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Abstract. This paper presents two mathematical models for the load demand to the Energy Management
(EM) problem of a Micro-Grid (MG), by means of deterministic Mixed Integer Linear Programming (MILP)
and Non-Linear Programming (NLP) approaches. A general architecture of a microgrids is proposed, involving
Energy Storage Systems (ESS), Distributed Generation (DG) and a thermal reduced-model of the grid-connected
dwelling. It focuses on the modelling process and the optimization performances for both approaches regarding
optimal operation of near zero energy buildings related to electric microgrid within a time horizon of 24 hours.
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1. Introduction10

1.1 Background and Motivation11

Building operation is an important topic in order to contribute to consumptions reduction and energy12

grid interaction. Demand response in electricity market has already been addressed by the research13

community [1]. According to local constraints of energy delivery, the optimal control of grid-connected14

and standalone nearly/net zero energy buildings must be addressed [2]. In this paper, we are investigating15

the optimal operation of the smart building regarding weather forecast, local renewable energy production16

and grid prices. The Energy Management Problem (EMP), i.e. optimization algorithm associated with17

predictive models and criteria, may have different nature. We will focus on the influence of linear or18

non-linear formulation and optimization performances.19

1.2 Literature Review20

1.2.1 Microgrid Energy Management21

The demand response and demand side management concepts are a trend that is currently in progress in22

the modern electric energy industry [1,3–5]. The controllable loads might reduce fossil fuel consumption,23

load peak shaving, as well as postpone investments in new transmission and distribution lines if success-24

fully implemented. Also, in the modern electric energy industry, the microgrids (MGs) are emerging as25

an additional element to maintain the growth and sustainability [6]. Microgrid’s EMP, also known as26

scheduling problem, aims to minimize, the operation costs of DERs, as well as the power exchange with27

the main grid [6, 7]. In the paper, we choose a centralized approach to ensure global optimality and a28

smart management of electrical and thermal storages.29

1.2.2 Thermal Load Management30

Demand side management (DSM) in the electricity grid usually involves energy efficiency and demand31

response (DR). Numerous studies has been devoted to promote load shifting, efficient energy technologies32

or even energy awareness. In [8], Palensky et al. propose an overview of DSM, including Demad Response33

(DR). For thermal demand side management, several studies reach significant savings using multi-agent34

based [9] or integrated centralized approaches coupled with thermal storage [10, 11]. In microgrids’35

literature, thermal demand side management is not usually introduced in the electrical modelling. As36

a new approach, we consider the smart-building as a MG unit, subjected to comfort and air quality37

criteria. A Direct Load Control on the forced-air heating system of the Smart-Building is considered as38

the thermal mass of the building could be used for storage.39
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1.2.3 MILP vs. NLP formulation40

The difference between linear and non-linear formulation is related to the nature of constraints and objec-41

tive functions. In the case of MILP formulations, mixed continuous-discrete are usually artificially intro-42

duced in the modelling stage to overcome non-linearities. In addition, it often introduces approximations43

and may leads to different modelling, which make the comparison difficult [12]. This approximation stage44

is tedious and error prone. One possible solution is to automate this transformation from a physical model45

into MILP suited model using Model Driven Engineering (MDE). It usually leads to different nature of46

decision variables which are kept continues in the case of non-linear and are mixed continuous-discrete in47

the case of MILP formulations. One of the main techniques are based on discretization, piecewise approx-48

imation or Taylor series expansions in order to be compatible with MILP algorithm. The main drawbacks49

of NLP are the continuous definition set and convergence properties, indeed, the global convergence is50

guarantee only for convex cases (convex objective function and inequality constraints).51

1.3 Contribution52

Novel contributions of this work include:53

• Introduction and formulation of the Thermostatically Controlled Loads (TCL) within the microgrid.54

