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Abstract—The vector-valued extension of the famous Witsen-
hausen counter-example setup is studied where the first decision
maker (DM1) non-causally knows and encodes the iid state
sequence and the second decision maker (DM2) causally estimates
the interim state. The coding scheme is transferred from the
finite alphabet coordination problem for which it is proved to be
optimal. The extension to the Gaussian setup is based on a non-
standard weak typicality approach and requires a careful average
estimation error analysis since the interim state is estimated by
the decoder. Next, we provide a choice of auxiliary random
variables that outperforms any linear scheme. The optimal
scheme remains unknown.

I. INTRODUCTION

In 1968, Witsenhausen introduced in [1] his famous coun-

terexample that showed that the best affine policy is outper-

formed by non-linear policies. Since then the example serves

as study object illustrating the importance of the information

pattern in distributed decision making, see [2] for a compre-

hensive discussion.

The first vector-valued extension considering a non-causal

setup was studied by Grover and Sahai in 2008 followed by

a series of works, e.g. [3]. A comprehensive overview on

the corresponding results is provided in [4], where we also

discuss its close relation to the coordination problem. Optimal

coding schemes for relevant setups are derived in [5], which

also provides a review on the related literature. Most of the

results were derived for finite alphabet setup where the concept

of strong typicality provides the Markov Lemma. A rigorous

extension to the Gaussian case has been done by Grover and

Sahai in [3]. The main result was proved to be optimal in [6].

In this work we extend the finite alphabet coding scheme

based on the concept of weak typicality [7] that we extend

so that the need of the Markov Lemma can be avoided.

Conceptually, the extension is similar to an extension as

done in [8] where also Wyner’s approach on how to analyze

the average estimation error has been used [9]. We extend

this approach in this work since the second decision maker

estimates the interim state and not the iid source.

In the following we show that also in this vector-valued

setup the best affine policies can be outperformed by non-

linear policies. In more detail, there exists parameter config-

urations where our coordination coding outperforms a simple

amplification strategy.
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Fig. 1. The state and the channel noise are drawn according to the i.i.d.
Gaussian distributions Xn

0
∼ N (0, QI) and Zn

1
∼ N (0, NI).

II. SYSTEM MODEL

We consider the vector-valued Witsenhausen setup in which

the sequences of states and channel noises are drawn inde-

pendently according to the i.i.d. Gaussian distributions Xn
0 ∼

N (0, QI) and Zn
1 ∼ N (0, NI). We denote by X1 the interim

state and Y1 the output of the noisy channel.

X1 =X0 + U1, (1)

Y1 =X1 + Z1 = X0 + U1 + Z1 with Z1 ∼ N (0, N). (2)

We denote by PX0 = N (0, Q) the Gaussian state distribution

and by PX1Y1|X0U1
the conditional probability distribution

corresponding to equations (1)-(2).

Definition 1. A “control design” with non-causal encoder

and causal decoder is a tuple of stochastic functions c =
(f, {gi}i∈{1,...,n}) defined by:

f : Xn
0 −→ Un

1 , gi : Yi
1 −→ U2, ∀i ∈ {1, . . . , n}. (3)

We denote by Cd(n) the set of control designs with non-causal

encoder and causal decoder. This code induces a probability

distribution over the sequences given by:

n
∏

i=1

PX0,ifUn
1 |Xn

0

n
∏

i=1

PX1,iY1,i|X0,iU1,i

n
∏

i=1

gU2,i|Y i
1
. (4)

Definition 2. We define the two long-run costs functions

cP (u
n
1 ) = 1

n

∑n

t=1 u
2
1,t and cS(x

n
1 , u

n
2 ) = 1

n

∑n

t=1(x1,t −
u2,t)

2. The pair of costs (P, S) are achievable if for all ε > 0,

there exists n̄ ∈ N∗, for all n ≥ n̄, there exists a “control

design” c ∈ Cd(n) such that:
∣

∣
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cP (U
n
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∣

∣

∣

≤ ε,

∣

∣

∣

∣

S − E

[

cS(X
n
1 , U

n
2 )
]

