we also consider two terminal settings with

finite alphabets motivated by the Witsenhausen counterexam-

ple as illustrated in Figure 1. Terminal C1 has access to the

independent and identically distributed (i.i.d.) system state

X0, which are non-causally or causally encoded into control

actions U1. A new system state X1 and observation at terminal

C2 are probabilistically generated based on the current state

X0 and action U1. Terminal C2 causally or non-causally

decodes the observations Y1 and decides on control action U2,

which probabilistically leads to the new system state X2. In the

following we adapt and extend results in the literature on coor-

dination to this Witsenhausen counterexample setup. In more

detail, in Section II, necessary and sufficient conditions for

optimal control designs with non-causal encoding and causal

decoding are derived and in Section III, optimal necessary

and sufficient conditions for the control designs for causal

encoding and non-causal decoding are presented. Lastly, in

Section IV both encoder and decoder are assumed to be non-

causal. Achievability results are deduced from previous results

in the literature [21], [23], [24], [25], [27], the converses

are outlined in the appendices. The set of feasible target

distributions can be then used to evaluate feasible average

values for a given cost function. Accordingly, in Section V

the optimization problem for the average cost function of

Witsenhausen counterexample is provided.

II. NON-CAUSAL ENCODER AND CAUSAL DECODER

The results in this section are closely related to the cor-

responding empirical coordination results in [23], [24], [25],

[27]. In more detail, the result has been stated without proof

for an almost similar setting without post-processing in [25,

Theorem 3] as well as in [23, eq. (16)]. Closely related proofs

have been shown in [24], [27]. We present here the result

adapted to the Witsenhausen setting.

Definition II.1 A “control design” with non-causal en-

coder and causal decoder is a tuple of functions c =
(f, {gi}i∈{1,...,n}) defined by:

f : Xn
0 −→ Un

1 , (1)

gi : Y
i
1 −→ U2, ∀i ∈ {1, . . . , n}. (2)

We denote by Cd(n) the set of control designs with non-causal

encoder and causal decoder. This code induces a probability

distribution over the sequences given by:

n
∏

i=1

P(x0,i)× 1(u
n
1 = f(xn

0 ))×

n
∏

i=1

P(x1,i, y1,i|x0,i, u1,i)

×

n
∏

i=1

1(u2,i = gi(y
i
1))×

n
∏

i=1

P(x2,i|x1,i, u2,i). (3)

Definition II.2 Given a sequence xn
0 ∈ Xn

0 , the empirical

frequency of symbol x0 ∈ X0 is defined by:

Qn(x0) =
1

n
·

n
∑

i=1

1(x0 = x0,i) ∈ [0, 1], ∀x0 ∈ X0, (4)

where x0,i denotes the i-th symbol in the sequence xn
0 . This

defines the empirical distribution Qn ∈ ∆(X0) of the sequence

xn
0 , where ∆(X0) denotes the set of probability distributions

over the finite set X0.

This definition extends to a vector of sequences

(xn
0 , u

n
1 , y

n
1 , x

n
1 , u

n
2 , x

n
2 ) whose empirical distribution is

given by: Qn ∈ ∆(X0 × U1 × X1 × Y1 × U2 × X2). With a

slight abuse of notation, we denote by Qn(x0) ∈ ∆(X0) and

Qn(x0, u1, x1, y1, u2, x2) ∈ ∆(X0×U1×X1×Y1×U2×X2),



the respective empirical distributions of the sequences xn
0

and (xn
0 , u

n
1 , y

n
1 , x

n
1 , u

n
2 , x

n
2 ).

Definition II.3 A probability distribution Q ∈ ∆(X0 × U1 ×
X1×Y1 ×U2×X2) is achievable if for all ε > 0, there exists

an n̄ ∈ N such that for all n ≥ n̄, there exists a control design

with non-causal encoder and causal decoder c ∈ Cd(n) such

that:

Pe(c) =Pc

(

∣

∣

∣

∣

∣

∣
Qn −Q

∣

∣

∣

∣

∣

∣

tv

≥ ε

)

≤ ε, (5)

where Qn ∈ ∆(X0 × U1 × X1 × Y1 × U2 × X2) denotes the

random variable of the empirical distribution of the sequences

of symbols (Xn
0 , U

n
1 , X

n
1 , Y

n
1 , Un

2 , X
n
2 ) induced by the control

design c ∈ Cd(n) and the probability distributions of the

source P(x0), of the channel P(x1, y1|x0, u1) and of the final

state P(x2|x1, u2).

The topology of the network induces several restriction

regarding the set of achievable probability distributions. A first

restriction is the one imposed by the marginals probability

distribution of the source and channel.