The resulting Linear Program handles the mutli-objective trade-off between discomfort and cost of55

use taking into account air quality criterion.56

• Linearisation and formulation of the ventilation system behaviour. Which is generally non-linear57

and non-convex equality constraints, involving air quality model, heat transfer, and ventilation58

power.59

• Comparison of both MILP and NLP methods on a general use case which provides a solution that60

can be interpreted for implementation.61

1.4 Paper Outline62

This paper is organized as follows. Section 2. describes the general optimization problem and presented63

both, NLP and MILP, formulations. It describes the models and the linearisation techniques for each64

involved physic (e.g. electrical, thermal and ventilation). Section 3. provides a computational example65

where the building structure and electrical units are described. Results’ analysis are performed in section66

4. Finally, section 5. summarizes keys results.67

2. General Formulation and Linearisation68

In the paper, the EM optimization is related to the physical and economical framework in which the69

MG is inserted. The smart building involves a thermal envelope, an ideal heating system and a general70

ventilation system (with or without heat recovery). It is connected to the MG which consists of a battery71

pack, photovoltaic panels and a connection to the main grid. The system is subjected to forecasts such72

as occupancy, solar irradiation, external temperature and energy prices.73

This section is organized by field: electric, thermal and ventilation models will be detailed. For each74

physic, both NLP and MILP are formulation and differences will be highlighted. Finally, the full EMP75

will be presented in section 2.4.76

2.1 Electrical77

2.1.1 Main grid connection78

In the paper, the MG can buy or sell energy from or to the main grid. Buying and selling time-dependent
costs are considered. Lets note, pin, pout the input and output powers and the related instantaneous
costs cin, cout P R. The main grid can be formulated as follow:

pin(t), pout(t) P R+ pmg(t) P R(1)
pmg(t) = pin(t) ´ pout(t)(2)

Jmg =
ÿ

t

[cin(t).pin(t) + cout(t).pout(t)] .δt(3)

If the instantaneous cost function is convex with respect to the power pmg, i.e. when cin(t) ě ´cout(t),
selling and buying in the same time is impossible since the cost is to be minimize. Otherwise, to ensure
not selling and buying energy in the same time, one can introduce a binary variable and additional
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constraints such as

umg P t0 ; 1u pmax
mg , pmin

mg P R(4)
pin(t) ´ umg(t).p

max
mg ď 0(5)

pout(t) + umg(t).p
min
mg ď pmin

mg(6)

2.1.2 Battery modelling79

For an energetic context, the battery can be modelled by a constant charging and discharging maximal80

power with respect to the state of charge (SOC) [13,14]. If we consider charging and discharging efficiency81

ηc and ηd, one should consider a binary formulation of the following form:82

e(t) ě emin P R+ e(t) ď emax(7)
e(0) = e0 e(tf ) = ef(8)

pc, pd P R+ ub P t0 ; 1u(9)
pc(t) ´ ub(t).p

max
c ď 0 pmax

c P R+(10)
pd(t) + ub(t).p

max
d ď pmax

d pmax
d P R+(11)

Be(t)

Bt
= pc(t).ηc ´

pd(t)

ηd
(12)

This model is drastically simplified considering ideal efficiencies, and eqs. (9)–(12) can be replaced by the83

linear and continuous eqs. (13) and (14).84

pbat(t) ě ´pmax
d pbat(t) ď pmax

c(13)
Be(t)

Bt
= pbat(t)(14)

In MG literature, we usually consider a battery reserve in order to prevent a possible disconnection of85

the main grid. For simplicity, and because the non-linear formulation does not consider it, we will not86

include it. It is also possible to add battery cost, depending on the charging and discharging powers or87

on SOC.88

2.1.3 Generalities89

The electrical sub-optimization problem can be seen as a classical unit commitment problem, where loads,90

DES and the grid connexion are the main components involved. In the MILP case, the unit commitment91

problem can be written as follows :92

ppv(t) + pmg(t) + pde(t) = pex(t) + ph(t) + pbat(t) + rpv(t) + pe(t)(15)
ph(t) P [0 ; pmax

h ] pde(t) P R+ pex(t) P R+(16)

where ph is the heating electrical power, ppv is the forecast power of the PV panels, rpv is the linear93

approximation of the ventilation power, and pe is the electrical load demand.94

Two positive decision variables are added to ensure the feasibility of eq. (15) in every configurations, the95

deficit power pde and the excess power pex. Those variables are also included in the electric objective96

function, eq. (17) to penalise excess and deficit power. The full electrical objective is thus describes as:97

