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Abstract. Building thermal modelling plays an important role in managing the 

thermal comfort and the energy consumption of buildings. A major challenge 

for modellers is how to deal with uncertainty problems in order to have a robust 

model with an acceptable computational time for the improvement of predictive 

control. This paper presents a methodology which allows obtaining the good 

model of a controllable thermal zone able to adapt regularly to the measure-

ments by a robust identification procedure. Its input data are achieved by the 

modelling simplification of adjacent zones under uncontrollable uncertainties. 

This method is applied for a multi-zone positive energy building in south of 

France to validate our approach.   

Keywords: Energy in buildings, robust identification, predictive control, ther-

mal envelope modelling. 

1 Introduction 

Faced with the climate change and the limit of fossil fuels, the modelling and control-

ling building energy consumption are essential because buildings use 40% of the 

world’s primary energy [1]. Among the energy consumers in buildings, space heating 

and/or cooling systems are important consumers assuring the human thermal comfort. 

The energy consumption of heating and air conditioning systems depends on not 

only the climate conditions but also thermal characteristics of building envelope and 

occupant behaviour. Indeed, a building is considered as a complex system made up of 

different entities like walls, energy systems, and occupants under the external condi-

tions such as weather conditions, sun or wind. The internal volume of the building 

and the external environment are separated by the surface of walls, also called build-

ing envelope. It is through this envelope that thermal exchanges operate. The charac-

teristics of the envelope as well as the thermal interaction around it directly influence 

the inside air temperature and also the consumption of heating and cooling systems. 

Therefore, having a reliable building thermal envelope model performing well the 

simulated results compared to the measured ones, becomes an important mission for 

the model-based predictive control and the building energy management. However, 
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due to the complexity of the built environment and uncertainty problems, it is not easy 

to achieve an accurate representation of real-world building operation. 

The sources of uncertainty in building thermal modelling are generally associated 

to the inputs including dynamic and static types. It can be distinguished by 3 sources 

of uncertainty in building’s operating phase:   

 Uncertainties arising from static parameters as materials and dimensions of build-

ing envelope, window characteristics, infiltration rate etc. These uncertainties are 

due to the lack of knowledge about physical and geometrical parameters, defects 

during construction, or the aging of materials etc. 

 Uncertainties related to dynamic parameters or solicitation variables such as 

weather data and occupant scenarios. Indeed, the measurement sensors of tempera-

ture, solar irradiation, and wind speed are not always available so that one does not 

sufficiently have input data for modelling. In addition, it is hard to estimate the 

number of people in a room, their behaviour and equipment use (turn on/off an air 

conditioning, open/close windows…). The prediction of these data for the next day 

is even far more difficult to obtain with good confidence. 

 Uncertainties due to the modelling assumptions. It’s about the simplification of 

building geometry or the limit of number of thermal zones for instance without tak-

ing into account the major effects that these approximations can induce.             

As a consequence, a calibration can be done in order to match the simulation out-

puts with measured data, and then compensate all these uncertainties. But in predic-

tion, it is important to keep the physical meaning of model parameters which is a 

trade-off to find with calibration.  

Amara et al. [2] introduced building modelling approaches and devised them into 

three categories: white-box, black-box and grey-box. The white-box approach (some-

times called knowledge modelling) is based on the physical laws to describe the set of 

phenomena of building. This approach allows extrapolating the models to other situa-

tions which have been not present previously. Nonetheless, it requires a significant 

amount of building knowledge which is not compatible with real uncertainties. While 

the black-box models (or universal models), such as polynomial models (ARX, 

ARMAX...), are built from the observations without using a priori physical 

knowledge. It is very hard to extrapolate these models for the accurate prediction 

while the quality of these models strongly depends on the training data used as input. 

Finally, the authors indicated that the grey-box approach (semi-physical approach), 

based on both physical knowledge and observations, is the best alternative for the 

predictive control. By getting all strengthen from white-box and black-box approach-

es, the final approach permits to obtain lightweight models which can be rapidly 

tuned in conserving the physical meaning. The equivalent electrical circuit [3] using 

the thermal-electrical analogy is well known as a grey-box approach for the building 

thermal model. 

The main purpose of this paper is to propose a modelling methodology using the 

equivalent electrical circuit to control a thermal zone in a multi-zone building. Adja-

cent zones, that one has very little information about, and that cannot be controlled, 

will be simplified. The controllable thermal zone model is then regularly calibrated by 
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an automatic and robust identification procedure using our meta-optimization ap-

proach based on a scatting analysis.  