Definition II.4 A target probability distribution

Q(x0, u1, x1, y1, u2, x2) satisfies the marginal conditions of

the source P(x0), of the channel P(x1, y1|x0, u1) and of the

final state P(x2|x1, u2), and decomposes as follows:

Q(x0, u1,x1, y1, u2, x2)

=P(x0)×Q(u1|x0)× P(x1, y1|x0, u1)

×Q(u2|x0, u1, y1)× P(x2|x1, u2). (6)

Theorem II.5 (Non-Causal Encoder and Causal Decoder)

A target probability distribution P(x0) × Q(u1|x0) ×
P(x1, y1|x0, u1) × Q(u2|x0, u1, y1) × P(x2|x1, u2) is

achievable with causal encoder and non-causal decoder if

and only if there exists a pair of auxiliary random variables

(W1,W2) drawn according to:

P(x0)×Q(u1, w1, w2|x0)× P(x1, y1|x0, u1)

×Q(u2|w2, y1)× P(x2|x1, u2), (7)

whose marginals equal the target probability distribution and

such that:

I(X0;W2) ≤ I(W1;Y1,W2)− I(W1;X0,W2) (8)

⇐⇒0 ≤ I(W1;Y1|W2)− I(W1,W2;X0). (9)

The supports of the auxiliary random variables (W1,W2) are

bounded by max(|W1|, |W2|) ≤ d+4 with d = |X0×U1×Y1×
U2|. We denote by Qd, the set of achievable target probability

distributions Q(x0, u1, x1, y1, u2, x2).

The achievability proof of Theorem II.5 comes from [24,

Theorem V.1] that generalizes [27, Theorem 4]. The converse

proof of Theorem II.5 is stated in App. A. This result was also

stated in [25, Theorem 3].

Remark II.6 The probability distribution of equation (7) sat-

isfies:










(X1, Y1)−
− (X0, U1)−
− (W1,W2),

U2 −
− (Y1,W2)−
− (X0, X1, U1,W1),

X2 −
− (X1, U2)−
− (X0, U1, Y1,W1,W2).

(10)

The first and third Markov chain in (10) correspond to the

channels P(x1, y1|x0, u1) after encoder C1 and P(x2|x1, u2)
after decoder C2. The second Markov chain is due to the causal

decoding which prevents the action U2 to depend on W1 as

well.

III. CAUSAL ENCODER AND NON-CAUSAL DECODER

The results in this section are closely related to the cor-

responding empirical coordination results in [21], [23], [24],

which are based on the optimal coding scheme developed by

Choudhuri and Mitra in [15]. Here we extend and adapt the

results to the Witsenhausen setting.

Definition III.1 A “control design” with causal encoder and

non-causal decoder c ∈ Ce(n) is a tuple of functions c =
({fi}i∈{1,...,n}, g) defined by:

fi : X
i
0 −→ U1, ∀i ∈ {1, . . . , n}, (11)

g : Yn
1 −→ Un

2 . (12)

This code induces a probability distribution over the sequences

given by:

n
∏

i=1

P(x0,i)×
n
∏

i=1

1(u1,i = fi(x
i
0))×

n
∏

i=1

P(x1,i, y1,i|x0,i, u1,i)

× 1(un
2 = g(yn1 ))×

n
∏

i=1

P(x2,i|x1,i, u2,i). (13)

The notion of achievable target probability distribution with

causal encoder and non-causal decoder is defined similarly as

in Definition II.3, by replacing c ∈ Ce(n) instead of c ∈ Cd(n).

Theorem III.2 (Causal Encoder and Non-Causal Decoder)

A target probability distribution P(x0) × Q(u1|x0) ×
P(x1, y1|x0, u1) × Q(u2|x0, u1, y1) × P(x2|x1, u2) is

achievable with causal encoder and non-causal decoder if

and only if there exists a pair of auxiliary random variables

(W1,W2) drawn according to:

P(x0)×Q(w1)×Q(w2|x0, w1)×Q(u1|x0, w1)

×P(x1, y1|x0, u1)×Q(u2|w1, w2, y1)× P(x2|x1, u2),
(14)

whose marginals equal the target probability distribution and

such that:

0 ≤ I(W1,W2;Y1)− I(W2;X0|W1) (15)

⇐⇒0 ≤ I(W1,W2;Y1)− I(W1,W2;X0). (16)

The supports of the auxiliary random variables (W1,W2) are

bounded by max(|W1|, |W2|) ≤ d+4 with d = |X0×U1×Y1×



U2|. We denote by Qe, the set of achievable target probability

distributions Q(x0, u1, x1, y1, u2, x2).