(17) Jelec = Jmg +
ÿ

t

[Mde.pde(t) +mex.pex(t)] .δt

The positive weight are usually chosen such as Mde " cin and mex « 0.98

Note that the continuous formulation shows some limits when it comes to different selling/buying costs99

or charging/discharging efficiency in eqs. (3) and (12).100
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2.2 Thermal101

2.2.1 Thermal envelop102

Both formulation, NLP and MILP are based on a linear model of the building structure and derives from103

a resistance-capacity network. It is usually described by a linear state-space system [15, 16]. It consist104

on a set of equality constraint to ensure heat flow and energy conservation. In the general case, a n P N105

thermal-zone building involves n states Tj(t) and n ideal heating inputs pjh(t). We note ph(t) =
ř

j p
j
h(t)106

the total instantaneous heating power, where j P t0, .., nu denotes the thermal zone index. The thermal107

model also considers heat gain, such as occupancy, solar or electrical gains.108

A general the temperature variation within the thermal-zones can be model by the following state-space109

system.110

(18) Ṫ (t) = A.T (t) +B.U(t)

where A and B are fixed matrix, taking into account, resistance, capacity values and thermal network111

topology. U(t) usually represents boundary conditions, such as a fixed external temperature, and the112

indoor heat gains and forced-air heater power.113

2.2.2 Comfort assumptions114

Comfort modelling is usually non-linear and discrete, between winter and summer period or between days115

and night. The simple incomfort cost expression has the same form than the electricity cost. In general,116

it can be formulated as follows:117

Jth =
ÿ

t

ci(t).y(t).δt(19)

y(t) P S(20)

where c(t) and y(t) represent a time-dependent discomfort cost and the discomfort variable. S describes118

a bounded convex set.119

As an example, for discomfort modelling in winter period, one could constraint the discomfort to be120

positive for temperature under the reference temperature profile T j
r (t), where j denotes the thermal zone121

index, and null above it as follows:122

yj(t) P R+(21)
yj(t) ě T j

r (t) ´ T j
int(t)(22)

Jth =
ÿ

t

ÿ

j

ci(t).y
j(t).δt(23)

2.3 Ventilation and Air Quality123

In the paper, we consider ventilation system of the building. It is actually the key point of the NLP/MILP124

comparison and has an important impact on both thermal and air-quality phenomenons. As we consider125

a trade off objective function between cost-of-use and thermal comfort, ventilation control will also have a126

important impact on the electrical grid and thus, plays a central role in the system. Moreover, it presents127

non-linearity and non-convexity.128

2.3.1 Linearisation of the ventilation power129

For the non-linear continuous formulation, the ventilation power pv is identified as a second order poly-
nomial, eq. (24).

(24) pv(t) = f(Qv) = α2.Qv(t)
2 + α1.Qv(t) + α0

where Qv si the ventilation air flow (m3.h´1), and α0, α1 P R and α2 P R+ are constant values. Construc-130

tor or experimental data could be easily used to identify such behaviour. We propose here a piecewise131

linear approximation for the MILP formulation.132

It is important to note that pv is directly linked to the term pmg by eq. (15). In other words, minimizing133

pv is always equivalent to minimize the global objective function. Then, a linear approximation of pv(t),134

noted rpv(t) can be done by adding a set of inequalities.135
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nd2 P N k P t0 ; 1 ; .. ;nd2 ´ 1u(25)
rpv(t) ď νk1 .Qv(t) + νk0 , @k rpv P R Qv P R(26)

where the coefficients νk1 and νk0 are computed as follow :

νk1 = f 1(Ck) νk0 = f(Ck)(27)

The term Ck represents a set of linearisation points. This is a really light formulation. Note that it is136

possible with all non-linear convex function, differentiable on the set Ck. Eq. (26) can be improved in137

particular case to minimize the mean error of this approximation, but a general formulation is difficult.138

