
HAL Id: hal-02278171
https://hal.science/hal-02278171v1

Submitted on 4 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Importance Sampling for Deep System Identification
Antoine Mahé, Antoine Richard, Benjamin Mouscadet, Cedric Pradalier,

Matthieu Geist

To cite this version:
Antoine Mahé, Antoine Richard, Benjamin Mouscadet, Cedric Pradalier, Matthieu Geist. Impor-
tance Sampling for Deep System Identification. 19th International Conference on Advanced Robotics
(ICAR), 2019, Belo Horizonte, Brazil. �10.1109/ICAR46387.2019.8981590�. �hal-02278171�

https://hal.science/hal-02278171v1
https://hal.archives-ouvertes.fr


Importance Sampling for Deep System Identification

Antoine Mahé1*, Antoine Richard2*, Benjamin Mouscadet3, Cédric Pradalier4, Matthieu Geist5

Abstract— This paper revisit the methodology of system
identification and shows how new paradigms from machine
learning can be used to improve the model identification
performance in the case of non-linear systems observed with
noisy and unbalanced dataset. We prove that using impor-
tance sampling schemes in system identification can provide
significant performance boost on a wide variety of systems, in
particular when some of the system dynamic is only exhibited
by relatively rare events. The performance of the approaches
is evaluated on a real and simulated drone and two standard
datasets from real robotic systems. Our approach consistently
outperforms baseline approaches on these datasets, all the more
when the datasets are noisy and unbalanced.

I. INTRODUCTION

Model identification is often the first step in designing
the command of a dynamical system. Nowadays, the most
commonly used method is Auto Regressive Moving Average
(ARMA). Its simple implementation and light computational
weight made of ARMA the de facto standard in the field of
system identification for the last fifty years.

Yet, recently, building on the boom of deep learning, and
dedicated hardware capable of inferring simple models more
than a thousand times per second, Neural Networks (NNs)
have made a remarked entrance in this field. They have pro-
duced impressive results with their high versatility, and their
capacity to learn continuously over time [1]. Unfortunately,
these methods require a massive amount of data to converge
properly.

Regrettably, collecting data from a robotic system natu-
rally leads to the construction of a dataset with command
distribution issues [2]. The distribution of the commands on
real systems can be strongly unbalanced, as we experienced
in our data acquisition where most of the samples are
generated with commands close to zero. Most commands
sent during data acquisition comes from states where the
operator (or the controller) is comfortable. This leads to some
areas of the model’s action space being visited only a few
times while others are continually experienced. This results
in limited generalization capabilities of the network.

*These authors contributed equally
1 Antoine Mahé is with CentraleSupélec, Uni-

versité de Lorraine, CNRS, LORIA, France
antoine-robin.mahe@centralesupelec.fr

2 Antoine Richard is with Georgia Institute of Technology, Atlanta,
Georgia 30332–0250 arichard@georgiatech-metz.fr

3 Benjamin Mouscadet is with CentraleSupelec, France
benjamin.mouscadet@supelec.fr

4 Cédric Pradalier is with UMI2958 GT-CNRS, France
cedric.pradalier@georgiatech-metz.fr

5 Matthieu Geist is with Google Brain, Paris, France
mfgeist@google.com

To cope with those problems there has been some recent
research proposing to improve the quality of deep neural
networks model training by sampling a subset of the data
based on how the network perform on them [3], [4], [5].
The common idea is to evaluate how useful samples are for
the training, then increase or decrease their weight based on
their importance.

In order to improve the ability to train NNs on unbalanced
datasets we use two different sampling mechanisms. Those
methods evaluate which samples are most suited to improve
the model performances at a given time during training.

In this paper, prioritization using the upper-bound gradient
form [6] is applied to system identification. The result from
[7] are extended to standard and real world datasets. We
demonstrate the method on different conditions and systems
and compare the different methods : ARMA, standard NN
training, prioritized experienced replay NN training, and
gradient upper-bound NN training.

II. RELATED WORK

Since the 1970’s ARMA [8] has been the way to go
for most black-box system identification. Such models are
particularly simple to understand and implement. They rely
on linear difference equations (their transfer functions are
rational fractions), based on the past states and inputs of
the system. The linearity of these equations enables the
computation of the system parameters with a least-squares
method. As a result, the fitting of an ARMA model is not
computationally expensive; this makes it possible to perform
efficient grid-search over the orders of the filter (orders of
the numerator and denominator of the transfer function).