The remainder of the paper is organized as follows: Section 2 reviews the methods 

and works associated to uncertainties for the building energy models. Then, our 

methodology is detailed and applied to positive energy building in section 3. Section 

4 summarizes the main conclusions of the paper and proposes some future works. 

2 A brief overview of methods and works associated to 

uncertainties for building energy models 

2.1 Sensitivity analysis 

The sensitivity analysis is the technique studying the effect of input parameters x on 

the uncertainty of the output 𝑦 = 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛). The technique al-

lows to: (i) identify the input parameters having a significant or negligible influence 

on the output; (ii) determine the interactions between parameters, permitting a con-

centration on a group of parameters rather than separated parameters.    

Saltelli et al. [4] has given a broad overview on methods of sensitivity analysis ap-

plied in many fields. In our article, popular methods used in the building science are 

briefly presented. 

 

Screening methods 

Screening methods are generally used for the computationally expensive models with 

a large number of inputs. It is based on the “One At a Time” OAT design which mod-

ifies one by one each input in fixing others and recording the results. In particular, the 

method of Morris [5] discretizes the space of input factors and constructs a series of 

trajectories in this space in moving inputs randomly one-parameter-at-a-time. This 

method permits to classify the inputs into 3 groups according to their effects: inputs 

having negligible effects, inputs having linear effects without interactions, and ones 

having nonlinear effects and/or interactions.  

As a result, the screening methods allow obtaining qualitative information on the 

non-influential and influential inputs with a limited number of simulations but they do 

not quantify exactly the relative importance of a parameter compared to another, as 

well as the interaction between them. An application example of these methods was 

given by Heiselberg in [6] that measured the influence of design parameters on total 

energy demand of an office building in Denmark. 

 

Local sensitivity methods 

Based on the OAT approach too, local sensitivity methods evaluate the output varia-

bility in terms of the variation of one parameter at a time around its reference value, 

while all other parameters are held constant. In this case, a sensitivity index estimates 

the partial derivative of the output y with respect to the parameter xi in the neighbour-

hood of its nominal value: 

 𝑆𝑖 = 𝑥𝑖 ∗
𝑑𝑦

𝑑𝑥𝑖
 (1) 
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Local sensitivity methods require a reasonable number of simulations to obtain the 

quantitative information for the analysis of the influence of inputs on the output of the 

models with an important number of parameters. Nevertheless, these methods only 

take into account the local effect of input parameters but neither their variation range 

nor the correlation between them. Westphal and Lamberts [7] used the local sensitivi-

ty analysis to specify thermal loads for the calibration of a public office building. 

Mejri [8] applied this method for the identification of dynamic models for the perfor-

mance evaluation and energy diagnosis of existing buildings. It has also applied to 

illustrate the importance of occupancy and indoor temperature of the residential build-

ing in Czech Republic [9].    

 

Global sensitivity methods  

Global sensitivity methods help studying the influence of input parameters in their all 

range of variation. This approach takes into account the probability distribution of 

each input and in many cases all parameters can be simultaneously varied for observ-

ing the interactions between them. According to Lavin et al. [10], global sensitivity 

analysis methods can be categorized into three groups: Monte Carlo based methods, 

variance based methods, and graphical methods.   

Monte Carlo based methods aim at making a large number of evaluations with ran-

domly selected model inputs, and then using regression-based measures [11-12] to 

analyse the contribution of input factors to the output uncertainty.  

Variance based methods, such as Sobol [13, 14] and FAST [15, 16], study how the 

variance of output is due to the variation of each parameter and its related interactions 

via sensitivity indexes of different orders.  

Graphical methods estimate the qualitative measures of sensitivity using the graph-

ical assessment with charts, graphs, or surfaces of pairs of inputs-corresponding out-

puts. These methods can bring us the complementary visual information about the 

meaning of numerical sensitivity indices and the enhancement of results of other 

quantitative methods. Scatterplot [17] is one of the most common forms of graphical 

sensitivity methods. 

  

2.2 Model calibration 

Model calibration aims at tuning the model parameters so that simulation outputs 

match closely with the measured data.             