For non-convex function, one could use a SOS2 formulation as in eq. (31).139

2.3.2 Approximation of the products x.y140

In this paragraph, we propose a general linear approximation of the product z = x.y, where x, y P R are141

continuous optimization variables. First we decouple the two variables by setting the substitution as in142

eq. (29).143

x, y, z P [0 ; 1](28)

a =
1

2
(x+ y) b =

1

2
(x ´ y)(29)

Note that z = x.y = a2 ´ b2. This formulation is still good for other decision variables limits. In order to144

lower the matrix range, and so the convergence quality, one could normalize the definition range of the145

variables.146

For both terms, a2 and b2 we define a special ordered set of type 2 (SOS2) using the real valued decision147

variables wi
a and wi

b and the quantity break points Ai and Bi. For clarity, we explicit a binary formulation148

of the SOS2 for the linear approximation of the term a2 in eqs. (30) and (31).149

nd P N i P t0 ; .. ;nd1u j P t0 ; .. ;nd1 ´ 1u(30)
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

uj
a, P t0 ; 1u

wi
a, P [0 ; 1]

ÿ

j

uj
a = 1

uj
a ď wj

a + wj+1
a

a =
ÿ

i

wi
a.A

i

(31)

The priecewise approximation of both terms a2 and b2 is then straight forward knowing the weight wi
a,150

wi
b.151

a2 « rza = wi
a.
(
Ai

)2
b2 « rzb = wi

b.
(
Bi

)2(32)

Finally, approximation of z, noted rz, can be express as the difference between both approximations rza
and rzb as:

(33) z « rz = rza ´ rzb

2.3.3 Linearisation of heat flow152

Thermal behaviour of ventilation system can vary from on technology to another. However, it is generally153

modelled as a non-linear heat flow input, with respect to the air flow Qv, the inner and outer temperatures154

Text, Tint, an exchanger efficiency (for heat recovering ventilation) and air properties. The NL expressing155

of qv(t) is described in eq. (34).156
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(34) qv(t) = ρ.cp.(1 ´ ηv).Qv(t).(Tint(t) ´ Text(t))

The product Qv(t).Tint(t) is approximated using the method explained in 2.3.2. This linearisation leads157

to the introduction of the approximated heat flow noted rqv.158

2.3.4 The air quality model159

Control of ventilation is usually a trade-off between air quality constraints and thermal comfort. Thus,160

an air quality model is needed. In this article, we only consider CO2 concentration in air quality model.161

Thermal discomfort is to be minimized whereas air quality, i.e CO2 concentration is constrained to a low162

level since the link between air quality and comfort is not straight forward , see eq. (35). The non-linear163

conservation equation of the gas takes into account, air flow rate Qv and the occupancy Np, see eq. (37).164

Cco2(t) P
[
Cair

co2 ;Cmax
co2

]
(35)

Qv(t) P
[
Qmin

v ;Qmax
v

]
(36)

V.
BCco2(t)

Bt
= Np(t).Qp.C

p
co2 ´ Qv(t).(Cco2(t) ´ Cair

co2)(37)

where V,Qp, C
p
co2 and Cair

co2 denote respectively the volume of the room, the expired air flow by occupant,165

the mean expired CO2 concentration by occupant and the outside CO2 concentration. The product166

Qv(t).Cco2(t) in eq. (37) is linearised using the method explained in 2.3.2 and leads to the linear approx-167

imation of the CO2 concentration noted ĆCco2(t).168

2.4 Full Optimization Problem169

Both continuous non-linear, and mixed integer linear formulations consider the same objective function,170

i.e. no approximation or linearisation are needed. It sums the electricity cost and the thermal discomfort171

cost (c.f. eqs. (17) and (19)).172

2.4.1 Non-linear formulation173

The continuous non-linear formulation includes all the constraints related to the main-grid, batteries, the174

thermal envelop and the ventilation system (c.f. eqs. (1)–(3), (7), (8), (13)–(20), (24) and (34)–(37)).175