The last years have seen Deep Learning achieving out-
standing results in a large number of tasks, over a very large
field of applications ranging from computer vision to natural
language processing. Control and system identification are
no exceptions.

Recent attempts at black-box system identification using
deep learning have shown great results, on both linear and
non-linear systems [9], [10], [11]. Those works rely on
architectures such as Multi Layer Perceptron (MLP), and
Long Short-Term Memory (LSTM) [12].

However, to be able to train these networks a lot of
data is necessary which implies an important amount of
demonstration of the system in its environment. The sample
inefficiency of NNs leads to the need to generate large
demonstration datasets. These are often very unbalanced [2]
and the training is saturated with common samples while
interesting data points do not have any impact on the learning



process. All in all, properly learning hard cases is hindered
by the imbalance of the data.

The capacity of NNs to keep improving over new data
by continuously training has been used to alleviate this
problem [1]. However, this implies that we keep training the
network on very well-known situations while new pieces of
information are only seen once in a while. Identifying the
informative samples on which to focus the learning makes it
more efficient as we will show later on.

As far as we are aware, there is only one prior attempt
to perform importance sampling in neural-network-based
model identification [7]. This work relies on the Prioritized
Experience Replay [3] which demonstrated great results in
Reinforcement Learning (RL). This method is used in the
Double DQN algorithm [13] and has recently been extended
to support distributed architectures [14].

Yet prioritized experience replay suffers from a major
drawback. It requires the tuning of multiple parameters: alpha
and beta parameter but also the number of replays to perform.
It additionally relies on re-evaluating the sample sampling
distribution regularly. This makes [3]’s work unpractical, as
a large grid search has to be performed to acquire optimal
prioritization parameters. This implies that, as the network
keeps on training, the samples importance is not updated
even though their usefulness evolves. This results in an
efficiency loss where the network keeps on focusing on
sample that used to be hard but are now properly learned.
However, one of the main advantages of this method is that
it permits a fine control over how the prioritization is done.
This is particularly interesting as it allows to put a low
amount of prioritization at the beginning of the training to
grasp the general dynamic of the model, then increase the
prioritization as the training reaches its end to maximize the
learning of hard cases.

More recently, similar studies have been conducted on the
computer vision classification task. In particular, [4] showed
that the loss of the network on a given sample could be used
as an indicator of the sample’s importance. However, [6] also
outlines that using the loss can results in degraded learning
performances in some specific cases. Fortunately, they show
an interesting mechanism that alleviates both the tedious
parameter tuning present in the prioritized experience replay
and the need to update the sample importance based on the
most recent network state. In their experiments the loss is no
longer used as an estimate of a sample importance. Instead,
they rely on an estimation of the gradient norm. Note that
one could use the real gradient, but the computational cost
is prohibitive. The prioritization weights are no longer saved
for the time of the epoch but recomputed at every iteration on
a super-batch1. This has two advantages: first as the super-
batch is sampled uniformly, it naturally reduces the over-
fitting risks; second, it ensures that the scores are accurate
for this instance of the network, thus preventing the risk to
keep giving a high importance to samples that have become

1A super-batch is a batch n times larger than the batch size used for
training. In their work, it is suggested to chose a super-batch 3 times larger
than the batch size

easy and further mitigating the over-fitting risk. Nevertheless,
these advantages come at a cost: because the scores have
to be recomputed at every iteration, the training process is
slower than before. To get over that problem, a trigger is
introduced to perform importance sampling only when we
estimate that gradient acceleration is possible. This trigger
is computed for free when the backward pass is performed.
All in all, they showed that their approach out-performed all
previous prioritization methods on the classification task.

In this work, we apply various importance sampling meth-
ods to system identification. Those approaches are evaluated
on standard datasets [15] and custom datasets that exhibit
various degrees of non-linearity, unbalancing and noise.
Building on the promising simulated result of [7] we expand
the prioritize experience replay method to real world data
and show its applicability on standard datasets. Moreover, we
propose to use an other prioritization scheme that alleviate
the hyperparameter complexity of the previous algorithm.