 According to Clarke et al. [18], calibration methodologies can be grouped into 4 

principal categories: calibration based on manual, iterative and pragmatic interven-

tion; calibration based on a suite of informative graphical comparative displays; cali-

bration based on special tests and analytical procedures; and calibration based on 

analytical and mathematical methods. Reddy [19] revised these methods and agreed 

that the first three categories of the group involves tuning and refining the initial sim-

ulation input parameters in a heuristic manner, which depends on the experience and 

expertise of the user. On the contrary, the final one based the analytical and mathe-

matical formulation is associated to an optimization problem which identifies auto-

matically multiple solutions within a parameter space to minimize an objective func-
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tion. Reddy also indicated that sensitivity analysis should be used in the first stage of 

calibration process for reducing the number of parameters to be calibrated so that the 

numerical optimization is more efficient. Such a systematic and automated way is 

applied by O’Neill and Eisenhower [20] who used a sensitivity analysis for identify-

ing the most important parameters for tuning an office building energy model. An 

overview of applications of the building model calibration can be found in [21, 22].   

 

2.3 Our proposals for the improvement of building thermal models under 

uncertainties   

In order to contribute to the uncertainty management in modelling, we have proposed 

some approaches for improving the reliability of building energy and thermal models. 

Grandjacques et al. [23] developed sensitivity analysis methods for dependent and 

dynamic inputs based on the method of Pick and Freeze for the estimation of Sobol’s 

indexes. These methods were applied for an existing platform building in France to 

take into account both the dynamic aspect of the inputs (room temperatures, heating 

system, presence of occupancy, inertia of heat exchange) and the one of the output.   

Dang et al. [24] presented a thermal envelope model based on the equivalent elec-

trical circuit for the building optimal management. From 16 input parameters includ-

ing thermal resistances and capacitances, the method of Morris was used to determine 

8 non-influential inputs which were then fixed by their analytic values. The rest of 

input factors which have a significant influence on the output were calibrated with 

one data set and then validated with only another data set. It is notable that such a 

model is not still robust since the model may provide poor performances when ap-

plied to environmental conditions that significantly differ from those which calibra-

tion referred to. That is why the model recalibration, and even the regular and auto-

matic recalibration, becomes more and more important in real time predictive control. 

However, it is essential to understand that more parameters of model there are, less 

robust the calibration process is, because of the convergence problems in particular.          

With the aim of improving the robustness of calibration for predictive control, we 

have developed in Nguyen Hong et al. [25] a calibration procedure of building energy 

models using a called meta-optimisation approach with the help of scattering parame-

ters analysis. In this study, the scattering analysis aims to reach a reduced number of 

parameters to be identified. The parameter estimation is then performed by an auto-

matic and regular optimization process to obtain the more robust prediction relative to 

the environment change. Through different tests, the authors also demonstrated the 

performance of this approach compared to the classical methods in terms of computa-

tional cost, prediction errors. Nevertheless, it is still a big challenge to apply this ap-

proach for real complex buildings with an important number of zones, such as office, 

commercial or apartment buildings. Indeed, modelling the overall system is a really 

great challenge, and the convergence issues of the optimization process applied to 

multi-zone buildings is still present. 

In the context of studying the thermal model for predictive control of a zone in a 

multi-zone building, the uncertainties significantly increase when ones do not have 

any knowledge and information about the adjacent zones that directly influence the 
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temperature of considered zone. Therefore, modelling whole building with the same 

level of detail for each zone is called into question. Considering our past studies, the 

next part is addressing the issue of robust calibration for the predictive control of a 

single zone in a multi-zone building. 

3 Building modelling methodology based on the robust 

identification for the temperature prediction of one thermal 

zone in the building  

3.1 Methodology: assumptions for simplification 

Our methodology aims to improve the modelling efficiency permitting a more robust 

calibration process for the temperature prediction of one thermal zone located in a 

multi-zone building as described in the figure 1.  

On the left of this figure, the 2-way arrows represent the 2-way interactions be-

tween the building zones in prediction. In order to predict the temperature of the stud-

ied zone, called “zone 1”, it is necessary to know weather conditions and the tempera-

tures of adjacent zones (2, 3 and 4). However, the temperatures of adjacent zones, 

themselves, are also unknown and have to be predicted depending on the temperature 

of “zone 1”, and other boundaries. Consequently, the crossed interaction between 

building zones requires the model of whole building for the prediction of only one 

zone. 