∣

∣

∣

∣

≤ ε. (5)



Theorem 3 (Main result). The pair of Witsenhausen costs

(P, S) are achievable if and only if there exists a joint

probability distribution

Q = PX0QU1W1W2|X0
PX1Y1|X0U1

QU2|W2Y1
, (6)

involving two auxiliary random variables (W1,W2), such that

I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0 and

P = EQ

[

U2
1

]

, S = EQ

[

(X1 − U2)
2
]

. (7)

Remark 4. The probability distribution of (6) satisfies:











(X1, Y1)−
− (X0, U1)−
− (W1,W2),

U2 −
− (Y1,W2)−
− (X0, X1, U1,W1),

X2 −
− (X1, U2)−
− (X0, U1, Y1,W1,W2).

(8)

The causality condition prevents the controller C2 to recover

W1. This corresponds to the second Markov chain of (8).

The achievability proof of Theorem 3 is in Appendix A

and the converse proof follows from [4, Theorem II.5]. In

order to characterize the set of achievable Witsenhausen costs

(P, S), we consider a fixed parameter P ≥ 0 and we minimize

S = EQ

[

(X1 − U2)
2
]

. The optimization problem writes

minimize
Q∈Q(P )

EQ

[

(X1 − U2)
2
]

, where (9)

Q(P ) =

{

(

QU1W1W2|X0
,QU2|W2Y1

)

s.t. P = EQ

[

U2
1

]

and I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0

}

. (10)

Although the set Q(P ) is convex, the characteriza-

tion of the optimal pairs of probability distributions
(

QU1W1W2|X0
,QU2|W2Y1

)

∈ Q seems difficult. We investigate

two schemes referred to as “state amplification” in section

III-A and “coordination coding” in section III-B and we

compare there performances in section III-C.

III. NUMERICAL RESULTS

A. Best Affine Policy

For a given parameter P ≥ 0, the first controller zero-forces

the state by using U1 = −
√

P
Q

· X0. The best affine policy

[12], also referred to as “state amplification”, does not involve

coding so there is no need of (W1,W2).

Proposition 5. When the controllers implement U1 = −
√

P
Q
·

X0 and U2 = E
[

X1|Y1
]

, we have:

Ssa =E
[

(X1 − U2)
2
]

=

(√
Q−

√
P
)2 ·N

(√
Q −

√
P
)2

+N
. (11)
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Fig. 2. The functions Ssa and Scc depending on P . Coordination coding
with Costa’s choice of auxiliary random variables outperforms the best affine
strategy for a range of low powers.

B. Coordination Coding

As in [5], we combine source coding with Costa’s coding.

I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0 (12)

⇐⇒I(W2;X0) ≤ I(W1;Y1,W2)− I(W1;X0,W2). (13)

Given two positive correlations parameters (δ,D), we define

the test channel X0 = δ ·W2+Z0, where the random variables

Z0 ∼ N (0, D) and W2 ∼ N
(

0, 1
δ2
(Q−D)

)

are independent.

The correlation matrix of (X0,W2) ∼ N (0,K) is given by:

K =

[

Q 1
δ
(Q−D)

1
δ
(Q −D) 1

δ2
(Q−D)

]

(14)

As in Costa’s scheme [11], U1 is independent of (X0,W2)
and W1 = U1 + αX0 + βW2.

Lemma 6. The parameters (δ, β) have no impact, moreover

I(W1;Y1|W2)− I(W1,W2;X0) (15)

=
1

2
log2

(

P ·D · (P +D +N)

Q ·
(

N · (P + α2D) + (1− α)2 · P ·D
)

)

. (16)

Lemma 7. By using Costa’s optimal α⋆ = P
P+N

, we have

I(W1;Y1|W2)− I(W1,W2;X0) =
1

2
log2

(

D · (P +N)

Q ·N

)

.

(17)

The minimal D such that (17) is positive, is D⋆ = Q·N
P+N

.