III. METHOD

In this section, we detail the different approaches to system
identification that we compare in our experiments. From
the standard linear system identification and methods using
Multi-Layer-Perceptron (MLP), we show how prioritized
sampling can be adapted to the system identification task.

A. Model identification

Linear system identification of the ARMA family have
been used for decades with success. When u(t) and x(t)
respectively denote the system’s input and output at time
t, ARMA’s model of the system is given by the following
discrete-time linear difference equation:

x(t)+
p

∑
k=1

akx(t− k) =
q

∑
k=1

bku(t− k) (1)

It is more intuitive to consider this equation as a way to
determine the next output value given previous observations
and a set θ =

{
a1, ...,ap,b1, ...bq

}
of parameters:

x(t) =−
p

∑
k=1

akx(t− k)+
q

∑
k=1

bku(t− k) (2)

The linearity of the model makes it easy to compute the
optimal parameters θ ∗ using the linear least-square method.

More recently, the ARMA methods have been challenged
by NNs, as they expanded the range of system that can easily
be modelled from data. In particular, non-linear systems are
no longer an issue using a NN [16].

In this study we chose to use a standard MLP, with 2
hidden layers. Not only has this kind of networks been
extensively used and studied in the last decades [1], but their
simplicity also highlights the performances of our algorithms
and their impact on the final results.

To properly learn the dynamic of the system, the historic of
the twelve previous commands and states is used. This time
horizon gives the MLP a memory of the previous events
which proved to be sufficient for the considered systems.
Thus, it made sense not to use LSTM as the required time



horizon can easily be known. Additionally, LSTMs add
unnecessary complexity to this study where our focus is on
the data and the optimization, not the architecture of the
networks.

To learn the model, a multi-parameter regression is com-
puted. The cost-function used is the Mean Squared Error
(MSE), but its implementation within TensorFlow [17] has
been slightly modified to allow easier computation of the
network’s gradient.

B. Prioritizing sample

Learning a dynamic which is poorly represented in the
dataset is hard. This is particularly true on datasets which
have not been acquired for the specific purpose of model
identification. Indeed, large model identification datasets tend
to be filled with redundant information. To cope with this
issue, we apply importance sampling mechanisms to the
training process.

Some dynamic systems are more difficult to identify than
others. For instance, the velocity variations of the drone used
in our experiments are way easier to identify in straight line
than during a 180-degree turn. Moreover, as operators, we
tend to demonstrate systems in conditions where we already
have a good understanding of the system behavior. Thus, the
interesting data where the network should learn the most is
the rarest. This leads traditional learning approaches to fail
to train on those seldom seen events.

1) Prioritize experience replay: To answer this problem,
we propose to adapt the prioritization scheme introduced
in [3] for reinforcement learning to the context of system
identification. Indeed, prioritization forces the training on
harder samples even if they are scarce. The adaptation
of this sampling strategy to system identification yielded
encouraging results illustrated in [7]. In practice, we use
the loss of the network prediction to estimate the training
value of a sample. The samples that lead to the highest
errors are the one where the network has the most learning
to do. Hence, the network prediction errors are collected to
compute a probability distribution over the samples, which
is then used for sampling the dataset for the next training
session. This process is detailed in the algorithm 1.

One of the limitations of this approach is that it focuses
on a small subset of samples. Although that focus improves
its data efficiency, it also increases the risk of over-fitting.
Noisy datasets are also hard to learn from as it is harder
to make the distinction between complex cases and outliers.
To mitigate those problems and make the method practical,
hyper-parameters are introduced. Those parameters allow to
choose how much the training should focus on hard cases.
The probability of choosing the sample i during the sampling
is given in eq. (3) where δi is the score of sample i, in
our case the error between the NN prediction and the actual
observation.

P(i) =
δ α

i

∑k δ α
k

(3)

Algorithm 1 Prioritized Experience Replay
Require: data, K number of trials, MLP neural network

model
trainingData← data
sampleWeight← /0
for k = 0 to K do

MLP← Train(trainingData)
N number of samples in data
for i = 0 to N do

δi←
∥∥Yi−MLP(Xi,Ui)

∥∥
P(i)← δ α

i
∑k δ α

k

wi←
(

1
N

1
P(i)

)β

sampleWeighted←{wi}0≤i≤N
trainingData← sample data di ∼ P(i)

end for
end for

However, the sensibility to the hyper-parameters make
the approach difficult to apply and makes a systematic
tedious grid search mandatory to find optimal values for these
parameters.