2.4.2 Mixed-Integer Linear Formulation176

The mixed-integer linear programming includes all the constraints related to the main-grid, batteries, the177

thermal envelop and the piecewise approximations of the ventilation system (c.f. eqs. (1)–(12), (15)–(20)178

and (25)–(27)). Note that approximations are not explicitly develop every time for consistency matters.179

Piecewise linear approximations of pv, qv and Cco2 are all based on the method developed in section 2.3.2180

and eqs. (28)–(32).181

3. Computational Experiment182

In this section we propose a simple test case for an actual comparison between NLP and MILP formu-183

lations. We thus propose a fixed architecture of the microgrid, a thermal envelop, common boundary184

conditions and sizing.185

For the MILP approach, simulation of the system and EM optimization are solved in the same optimisa-186

tion loop, using Gurobi1 and a step time dtL. In the other hand, simulation is considered as and internal187

loop in the EM optimisation for the NLP formulation. As a result, two time steps are used: one for the188

simulation (usually 10min) and one for the EM optimization, dtNL = 1h.189

3.1 Boundary conditions190

The boundary condition consist of fixed time-dependent profiles :191

• weather forecasts i.e. the outdoor temperature and the radiance which correspond to a winter day192

in Europe,193

• the electricity price, which is assumed to be piecewise constant (see fig. 2a),194

1http://www.gurobi.com
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• the PV power generation, based on weather forecasts,195

• occupancy profiles, i.e. presence, electricity use, thermal reference and CO2 concentration upper196

limit (COmax
2 = 1000 ppm).197

3.2 MG Configuration198

The electrical configuration of the microgrid involves a connexion to the main grid without selling option199

(i.e. cout = 0), 24m2 PV panel, one battery pack with a capacity of 10kW.h and the heating and200

ventilation system. Initial values and parameters’ description can be found in table 3.201

3.3 Single-zone thermal envelop202

In this numerical experimentation, the thermal envelop involves one zone and is modelled by a RC network203

of the 5th order. It incorporates 4 walls, each described by one capacity and two resistance, one inner204

capacity Cair, two resistances representing infiltrations and ventilation and one heat source representing205

the heating power, solar, electric and occupancy inputs, noted ph, pe, psol and pocc. The identification206

of the parameters has been done using EnergyPlus as a reference [17]. Network topology and identified207

values are respectively available in fig. 1 and table 1.208

Capacity Value (ˆ106) Resistance Value
Cair 3.7473 R1 1.0400 ˆ 10´2

C1 3.8832 R2 7.8945 ˆ 10´3

C2 2.3333 R3 4.1700 ˆ 10´3

C3 3.0388 R4 1.7195 ˆ 10´1

C4 8.1109 R5 1.6600 ˆ 10´1

R6 6.7131 ˆ 10´2

R7 1.3500 ˆ 10´2

R8 1.2774 ˆ 10´1

R9 2.2000 ˆ 10´3

Table 1. Capacities and thermal resistances values identified using EnergyPlus

Figure 1. Thermal Envelop

4. Results209

This section consists of a comparison of both NLP, MILP approaches applied to the use case presented210

in 3.. It includes a modelling and optimization performances comparison. Main figures can be found in211

table 2 and the following paragraphs will refer to it.212

4.1 Modelling comparison213

NLP formulation is developed within the CADES framework 2, providing automatic differentiation of the214

model. This ensure an easy modelling stage using a combination of SML, i.e. the CADES language and215

2http://www.vesta-system.fr/fr/produits/cades/vesta-cades.html
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Table 2. Performances comparison

formulation time step lines of
code

continuous/binary
variables

nbr. constraints /
matrix size˚

computation
time (s)

elec.
cost (e)

NLP (10 min, 1 h) 547 72/0 72 2.00 5.212

MILP
1 h 3 859 554/111 660/665/2256 0.73 5.456
30 min 7 607 1 083/231 1358/1314/4615 8.91 4.876
20 min 11 441 1 617/346 2032/1963/6912 43.71 4.737