 

Fig. 1. Modelling assumptions for the temperature prediction of a studied zone “1” 

As previously discussed, the grey-box model in the form of equivalent electrical 

circuit is a good choice for prediction. Nevertheless, using this semi-physical ap-

proach for modelling the whole building can bring a complex model with a large 

number of parameters which are difficult to calibrate regularly and robustly. Regard-

ing the lack of information about adjacent zones (scenario of use, materials…), our 

methodology is as following:  

Predictible weather data = Solar power, Tground, Text  

Predictable 

weather data 
1 

Detailed modelling approach 

Predictable 

weather data 

Simplified modelling approach 

1=studied zone 

1 

2 

3 

4 

2 

3 

4 
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 simplify the modelling for adjacent zones by the assumption that their temperatures 

in prediction depend only on the exterior environment (such as solar power, exteri-

or temperature and ground temperature which are predictable by weather forecast 

services) and neither on the zone of interest (zone 1) nor on other boundaries. This 

can be illustrated on the right of the figure 1.   

 use simple approximate models (simplified structure of an equivalent electrical 

circuit) to predict the temperatures of the adjacent zones and then take the results 

obtained as input data for the prediction model of zone 1.  

 

3.2 Methodology: electrical equivalent models for the zone of interest and 

adjacent zones 

Generically, the equivalent electrical circuit of zone 1 can be seen as figure 2. This 

circuit considers that electrical components like voltage sources, current sources, 

resistors and capacitors are respectively corresponding to temperatures, heat gains, 

thermal resistances and capacitances. The 2R1C-structure used for each wall (contact 

between 2 zones) is considered as a good trade-off between the accuracy and the ro-

bust prediction. Particularly, R_ext_1, R_ext_2 and C_ext represent respectively the external 

resistance, internal resistance and capacitance of wall of zone 1 linked to exterior. 

R_adj2_1 and R_adj2_2 and C_adj2 represent the external resistance, internal resistance and 

capacitance of wall of zone 1 linked to adjacent zone 2. Rvent introduces the resistance 

linked to the ventilation. The analytic values of resistances and capacitances are cal-

culated from the envelope characteristics. 

 

 

 

 

 

 

 

 

 

Fig. 2. Equivalent electrical circuit of zone 1 
Fig. 3. Approximate model of 

adjacent zones (eg. zone 2) 

Psun, Pelec, Poccu and Pheat are heat gains inside the zone 1, which are associated to 

sun, electrical appliances, occupancy and heating system. Text and Tint_zone1 are exter-

nal temperature and internal air temperature of zone 1. Tint_zone2, Tint_zone3 and Tint_zone4 

are respectively the air temperatures of adjacent zones.  
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Meanwhile, with the proposed modelling assumptions, the temperature of adjacent 

zones, for example Tint_zone2 of zone 2, is calculated by a much simpler circuit (Figure 

3). Here only the heat exchange between zone 2 and exterior (and maybe zone 2 and 

ground if this zone is close to the ground) is taken into account by one resistance and 

one capacitance while the thermal effect of other boundaries on zone 2 is neglected.  

 

The model of an adjacent zone (eg. zone 2) can be expressed by the equation: 

𝑇𝑖𝑛𝑡_𝑧𝑜𝑛𝑒2
′ =

1

𝐶𝑡𝑜𝑡
∗ ((

1

𝑅1
+

1

𝑅2
) ∗ 𝑇𝑖𝑛𝑡_𝑧𝑜𝑛𝑒2 +

1

𝑅1
∗ 𝑇𝑒𝑥𝑡 +

1

𝑅2
∗ 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 + 𝑃_ℎ𝑒𝑎𝑡𝑔𝑎𝑖𝑛) (2) 

It remains some physical meaning in parameters R1, R2, Ctot, but less than those of 

the zone of interest. Thus, they can be obtained during calibration process from a 

simple temperature sensor or a simulation. 

The simplification in modelling the adjacent zones is acceptable because the un-

controllable sources of uncertainty are very high so that a detailed modelling ap-

proach is not suited. Moreover, we are mainly interested in the behavior of zone 1 

which will be frequently calibrated with measured data to fit with the environmental 

changes. 

  

3.3 Methodology: calibration 

A periodic recalibration process is using a meta-optimisation approach combined 

with scattering parameters analysis, as presented in Figure 4.  

The first step aims at pre-training the model with the scattering parameters analysis 

to determine how many parameters among n parameters of initial model should be 

fixed. The detailed description of this method can be seen in [25]. 

The step 2 is an automatic process during real time control, in which the scattering 

parameters analysis is one more time used with multi-start optimization to define 

which k parameters have to be fixed in taking into account the data of first 8 days of 

the season. This is done each three-month to adapt to the season changes. This model 

is re-calibrated every two days to improve the prediction for the next days. Such a 

process is running continuously and automatically during one year. The application of 

this methodology is presented in the coming section, using the simplified model of a 

building based on adjacent zone approximations. 