2) Gradient upper-bound: Another way to prioritize sam-
ples is to use the gradient upper-bound as explained in [6]. As
its name implies, the gradient upper-bound method relies on
an approximation of the norm of the network’s gradient. [5],
[18] showed that the gradient norm represents what a net-
work can learn from a data-point. In comparison, the loss
of the network on which the prioritized experience replays
relies is a poor approximation of it. As a result, drawing
from a loss-based distribution is less efficient than using a
distribution homogeneous to the norm of the gradient.

Yet, computing the gradient norm is prohibitively expen-
sive. In order to alleviate this issue [6] introduce an accurate
and computationally inexpensive estimation of it, that is the
gradient upper-bound. This so-called gradient upper-bound is
obtained by computing the norm of the gradient between the
loss and the last activation layer of the network. Furthermore,
this approach, which constantly updates the probabilities of
drawing the samples, has less hyper-parameters than the
prioritized experience replay. Indeed, instead of updating
the weights at some arbitrary training step, or epoch, this
technique samples super-batches, i.e. n-time larger batches
than the standard training batches. From these super-batches,
a distribution based on the gradient upper-bound is com-
puted and a standard batch is sampled from it. This as
two implications: because the super-batches are sampled
uniformly it reduces both the risk of over-fitting and the
risk of focusing on outliers. However, depending on the size
of the super-batches, the training time can be significantly
extended. Algorithm 2 shows our implementation of the
gradient prioritization scheme.



Algorithm 2 Gradient Prioritization
Require: data, N number of steps, ssbs super-batch size, bs

batch size
trainingData← data
for i = 0 to N do

super batch ssbs←−−U (trainingData)
g = get gradient upper bound(super batch)
G ← distribution f rom g
weights← 1

Bg

batch bs←− G (super batch)
train step(batch,weights)

end for

IV. EXPERIMENTS

A. Evaluation

To evaluate the model, we consider two metrics. The first
one, which will be referred as single step accuracy, expresses
the next-point prediction accuracy. Its value is computed
using the MSE of all the prediction made on the test set.
This metric is used to evaluate the instantaneous prediction
accuracy. The second one is a trajectory prediction accuracy,
later it will be referred as multi-step accuracy. In this case
a time horizon is selected (15 samples for the drone, 30 for
DaISy), and the network iterates over its own predictions.
The model is run over 60 different trajectories from our test
set. The final metric is the MSE of those trajectories. The
latter evaluation score is the one we use to select our hyper
parameters during the grid search.

B. Datasets

After validating the concept on a simulated drone, we
test our approach on standard system identification dataset
collected from real systems. Finally, we move onto a more
challenging dataset consisting of a real drone fitted with an
Real Time Kinematic (RTK) GPS.

1) Parrot Bebop Drone: In order to test the validity of
the new optimization method and the importance sampling,
we first evaluate our approach using a simulated drone. The
simulation is done in Gazebo [19], using Robotic Operating
System (ROS) [20] and a drone emulated by the rospackage
tum simulator2. The system includes the simulated drone
and its low-level controller. The dataset created for this
experiment is a combination of two trajectory generation
algorithms. The first one only moves the drone in the plan
in straight line, there is no vertical and no angular command
sent. The second algorithm move the drone such as it
uniformly explores the action space. while not crashing. The
aggregation of samples from both data generation schemes
produce an unbalanced dataset that we use to train our model.
On the real drone, the data is acquired by the uniform
exploration algorithm detailed earlier on. As such this dataset
is balanced. To acquire the position of the drone an RTK
GPS has been set up on it. The acquisition was made using

2 http://http://wiki.ros.2org/tum_simulator

the RTK mode, and not Post Processing Kinematic (PPK)3

as this would not be representative of a real time system.
Also, we rarely reached a fix solution state but were most of
the time in a good float solution state. Hence the precision
is roughly 20cm and we can see some discontinuities in
the data. Moreover, the drone crashed into some trees. This
implies that the data contains strong outliers.