˚nbr. of rows/nbr. of columns/nbr. of nonzeros

C++ functions. About 547 lines of codes are dedicated to the modelling (the solver is not included) for216

about 72 optimization variables and 72 constraints, see table 2. Indeed, dynamic constraints, e.g. the217

thermal state system eq. (18), are solved during an internal loop and are not considered by the global218

NLP solver.219

For a one-hour time step, the MILP formulation consists of 3 859 lines in a LP language, which can220

be drastically minimized using a high level modelling language, such as AMPL, GAMS or Pyomo. It221

includes 660 constraints, 554 continuous and 111 binary variables, see table 2.222

4.2 Optimization results and performances223

This paragraph aims to compare optimization results, i.e convergence proprieties and speed. Computation224

time and optimal electrical costs are detailed in table 2. NLP is soled using a sequential quadratic225

programming (SQP) solver [18] within the CADES framework, whereas the MILP is solved using bunch226

and bound and dual simplex algorithms within Gurobi.227

Most of time-dependant quantities are presented in fig. 2. Results are plotted for a discomfort cost related228

to the cost of electricity where ci(t)
cin(t)

= 0.8, and leads to a null discomfort cost for each case, see fig. 2d.229

(a) (b)

(c) (d)

Figure 2. Optimal energy management results - a comparative study between NLP and MILP (noted XL)
formulations. (a) Main grid power and buying price, (b) CO2 concentration (ppm) and ventilation air-flow
(m3.h´1), (c) heating and battery pack power (kW ) and (d) Indoor and reference temperatures (˝C).

Note that several optimal solutions are likely because of the multiple control variables, thermal and230

electrical storage capacities. One can see the global agreement between both results, especially from 23h231

to 15h. The indoor temperature profiles gently follows the references, taking into account dynamics of232

the model. Between 14 and 15h, thermal storage of the building is used during the low-cost period. We233

then note small differencies between 16h and 17h for the air quality and ventilation control (see fig. 2b)234

and at 17h for the thermal control (see figs. 2b and 2c). Those differences could be explains, by several235

optimal solutions or by small differences between NLP formulation and linear approximations.236

In terms of convergence quality, we note a better accuracy for the MILP formulation. Between 8 and237

15h, PL
mg is lower than 1 ˆ 10´12, whereas Pmg vary between ´40 and ´3W which is irrelevant in this238

context. Nevertheless, optimal electrical costs are coherent and tend to show that both formulations are239

relevant for the EM optimization.240

Computation time are about the same for one hour time step, with an advantage for the MILP formulation241

8

delinchb
Draft



as expected. However, Results for smaller time-step tends to show some scalability issues due to the high242

number of binary variables (table 2).243

5. Conclusion and Perspective244
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Notations250

Notation, short description and units of all quantities are available in table 3.251

REFERENCES252

[1] A. A. Khan, S. Razzaq, A. Khan, F. Khursheed, et al., “Hemss and enabled demand response in253

electricity market: an overview,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 773–785,254

2015.255

[2] Y. Lu, S. Wang, and K. Shan, “Design optimization and optimal control of grid-connected and256

standalone nearly/net zero energy buildings,” Applied Energy, vol. 155, pp. 463–477, 2015.257

[3] F. Eddy, H. B. Gooi, and S. X. Chen, “Multi-agent system for distributed management of microgrids,”258

Power Systems, IEEE Transactions on, vol. 30, no. 1, pp. 24–34, 2015.259

[4] F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems:260

A review, application and implementation strategy,” Renewable and Sustainable Energy Reviews,261

vol. 45, pp. 343–350, 2015.262

[5] Z. Li, G. Yang, C. Pan, and Q. Gong, “Demand response based on dynamic electricity price and263

energy consumption of residential house,” in Chinese Automation Congress (CAC), 2015, pp. 1361–264

1365, IEEE, 2015.265

[6] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: a266

review,” Access, IEEE, vol. 3, pp. 890–925, 2015.267

[7] C. Gamarra and J. M. Guerrero, “Computational optimization techniques applied to microgrids268

planning: a review,” Renewable and Sustainable Energy Reviews, vol. 48, pp. 413–424, 2015.269