Proposition 8. For the coordination coding scheme with

W1 = U1 + α⋆X0, W2 = X0 − Z0, Z0 ∼ N (0, D⋆) and

U2 = E
[

X1|Y1,W2

]

, we have

Scc =E
[

(X1 − U2)
2
]

=
N ·

(

P · (P +N) +Q ·N
)

(P +N)2 +Q ·N . (18)



C. Performance Comparison

In Fig. 2, we compare the Ssa and Scc as functions of P .

For the parameters (P,Q,N) = (3, 27, 1) the “coordination

coding” outperforms the “state amplification” scheme.

Proposition 9. For N > 0 and Q > 0 we have:

Scc − Ssa ≥ 0 ⇐⇒ 2(P +N)−
√

Q · P ≥ 0. (19)

APPENDIX A

PROOF OF THE MAIN RESULT

The achievability proof uses the block-Markov coding

scheme with B blocks each of length n using backward

encoding at DM 1 and forward decoding at DM 2. The coding

scheme follows the empirical coordination scheme with non-

causal encoding and causal decoding [5]. Before the regular

transmission will be a initialisation phase of length n′. The

’error’ analysis is based on the concept of weak typicality

with an extension that circumvents the need of the Markov

Lemma available for strong typicality. A similar approach has

been taken in [8].

Preliminaries: Given an arbitrary but fixed ε > 0. Further,

assume (Xn
0 , X

n
1 , U

n
1 , U

n
2 ,W

n
1 ,W

n
2 , Y

n
1 ) is generated iid ∼

QX0X1U1U2W1W2Y1 with P = E[U2
1 ] and S = E[(X1−U2)

2].
Then let ψ(n) : Xn

0 ×Xn
1 ×Un

1 ×Un
2 ×Wn

1 ×Wn
2 ×Yn

1 → {0, 1}
denote an indicator function for sequences of length n with

ψ(n)(xn0 , x
n
1 , u

n
1 , u

n
2 , w

n
1 , w

n
2 , y

n
1 ) =











1 if |cP (un1 )− P | ≥ 1
2ε or |cS(xn1 , un2 )− S| ≥ 1

12ε

or (wn
1 , w

n
2 , y

n
1 ) /∈ A(n)

ε (W1,W2, Y1)

0 otherwise

Using the weak law of large numbers and the union bound we

have

δn = E[ψ(n)(Xn
0 , X

n
1 , U

n
1 , U

n
2 ,W

n
1 ,W

n
2 , Y

n
1 )]

n→∞−→ 0.

Define

S(n)
ε = {(xn0 , wn

1 , w
n
2 ) | η(n)(xn0 , wn

1 , w
n
2 ) ≤

√

δn}
with η(n)(xn0 , w

n
1 , w

n
2 ) = E[ψ(n)(xn0 , X

n
1 , U

n
1 , U

n
2 , w

n
1 , w

n
2 ,

Y n
1 )|Xn

0 = xn0 ,W
n
1 = wn

1 ,W
n
2 = wn

2 ]. Then from the Markov

inequality we obtain

P{(Xn
0 ,W

n
1 ,W

n
2 ) /∈ S(n)

ε }

≤ E[ψ(n)(Xn
0 , X

n
1 , U

n
1 , U

n
2 ,W

n
1 ,W

n
2 , Y

n
1 )]√

δn
≤
√

δn

We finally define the set

B(n)
ε = A(n)

ε (X0,W1,W2) ∩ S(n)
ε ,

which denotes the set of jointly typical pairs that also sat-

isfy the cost constraints. Note that for (Xn
0 ,W

n
1 ,W

n
2 ) iid

∼ QX0W1W2 we have P{(Xn
0 ,W

n
1 ,W

n
2 ) ∈ B(n)

ε } → 1 as

n → ∞. Furthermore, we have the following lemma, which

can be similarly shown as Lemma 1 in the journal draft [8].

Lemma 10. Let Xn
0 iid∼ QX0 . For M = 2nR ≥

2n(I(X0;W2)+3ε) codewords wn
2 (m) iid∼ QW2 , 1 ≤ m ≤ M

and L = 2nRL ≥ 2n(I(W1;X0,W2)+4ε) codewords wn
1 (ℓ,m)

iid∼ QW1 , 1 ≤ ℓ ≤ L and ε > 0, we have

P{(Xn
0 ,W

n
1 (1, ℓ),W

n
2 (m)) /∈ B(n)

ε ∀m, ℓ} → 0 as n→ ∞.