2) DaISy: DaISy [15] is a large open source system identi-
fication database of real and simulated systems. Because our
scope is robotics, we chose, to study two robotic systems,
namely the flexible robot-arm and the CD-player arm. Those
datasets are based on data from real systems.
• Flexible robot arm is a single-input single-output (SISO)

system, the input command is the reaction torque of the
structure, while the measured state is the acceleration
of the arm. This dataset is balanced.

• For the CD-player arm, a multiple-input multiple-output
(MIMO) system, the inputs commands are the actuators
forces, while the output is the tracking accuracy of the
arm over the x, y coordinates. This dataset is balanced.

The size of these datasets is small: about a thousand samples.
They have been selected to illustrate that our methods work
at least as well as previous methods even when the data is
well balanced and contains few samples.

C. ARMA

In order to enable comparisons between our algorithm and
a more standard system identification method, we modeled
our system with an ARMA filter. The AR and MA orders are
found through a grid search. The goal is to find the lowest
orders providing the most accurate results.

D. Neural Networks

As described earlier we chose to use MLPs to learn the
model of the different systems. To emphasize the versatility
of our method, we used the same architecture to fit all of the
models depicted in this paper. This architecture is similar to
the one used in Auto-Rally [1]: it has two hidden layers
with a width of 32. The input is made of a state vector
X , and a command vector U , for all of the datasets the
commands and states history are the same length. It has
been set to twelve samples. In the case of the drone this
represents 2.4 seconds, enough to catch the dynamics of
the model. All of the models are trained using TensorFlow
[17] with the ADAM [21] optimizer and a learning rate
of 0.001. All the networks trained for a total of 25.000
iterations with a batchsize of 16. Finally, the input data are
normalized individually, that means that each command input
and state input have been normalized independently. Thus,
the networks predict normalized states.

E. Prioritization

In this paper, we evaluate two prioritization schemes: first
we try the sampling based on the prioritized experience
replay which relies on the loss of the samples to assess the

3The PPK mode is computed offline after that the system has run.

http://http://wiki.ros.2org/tum_simulator


importance of a sample and then we use the gradient upper-
bound to estimate the importance of a sample.

1) Prioritized experience replay: In all of our experiments
we retrain our networks five times while sampling on a loss-
based distribution obtained with the previous iteration of
the network. In order to choose the hyper-parameters, we
perform a grid search where we look for the combination of
α , β that yields the best accuracy.

α is comprised between 0 and 1, this parameter allows to
increase the prioritization of hard cases. At the same time,
we search for the β parameter also included within 0 and
1. Its goal is to compensate for the bias introduce by the
prioritization. High values of alpha rapidly lead to over-fitting
and focusing on outliers. Details about the roles of α and β

can be found in [3].
2) Gradient prioritization: When training using the gra-

dient upper-bound, the gradients are computed between the
loss and the last activation layer. To do so the original
implementation of TensorFlows MSE is modified to allow
access to the per-example MSE instead of the batch MSE.
The only parameter to tune is the super-batch size: to select
it we perform a grid search were the superbatch size varies
between 60 and 10000 samples per super-batches.

F. Grid Searches

To appropriately select the hyper parameters on all of our
approaches we use a k-fold-cross-validation methodology.
The dataset is split in five equal parts, four for training and
validation, one for testing. The data allocated to the training
is split into five more sets, four for training and one to
validate the hyper parameters. Furthermore, the datasets are
normalized: the mean and the variance of each command
and state are extracted from the training set and used to
normalize both on the input data and output data. Finally,
each experiment is run ten times to average the results. The
best hyper-parameters for a given test set are selected using
the trajectory-based accuracy.

V. RESULTS

A. Drone Simulations

The simulated dataset has the particularity to have little
noise but is unbalanced. As such we expect our prioritization
scheme to perform better than the regular training. The
results of the experiments on the simulated drone can be seen
in table I. It shows that the importance sampling scheme
bring a 5 to 10% on single step accuracy. The gradient
prioritization scheme noted GRAD in table I consistently
outperforms the baseline, i.e. the training without any form
of prioritization noted as STD. We can see that the Prioritized
Experience Replay results are less constant, this is most
probably due to the complexity of properly choosing the
hyper-parameters. In multistep accuracy we can draw similar
conclusion as the Gradient outperforms the non-prioritized
approach. Here again the edge provided by our method
allows for a 5 to 10% increase in overall performance.
Please note that those results do not rely on hand picked
hard cases but rather on trajectories taken at random in the

test set. As such this shows that our methods improve the
performance of the networks in general. Additionally, we can
see that the traditional method: ARMA is nowhere close to
the performances of the NNs.