The achievability proof of Theorem III.2 comes from [23,

Theorem V.1], see also [24, Theorem VI.1]. The converse

proof of Theorem III.2 is stated in App. B.

Remark III.3 The probability distribution of equation (14)

satisfies:






























X0 independent of W1,

U1 −
− (X0,W1)−
−W2,

(X1, Y1)−
− (X0, U1)−
− (W1,W2),

U2 −
− (W1,W2, Y1)−
− (X0, X1, U1),

X2 −
− (X1, U2)−
− (X0, U1, Y1,W1,W2).

(17)

The third and fifth Markov chains in (17) again correspond

to the channels. The first two conditions are due the causal

encoding. The fourth Markov chain shows that the action of

decoder C2 can depend on both auxiliary random variables

(W1,W2) and the noisy observation Y1 due the non-causal

decoding.

IV. BOTH NON-CAUSAL ENCODER AND DECODER

In this section we adapt the empirical coordination results

from [21], [23], [24] to the Witsenhausen counterexample

setting.

Definition IV.1 A “control design” with non-causal encoder

and non-causal decoder c ∈ Cnc(n) is a pair of functions

c = (f, g) defined by:

f : Xn
0 −→ Un

1 , (18)

gi : Y
n
1 −→ Un

2 . (19)

This code induces a probability distribution over the sequences

given by:

n
∏

i=1

P(x0,i)× 1(u
n
1 = f(xn

0 ))×

n
∏

i=1

P(x1,i, y1,i|x0,i, u1,i)

× 1(un
2 = f(yn1 ))×

n
∏

i=1

P(x2,i|x1,i, u2,i). (20)

The notion of achievable target probability distribution

with non-causal encoder and non-causal decoder is defined

similarly as in Definition II.3, by replacing c ∈ Cnc(n) instead

of c ∈ Cd(n).

Theorem IV.2 (Both Non-Causal Encoder and Decoder)

• If the target probability distribution P(x0) × Q(u1|x0) ×
P(x1, y1|x0, u1) × Q(u2|x0, u1, y1) × P(x2|x1, u2) is

achievable with non-causal encoder and non-causal decoder

then there exists an auxiliary random variable W drawn

according to:

P(x0)×Q(w|x0)×Q(u1|x0, w) × P(x1, y1|x0, u1)

×Q(u2|w, y1)× P(x2|x1, u2), (21)

whose marginals equal the target probability distribution and

such that:

0 ≤ I(U1, X0;Y1)− I(W ;X0). (22)

• If there exists an auxiliary random variable W drawn ac-

cording to (21), whose marginals equal the target probability

distribution and such that:

0 ≤ I(W ;Y1)− I(W ;X0), (23)

then the target probability distribution P(x0) × Q(u1|x0) ×
P(x1, y1|x0, u1)×Q(u2|x0, u1, y1)×P(x2|x1, u2) is achiev-

able with non-causal encoder and non-causal decoder.

• The supports of the auxiliary random variables W are

bounded by |W| ≤ d + 4 with d = |X0 × U1 × Y1 ×
U2|. We denote by Qi the set of target probability distri-

butions Q(x0, u1, x1, y1, u2, x2) for which there exists an

auxiliary random variable W satisfying (21) and (23) and

we denote by Qo the set of target probability distributions

Q(x0, u1, x1, y1, u2, x2) for which there exists an auxiliary

random variable W satisfying (21) and (22).

The achievability proof of Theorem II.5 comes from [23,

Theorem III.1] and [24, Theorem I.1]. The converse proof of

Theorem II.5 is stated in App. C.

Remark IV.3 The probability distribution of equation (21)

satisfies:










(X1, Y1)−
− (X0, U1)−
−W,

U2 −
− (Y1,W )−
− (X0, X1, U1),

X2 −
− (X1, U2)−
− (X0, U1, Y1,W ).

(24)

The first and third Markov chains in (24) are again due to

the two channels. The second Markov chain shows that the

channel output Y1 and the auxiliary random variable W are a

sufficient statistic for deciding on the action U2

V. WITSENHAUSEN’S COST FUNCTION

The four sets Qd, Qe, Qi, Qo are convexes (see for

example [27, Theorem 3, pp. 5093]) and Witsenhausen’s

cost function is linear w.r.t. the probability distribution

Q(x0, u1, x1, y1, u2, x2). Hence the four minimum costs φd,

φe, φi, φo are achieved by solving this problem:

φ = min
Q∈Q

EQ

[

k2 · U2
1 + (X1 − U2)

2

]

, (25)

where k ∈ R is a weight parameter and Q is one of the sets

Qd, Qe, Qi, Qo.