 

Fig. 4. Robust calibration procedure for temperature prediction of zone 1 
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3.4 Application for a positive energy building 

Case study 

Our case study is a positive energy building located in south of France with a floor 

area of more than 200 m
2
. This household includes one main zone, called heated zone 

which is regulated by a heating system, one garage zone and two basements (room 

basement and office basement). It has been built, with high performance materials to 

reduce heat losses and to ensure a summer thermal comfort without cooling system.  

 

Fig. 5. Overview of studied building  

The purpose of this study is to apply our methodology for the prediction of heated 

zone air temperature knowing that the garage and basement zones are under uncon-

trollable uncertainties because of different reasons (no sensors or limited sensors, 

uncontrolled scenarios of use…).  

Model of heated zone 

As proposed in our methodology above, an equivalent electrical circuit was construct-

ed to produce the model for the heated zone. In this study, Tint , the inside temperature 

of heated zone, plays the role of Tint_zone1 in Figure 2. Tgar, Toff and Troom are respec-

tively the air temperatures of garage, office and room basement zones (adjacent zones 

of heated zone), playing the role of Tint_zone2, Tint_zone3 and Tint_zone4 in Figure 2.   

 

Model of adjacent zones  

The garage zone is thermally linked with outdoor, room basement and heated zone. 

As discussed in our methodology for modelling simplification, we neglect the thermal 

effect of heated zone on the garage zone and replace the heat transfer to the garage 

from the room basement by the ground in assuming that the thermal insulation be-

tween the room basement and the ground is so weak. In this case, the heat gain inside 

the garage comes mainly from the sun. As a result, we obtain the simplified model 

expressed by the equation: 

          𝑇𝑔𝑎𝑟
′ = 𝛼 ∗ 𝑇𝑔𝑎𝑟 + 𝛽 ∗ 𝑇𝑒𝑥𝑡 + 𝛾 ∗ 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 + 𝛿 ∗ 𝑃𝑠𝑢𝑛                              (3) 

With α =
1

𝐶𝑡𝑜𝑡
∗ (

1

𝑅1
+

1

𝑅2
) ;  β =

1

𝐶𝑡𝑜𝑡
∗

1

𝑅1
; γ =

1

𝐶𝑡𝑜𝑡
∗

1

𝑅2
;  δ =

1

𝐶𝑡𝑜𝑡
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The parameters α, β, γ and δ were identified in our study using a detailed dynamic 

thermal model (EnergyPlus
1
 software). It would have been done using measures. The 

prediction performance of our simplified model is evaluated using another dataset and 

shown in Figure 6 by a Bland Altman plot. It is observable that the simplified model 

is strongly correlated to data. The root mean squared error (RMSE) is 1.17
o
C while 

mean absolute error (MAE) is 1.08
o
C. The coefficient of determination (r

2
) is 0.9911 

that is very close to 1, expresses how well the predictions of our simplified model fits 

data.  

 

 

Fig. 6. Bland Atman plot between predictions of our simplified model and data. 

Despite this, we are always aware that the temperature prediction of garage zone 

based on this simple model would be sometimes not accurate but the most important 

things are the prediction accuracy for the heated zone and the reduction of computa-

tion time.  

A similar work was done for the modelling of office and room basement zones. 

 

Robust identification for heated zone temperature prediction  

 

We focus now on results achieved by applying our methodology with the robust cali-

bration procedure mentioned in Figure 4 for the temperature prediction of heated 

zone. In fact, the pre-training in step 1 with scattering parameters analysis permitted 

to find the optimal degree of freedom for this model with 7 parameters to be fixed 

from 14 parameters of model. The automatic and continuous calibration process over 

one year in step 2 leads to very good predictions (Figure 7) with a mean error of 

0.88°C and a maximal error of 2.51°C. 

                                                           
1 http://apps1.eere.energy.gov/buildings/energyplus 
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Fig. 7. Prediction results throughout one year 

The prediction accuracy is very similar throughout the year, which can be explained 

by the regular and robust calibration process. The total computational time for whole 

year anticipation is about 1 hour 40 minutes with the time for pre-training model es-

timated of about 20 minutes. 

4 Conclusions and perspectives 

This paper has introduced a modelling methodology permitting to perform the robust 

identification to improve the prediction process of a thermal zone located in the multi-

zone building. The obtained results indicate the robustness of the prediction with a 

reasonable computational time. It is to conclude that the simplification in modelling 

of adjacent zones with various uncontrollable uncertainties is a good solution to gen-

erate the data input for the temperature prediction of the studied main zone. Further-

more, this methodology should be tested for other cases study and be integrated into 

real time anticipative energy management system. 
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