Proof. The proof follows the same arguments as the proof of

Lemma 1 in the journal draft [8] with X , U , and V replaced

by X0, W1, and W2 as well as pV |U replaced by QW1 so that

(155) changes as follows

Q⊗n
W1

(wn
1 )

Q⊗n
W1|X0W2

(wn
1 |xn0 , wn

2 )
≥ 2−n(h(W1)+2ε)

2−n(h(W1|X0,W2)−2ε)

= 2−n(I(W1;X0,W2)+4ε. �

To ensure that the second cost constraint remains bounded

even when a coding error happens, DM 2 is going to quantise

its output. Since we assume a joint distribution with E[(X1 −
U2)

2] = S, for any δ̂ > 0 there exists a quantisation qU2 :

U2 → {û2,k}NU2

k=1 such that

Ŝ = E[(X1 − qU2(U2))
2] ≤ (1 + δ̂)S,

in particular such that δ̂S < 1
4ε.

With those preliminaries we are now ready to provide the

coding scheme.

Random codebook: For rate R ≥ I(X0;W2) + 3ε and rate

RL ≥ I(W1;W2;X0) + 4ε, generate 2nR codewords wn
2 (m)

iid ∼ QW2 and 2n(R+RL) codewords wn
1 (m, ℓ) iid ∼ QW1

with indices m ∈ [1 : 2nR] and ℓ ∈ [1 : 2nRL ].
Backward encoding at DM 1: Let mb and xn0,b denote the

message and processed source sequence of length n of block

b, 1 ≤ b ≤ B. Due to non-causal knowledge, the encoder

performs backward encoding, i.e., the encoder starts with

block b = B with initialisation mB+1 = 1 and subsequently

encodes the previous blocks. In block b, the encoder takes

sequence xn0,b and message mb+1 and looks for ℓb and mb

such that

(xn0,b, w
n
1 (mb+1, ℓb), w

n
2 (mb)) ∈ B(n)

ε

If there are none or more than one pair, then the en-

coder randomly picks one. Let wn
1,b = wn

1 (mb+1, ℓb) and

wn
2,b = wn

2 (mb) denote the choice. Next, we generate un1,b ∼
Q⊗n

U1|W1W2X0
(wn

1,b, w
n
2,b, x

n
0 ).

Forward transmission of DM 1: In block b, 1 ≤ b ≤ B, if

|cP (un1,b)−P | < 1
4ε then DM 1 transmits un1,b synchronously

with xn0,b, otherwise DM1 transmits the all zero codeword.

Channel P⊗n
X1,Y1|X0,U1

produces channel outputs xn1,b and yn1,b.
Forward decoding at DM 2: Let w̃n

2,b be an abbreviation for

wn
2,b(m̃b) for block b, 1 ≤ b ≤ B, where m̃b denotes the index

decided on in the previous block b− 1. Note that message m̃1

will have been obtained from the initialisation phase. Upon

receiving yn1,b, DM 2 looks for ℓ̃b and m̃n
b+1 such that

(yn1,b, w
n
1 (m̃b+1, ℓ̃b), w̃2,b) ∈ A(n)

ε (Y1,W1,W2).

If there are none or more than one pair, then the decoder

randomly picks one.



Forward transmission of DM 2: In block b, 1 ≤ b ≤ B,

DM 2 generates un2,b ∼ Q⊗n
U2|W2Y1

(w̃n
2,b, y

n
1 ). DM 2 transmits

the quantised sequence ûn2,b with elements û2,i,b = qU2(u2,i,b)
synchronously with yn1,b.