APPENDIX A

SKETCH OF THE CONVERSE PROOF OF THEOREM II.5

From the converse proof in [24, Sec.V-B], we identify the

auxiliary random variables W1,i = Xn
0,i+1 and W2,i = Y i−1

1
,

so as to have:

0 ≤

n
∑

i=1

I(W1,i;Y1,i|W2,i)−

n
∑

i=1

I(W1,i,W2,i;X0,i). (26)



The two random variables (W1,i,W2,i) satisfy the following

Markov Chains corresponding to the set of probability distri-

butions (10) of Theorem II.5:

(X1,i, Y1,i)−
− (X0,i, U1,i)−
− (W1,i,W2,i), (27)

U2,i −
− (Y1,i,W2,i)−
− (X0,i, X1,i, U1,i,W1,i), (28)

X2,i −
− (X1,i, U2,i)−
− (X0,i, U1,i, Y1,i,W1,i,W2,i). (29)

Eq. (27) comes from the memoryless property of the channel

P(x1, y1|x0, u1).
Eq. (28) comes from the causal decoding: the output of the

decoder U2,i depends on the symbols (X0,i, X1,i, U1,i, X
n
0,i+1)

only through the past and current channel outputs (Y1,i, Y
i−1

1 ).
Eq. (29) comes from the memoryless property of the channel

P(x2|x1, u2).

APPENDIX B

SKETCH OF THE CONVERSE PROOF OF THEOREM III.2

From the converse proof in [24, Sec.VI-B], we identify the

auxiliary random variables W1,i = X i−1

0 and W2,i = Y n
1,i+1,

so as to have:

0 ≤
n
∑

i=1

I(W1,i,W2,i;Y1,i)−
n
∑

i=1

I(W2,i;X0,i|W1,i). (30)

The two random variables (W1,i,W2,i) satisfy the following

properties corresponding to the set of probability distributions

(17) of Theorem III.2:

X0,i independent of W1,i, (31)

U1,i −
− (X0,i,W1,i)−
−W2,i, (32)

(X1,i, Y1,i)−
− (X0,i, U1,i)−
− (W1,i,W2,i), (33)

U2,i −
− (W1,i,W2,i, Y1,i)−
− (X0,i, X1,i, U1,i), (34)

X2,i −
− (X1,i, U2,i)−
− (X0,i, U1,i, Y1,i,W1,i,W2,i). (35)

Eq. (31) comes from the i.i.d property of the source.

Eq. (32) comes from the causal encoding function that implies

U1,i is a deterministic function of X i
0 which is equal to:

(X0,i,W1,i).
Eq. (33) comes from the memoryless property of the channel

P(x1, y1|x0, u1).
Eq. (34) comes from the causal encoding and non-causal

decoding, as stated in [24, Lemma 3].

Eq. (35) comes from the memoryless property of the channel

P(x2|x1, u2).

APPENDIX C

SKETCH OF THE CONVERSE PROOF OF THEOREM IV.2

0 ≤I(Un
1 , X

n
0 ;Y

n
1 )− I(Xn

0 ;Y
n
1 ) (36)

=

n
∑

i=1

I(U1,i, X0,i;Y
n
1 |U i−1

1 , X i−1

0 )−

n
∑

i=1

I(X0,i;Y
n
1 , X i−1

0 )

(37)

≤

n
∑

i=1

I(U1,i, X0,i;Y
n
1 , U i−1

1 , X i−1

0 )

−

n
∑

i=1

I(X0,i;Y
i−1

1 , Y n
1,i+1) (38)

=
n
∑

i=1

I(U1,i, X0,i;Y1,i)−
n
∑

i=1

I(X0,i;Wi). (39)

Eq. (37) comes from the i.i.d. property of Xn
0 .

Eq. (38) comes from the property of the mutual information.

Eq. (39) comes from the memoryless property of the channel

P(x1, y1|x0, u1) and the identification of the auxiliary random

variable Wi = (Y i−1

1 , Y n
1,i+1) which satisfies the Markov

chains of (24):

(X1,i, Y1,i)−
− (X0,i, U1,i)−
−Wi, (40)

U2,i −
− (Wi, Y1,i)−
− (X0,i, X1,i, U1,i), (41)

X2,i −
− (X1,i, U2,i)−
− (X0,i, U1,i, Y1,i,Wi). (42)

Eq. (40) comes from the memoryless property of the channel

P(x1, y1|x0, u1).
Eq. (41) comes from the non-causal decoding.

Eq. (42) comes from the memoryless property of the channel

P(x2|x1, u2).
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