Test set 0 1 2 3 4
Single Step Accuracy

ARMA 0.836 0.873 0.850 0.855 0.883
STD 0.311 0.346 0.109 0.329 0.481
PER 0.298 0.328 0.122 0.316 0.492
GRAD 0.298 0.331 0.100 0.315 0.473

Multi-Step Accuracy
ARMA 1.003 0.986 1.056 0.983 0.958
STD 0.214 0.263 0.166 0.257 0.709
PER 0.227 0.271 0.179 0.250 0.685
GRAD 0.202 0.271 0.155 0.239 0.705

TABLE I
SIMULATED DRONE K-FOLD CROSS VALIDATION RESULTS. LOWER IS

BETTER.

B. DaISy

Those datasets are short, and their command distributions
are balanced. As such our methods should have little im-
pact on the training results, but more importantly, we are
interested in assessing that in the case of a small and/or
balanced dataset they do not end up degrading the training
performances.

1) SISO: Robotic Flexible Arm: As shown in table II the
training using Prioritized Experience Replay (PER), gives
better results on both single-step accuracy and multi-step
accuracy. This result is interesting as it shows that even
on small balanced datasets our methods can increase the
performance. Only on 1 out of the 5 test sets the training
without any prioritization (STD) gave better results. On the
other hand, the gradient based sampling scheme (GRAD)
consistently made marginally worse predictions than the two
others.

Test set 0 1 2 3 4
Single Step Accuracy

ARMA 0.0454 0.0364 0.0671 0.0432 0.0485
STD 0.00031 0.00162 0.00503 0.00610 0.00144
PER 0.00012 0.00135 0.00518 0.00565 0.00038
GRAD 0.00052 0.00188 0.00623 0.00660 0.00123

Multi Step Accuracy
ARMA 2.220 3.379 1.359 1.921 3.173
STD 0.00065 0.00422 0.0104 0.0141 0.00239
PER 0.00033 0.00347 0.0115 0.0117 0.00074
GRAD 0.00097 0.00489 0.0138 0.0148 0.00214

TABLE II
FLEXIBLE ROBOTIC ARM K-FOLD CROSS VALIDATION RESULTS. LOWER

IS BETTER.

2) MIMO: CD Player Arm: As table III shows, the results
here are blurrier, the PER still outperforms its counterparts in
single-step accuracy. Yet, in multi-step accuracy, we can only
conclude that the methods are equivalent as we cannot pick
a method that consistently performs better than the other.
However, this clearly shows that despite the small dataset



and the fact that the data are balanced our method do not
decrease the training performances.

Test set 0 1 2 3 4
Single Step Accuracy

STD 0.0197 0.0185 0.0149 0.0173 0.0173
PER 0.0191 0.0181 0.0148 0.0180 0.0171
GRAD 0.0199 0.0184 0.0154 0.0175 0.0183

Multi Step Accuracy
STD 0.0933 0.0845 0.0685 0.0773 0.0896
PER 0.0948 0.0825 0.0717 0.0799 0.0850
GRAD 0.0961 0.0834 0.0751 0.0710 0.0842

TABLE III
CD PLAYER ARM K-FOLD CROSS VALIDATION RESULTS. LOWER IS

BETTER.

C. Real Drone

Test set 0 1 2 3
Single Step Accuracy

ARMA 0.778 0.812 0.783 0.804
STD 0.179 0.549 0.144 0.116
PER 0.190 0.563 0.162 0.134
GRAD 0.165 0.560 0.137 0.108

Multi Step Accuracy
ARMA 1.054 1.012 1.046 1.014
STD 0.863 0.738 0.543 0.804
PER 0.861 0.720 0.519 0.783
GRAD 0.890 0.728 0.534 0.822

TABLE IV
REAL DRONE K-FOLD CROSS VALIDATION RESULTS. LOWER IS BETTER.