Sketch for initialisation phase: Before the first block, mes-

sage m1 is communicated from DM 1 to DM 2 using a

Gel’fand Pinsker coding scheme treating Xn′

0 as non-causal

channel state knowledge. The auxiliary random variable is

picked according to Costa [11] with transmit power P so that

the rate RGP = 1
2 log(1+

P
N
) is achievable. The block length

of the initial phase n′ = αn is chosen such that message m1

with rate R can be communicated with an arbitrary small error,

i.e., we pick a finite α > 0 such that α > R/RGP . Beside

decoding message m1, similarly as in [12] where the channel

state sequence is estimated, DM 2 will estimate the evolved

state sequence Xn′

1 using the MMSE estimator

U2,i =
P +Q

P +Q +N
Ŷ1,i

for 1 ≤ i ≤ n′. The corresponding mean-squared state

estimation error is given by

S′ = E

[

1

n′

∥

∥

∥
Xn′

1 − Un′

2

∥

∥

∥

2

2

]

=
(P +Q)N

P +Q+N

In the following error analysis, the initialisation phase will

be denoted as block b = 0.

Error analysis per block: Let Ee and Ee
b (mb+1) denote

the events of a failed encoding process and failed encoding

in block b given mb+1, i.e., Ee
b (mb+1) = Ee,1

b (mb+1) ∪
Ee,2

b with Ee,1
b (mb+1) = {(Xn

0,b,W
n
1 (mb+1, ℓb),W

n
2 (mb)) /∈

B(n)
ε ∀(ℓb,mb)} and Ee,2

b = {|cP (Un
1,b) − P | ≥ 1

4ε}. Due to

the independence between codewords, the probability of an

encoding error in block b given no encoding error in previous

blocks does not depend on previous blocks. Accordingly, it is

sufficient to analyze the case mb+1 = 1. Thus,

P{Ee
b (Mb+1) |

B
⋃

β=b+1

Ēe
β(Mβ+1)}

=P{Ee
b (1)} ≤ P{Ee,1

b (1)}+ P{Ee,2
b | Ēe,1

b (1)}

where the bar in Ēe denotes the complementary event of

Ee. If R ≥ I(X0;W2) + 3ε and RL ≥ I(W1;W2, X0) + 4ε
following Lemma 10, we have P{Ee,1

b (1)} =

P{(Xn
0,b,W

n
1 (1, ℓ),W2(m)) /∈ B(n)

ε ∀m, ℓ} → 0 as n → ∞.

Further, we have P{Ee,2
b | Ēe,1

b (1)} = P{|cP (Un
1,b) − P | ≥

1
4ε | (Xn

0,b,W
n
1 (1, Lb),W2(m)) ∈ B(n)

ε } ≤ √
δn → 0 as n →

∞ due to the law of large numbers.

For the initialisation phase, i.e. block b = 0, the encoding

and decoding is successful if the message m1 ∈ [1 : 2nR]
can be successfully send in the initialisation block. This can

be done with arbitrary small, but positive probability of error

with a sufficiently long block length n′ = αn since α has been

chosen such that nR < n′R(1) = αnRGP holds. Thus, we

have P{Ee
0(M1) |

B
⋃

β=1

Ēe
β(Mβ+1)} → 0 as well as P{Ed

0} →
0 as n→ ∞. It follows that P{Ee} → 0 as n→ ∞.

Next, we analyze the decoding error in block b, 1 ≤ b ≤ B.

Let Y n
1,b denote the received sequences at DM 2 in block b.

Further, let Et
b denote the event that sequence Y n

1,b is not

jointly typical, i.e., Et
b = {(Y n

1,b,W
n
1 (Mb+1, Lb), W̃

n
2,b) /∈

A(n)
ε (Y1,W1,W2)}. Then the decoding error probability

P{Ed
b |

b−1
⋃

β=0

Ēd
β ∪ Ēe} can be upper bounded by

P{Ed
b |

b−1
⋃

β=0

Ēd
β ∪ Ēe ∪ Ēt

b}+ P{Et
b |

b−1
⋃

β=0

Ēd
β ∪ Ēe}

using the union bound. Using the definition of B(n)
ε we obtain

the following upper bound for the second term

P{Et
b |

b−1
⋃

β=0

Ēd
β ∪ Ēe}

= P{Y n
1,b /∈ A(n)