On the real system, our model and training methods are
put to the test. The acquisition periods have to be short
due to limited battery life. The weather and in particular
the wind make proper model identification complicated.
Additionally, we recall that we never achieved RTK fix only
a good float4 resolution. Yet, despite the aforementioned
issues, our approaches do not degrade performances on this
balanced dataset. To the contrary, they slightly improve the
performance showing that those methods are resilient to
outliers and do not over-fit on noisy data.

VI. CONCLUSION

In this paper we propose to use the gradient-upper bound
method as an alternative priorization scheme for system
identification. We show that, even without complex hyperpa-
rameter fine tuning, our approach achieves comparable result
to previous methods on unbalanced dataset of a simulated
drone. Furthermore, we expand the evaluation of these meth-
ods on standard datasets as well as on a dataset we collected
with a real drone.

We provide a thorough comparison of different identifi-
cation methods: ARMA, standard NNs training, prioritized

4In fix mode the RTK GPS as an accuracy bellow 5cm, in float the
localization is comprised between 1m and 5cm, in our case the localization
was around 20cm

experienced replay NNs training, and gradient upper-bound
NNs training.

Furthermore, we show that even on small datasets, our ap-
proaches do not degrade the performances. In future research,
we would like to extend this work to other real systems and
to use them in combination withModel Predictive Control
(MPC), and Model Predictive Path Integral (MPPI).

ACKNOWLEDGMENTS

We would like to thank Oksana Riou and Corentin
Godeau, for their preliminary work on the DaISy datasets
using ARMA.

REFERENCES

[1] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning.”

[2] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Real-time robot
learning with locally weighted statistical learning,” in Robotics and
Automation, 2000. Proceedings. ICRA’00. IEEE International Confer-
ence on, vol. 1. IEEE, 2000, pp. 288–293.

[3] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

[4] A. Katharopoulos and F. Fleuret, “Biased importance sampling for
deep neural network training,” CoRR, vol. abs/1706.00043, 2017.
[Online]. Available: http://arxiv.org/abs/1706.00043

[5] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio, “Variance
reduction in sgd by distributed importance sampling,” arXiv preprint
arXiv:1511.06481, 2015.

[6] A. Katharopoulos and F. Fleuret, “Not all samples are created equal:
Deep learning with importance sampling,” CoRR, vol. abs/1803.00942,
2018. [Online]. Available: http://arxiv.org/abs/1803.00942

[7] A. Mahé, C. Pradalier, and M. Geist, “Trajectory-control using deep
system identication and model predictive control for drone control
under uncertain load.” in 2018 22nd International Conference on
System Theory, Control and Computing (ICSTCC), Oct 2018, pp. 753–
758.

[8] L. Ljung, “System identification,” in Signal analysis and prediction.
Springer, 1998, pp. 163–173.

[9] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[10] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep con-
trol policies for autonomous aerial vehicles with mpc-guided policy
search,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 528–535.

[11] J. Gonzalez and W. Yu, “Non-linear system modeling using lstm neural
networks,” IFAC-PapersOnLine, vol. 51, no. 13, pp. 485–489, 2018.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

[14] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, “Distributed prioritized experience
replay,” arXiv preprint arXiv:1803.00933, 2018.

[15] B. De Moor, P. De Gersem, B. De Schutter, and W. Favoreel, “Daisy:
A database for identification of systems,” JOURNAL A, vol. 38, pp.
4–5, 1997.

[16] V. A. Akpan and G. D. Hassapis, “Nonlinear model identification
and adaptive model predictive control using neural networks,” ISA
transactions, vol. 50, no. 2, pp. 177–194, 2011.

[17] M. A. et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[18] I. Loshchilov and F. Hutter, “Online batch selection for faster training
of neural networks,” arXiv preprint arXiv:1511.06343, 2015.

[19] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, pp. 2149–2154.

http://arxiv.org/abs/1706.00043
http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/1509.02971
https://www.tensorflow.org/


[20] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.


	Introduction
	Related Work
	Method
	Model identification
	Prioritizing sample
	Prioritize experience replay
	Gradient upper-bound


	Experiments
	Evaluation
	Datasets
	Parrot Bebop Drone

	arma
	Neural Networks
	Prioritization
	Prioritized experience replay
	Gradient prioritization

	Grid Searches

	Results
	Drone Simulations
	DaISy
	siso: Robotic Flexible Arm
	mimo: CD Player Arm

	Real Drone

	Conclusion
	References