ε (Y1 |Wn
1,b,W

n
2,b) | (X0,b,W

n
1,b,W

n
2,b) ∈ B(n)

ε }
≤ max

(xn
0 ,w

n
1 ,wn

2 )∈B
(n)
ε

η(n)(xn0 , w
n
1 , w

n
2 ) ≤

√

δn → 0 as n→ ∞,

which also ensures that Wn
1 (Mb+1, Lb) will be jointly typical

with Y n
1,b and Wn

2,b. For the correct decoding in block b, 1 ≤
b ≤ B we have

P{Ed
b |

b−1
⋃

β=0

Ēd
β ∪ Ēe ∪ Ēt

b} ≤ P{∃ℓ̃b, m̃b+1 6=Mb+1 :

Wn
1 (m̃b+1, ℓ̃b+1) ∈ A(n)

ε (W1|Y n
1,b,W

n
2,b)}

≤
∑

ℓb,m̃b+1:
m̃b+1 6=Mb+1

max
(yn

1 ,wn
2 )∈A

(n)
ε

P{Wn
1 (m̃b+1, ℓ̃b+1) ∈ A(n)

ε (W1|yn1 , wn
2 )}

≤ 2nR2nRL2−n(I(W1;Y1,W2)−3ε) = 2n(R+RL−I(W1;Y1,W2)+3ε),

which goes to 0 as n→ ∞ if R+RL < I(W1;Y1,W2)− 3ε.
It follows that P{Ed} → 0 as n→ ∞.

Witsenhausen cost analysis: We first analyze the cost of con-

trol. Let ψb = ψ(n)(Xn
0,b, X

n
1,b, U

n
1,b, U

n
2,b,W

n
1,b,W

n
2,b, Y

n
1,b)

indicate an error in block b. From the previous we have

E[ψb] → 0 as n → ∞. If ψb = 1, either for the generated

input sequence un1,b we have |cP (un1,b) − P | ≥ 1
2ε, or the

first cost constraint is satisfied but the second cost constraint

or the jointly typicality condition are not satisfied. If the first

constraint is not satisfied, then the encoder sets un1,b to the

all zero codeword, i.e., bounded error for ψb = 1 so that

E[|cP (Un
1,b)− P |] < ε can be shown for n sufficiently large.

Next, for the estimation error cost we extend the distortion

analysis approach by Wyner [9]. Let χE,b be an indicator

function of the event of an encoding or decoding error in

block b. From the previous error analysis we have P{χE,b} →
0 as n → ∞. Define φb = (1 − ψb)(1 − χE,b) indicating the

event of desired sequences that satisfy cost and joint typicality

constraints AND no coding error event in block b. From



the previous we have E[φb] → 1 as n → ∞. In particular,

if φb = 1, then we have E[|cS(Xn
1,b, Û

n
2,b) − Ŝ|] < 1

12ε.
Therewith, we obtain

E[|cS(Xn
1,b, Û

n
2,b)− Ŝ]

= E[φb|cS(Xn
1,b, Û

n
2,b)− Ŝ|] + E[φ̄b|cS(Xn

1,b, Û
n
2,b)− Ŝ|]

≤ 1
12ε+ E[φ̄bŜ] + E[φ̄bcS(X

n
1,b, Û

n
2,b)].

For n sufficiently large we have E[φ̄bŜ] ≤ 1
12ε since Ŝ <∞.

The last term can be bounded following Wyner’s trick as done

in [8], which we however need to extend because the internal

state X1 instead of source X0 is estimated.

First note that using Cauchy-Schwartz inequality, we have
∑n

i=1(ai + bi)
2 ≤ ∑n

i=1 a
2
i + b2i + 2

√

(
∑n

i=1 a
2
i )(
∑n

i=1 b
2
i ),

for any ai, bi ∈ R. Since X1 = X0 + U1, we have

cS(X
n
1,b, Û

n
2,b) =

1
n

∑n

i=1(X0i,b+U1i,b− Û2i,b)
2. Associating

U1i,b as ai and X0i,b − Û2i,b as bi, we obtain the following

inequality

cS(X
n
1,b, Û

n
2,b) ≤ cP (U

n
1,b)+cS(X

n
0,b, Û

n
2,b)

+ 2
√

cP (Un
1,b)cS(X

n
0,b, Û

n
2,b).

Further, the encoding ensures that we always have cP (U
n
1,b) ≤

P + ε. Since
√· is concave, using Jensen inequality we have

E[φ̄bcS(X
n
1,b, Û

n
2,b)] ≤ E{φ̄b(P + ε+ cS(X

n
0,b, Û

n
2,b))}

+ 2
√

E[φ̄b(P + ε)cS(Xn
0,b, Û

n
2,b)].

Now, we can argue following Wyner’s trick exploiting the

discretisation of U2 as follows

E[φ̄bcS(X
n
0,b, Û

n
2,b)] =

1

n

n
∑

i=1

E[φ̄bcS(X0i,b, Û2,i,b)]

≤ 1

n

n
∑

i=1

E[φ̄bD(X0,i,b)]

with D(X0,i,b) = maxû2,k
cS(X0,i,b, û2,k). The random vari-

ables {D(X0,i,b)}i are iid and integrable since cS(·, ·) is a

squared distance measure and X0,i,b is Gaussian distributed.

Next, let χ{D(X0i,b)>d} denote an indicator function which is

one if D(X0i,b) > d. Then we have

E[φ̄b(P + ε+ cS(X
n
0,b, Û

n
2,b))]

≤ (P + ε+ d)E[φ̄b] + E[D(X0i,b)χ{D(X0i,b)>d}]

as well as

2
√

E[φ̄b(P + ε)cS(Xn
0,b, Û

n
2,b)

≤ 2
√

(P + ε)(E[φ̄b]d+ E[D(X0i,b)χ{D(X0i,b)>d}])

Since D(X0i,b) is integrable, for any εd > 0 there must

exist a d0 such that E[D(X0i,b)χ{D(X0i,b)>d}] < εd for all

d > d0 due to the monotone convergence theorem. Thus for a

sufficiently small εd and a sufficiently large n both right hand

sides can be upper bounded by 1
24ε so that

E[φ̄bcS(X
n
1,b, Û

n
2,b)] ≤ 1

12ε.

Thus, for the costs of block b we have

E[|cS(Xn
1,b, Û

n
2,b)− S|] ≤ |Ŝ − S|+ E[|cS(Xn

1,b, Û
n
2,b)− Ŝ|]

≤ 1
4ε+ E[|cS(Xn

1,b, Û
n
2,b)− Ŝ|] ≤ 1

2ε

and E{|c(Un
1,b, X

n
1,b, U

n
2,b)− P − S|} ≤ 1

2ε.
Lastly, we have to include the cost of the initialisation block

b = 0. Since the average transmit power in the initial phase is

also set to P , we have

E[|cP (UBn+n′

1 )− P |] ≤ αn

(B + α)n
E[|cP (Un′

1,0)− P |]

+
n

(B + α)n

B
∑

b=1

E[|cP (Un
1,b)− P |] ≤ ε

For the estimation error, the initial phase results in a larger

but bounded error average error S′ <∞. The impact however

can be made arbitrary small with a sufficiently large number

of blocks B as follows

E[|cS(XBn+n′

1 , UBn+n′

2 )− S|] ≤ αn

(B + α)n
E[|cS(Xn′

1 , U
n′

2 )

−S|] + n

(B + α)n

B
∑

b=1

E[|cS(Xn
1,b, U

n
2,b)− S|] ≤ ε

for n and B sufficiently large.
Lastly, the existence of a coordination scheme follows from

the extension of the random coding argument as in the proof

of [10, Lemma 2.2].
Closedness: The previous holds if the rate constraint holds

with strict inequality. For equality, we can argue as in [5,

Appendix C], i.e., since N < ∞, we can always find an

approximation of the random variables W1,W2, U1 and U2

that result in an arbitrary small increase of the costs, but satisfy

the rate constraint with strict inequality. �
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