[8] P. Palensky and D. Dietrich, “Demand side management: Demand response, intelligent energy270

systems, and smart loads,” IEEE transactions on industrial informatics, vol. 7, no. 3, pp. 381–388,271

2011.272

[9] S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, and G. Deconinck, “A scalable three-step273

approach for demand side management of plug-in hybrid vehicles,” IEEE Transactions on Smart274

Grid, vol. 4, pp. 720–728, June 2013.275

[10] D. Patteeuw, K. Bruninx, A. Arteconi, E. Delarue, W. D’haeseleer, and L. Helsen, “Integrated276

modeling of active demand response with electric heating systems coupled to thermal energy storage277

systems,” Applied Energy, vol. 151, pp. 306–319, 2015.278

[11] A. Arteconi, D. Patteeuw, K. Bruninx, E. Delarue, W. D’haeseleer, and L. Helsen, “Active demand279

response with electric heating systems: impact of market penetration,” Applied Energy, vol. 177,280

pp. 636–648, 2016.281

[12] Q. D. Ngo, Y. Hadj-Said, S. Ploix, B. Parisse, and U. Maulik, “Toward the automation of282

model transformation for optimized building energy management,” in Clean Energy and Technology283

(CEAT), 2013 IEEE Conference on, pp. 336–341, IEEE, 2013.284

[13] D. Tenfen, E. C. Finardi, B. Delinchant, and F. Wurtz, “Lithium-ion battery modelling for the285

energy management problem of microgrids,” IET Generation, Transmission & Distribution, vol. 10,286

no. 3, pp. 576–584, 2016.287

9

delinchb
Draft



Not. Description Unit
˝ pin MG input power kW
˝ pout MG output power kW
△ cin input instantaneous cost AC.h´1

△ cout input instantaneous cost AC.h´1

˝ pmg MG power kW
˝ pmax

mg maximal MG power 25 kW
˝ pmin

mg minimal MG power 25 kW
˝ Jmg total cost of the MG AC
˛ umg on/off binary variable -
˝ e battery SOC kW.h
˝ emin minimal SOC 0.5 kW.h
˝ emax maximal SOC 10 kW.h
˝ e0 initial SOC 5 kW.h
˝ ef final SOC 50 kW.h
˝ pbat battery power kW
‚ pc battery charging power kW
˝ pmax

c maximal charging power 5 kW
‚ pd battery discharging power kW
˝ pmax

d maximal discharging power 5 kW
˛ ub on/off binary variable -

△ ppv
photovoltaic generated

power kW

˝ pde deficit power kW
˝ pex excess power kW
‚ ph heating power kW
˝ pmax

h maximal heating power 7 kW
˝ pv ventilation electric power kW
˝ rpv approximation of pv kW
△ pe elec. load demand kW
△ ppv PV generation kW
˝ s+ positive discomfort °C
˝ s´ negative discomfort °C
˝ qv ventilation heat flow m3.s´1

△ Tr internal reference °C
˝ ηv heat recovering efficiency 0 -
˝ rho air density 1.225 kg.m´3

˝ Tint internal temperature °C
˝ cp air heat capacity 2.775e´3 kW.h/kg/K

△ c+i positive deviation cost AC.h´1

△ c´
i negative deviation cost AC.h´1

˝ Jth thermal discomfort cost AC
˝ Qp respiration air flow 4e4 m3.h´1

˝ Qv ventilation air flow m3.h´1

˝ Qmin
v min. ventilation air flow 120m3.h´1

˝ Qmax
v max. ventilation air flow 1000m3.h´1

˝ Cco2 CO2 concentration ppm
˝ Cmax

co2 max. CO2 concentration 1e4 ppm
˝ Cair

co2 external CO2 concentration 400 ppm
˝ Cp

co2 expired CO2 concentration 4e5 ppm
△Np occupancy -
˝ V volume of the room 650.45m3

˝ : optimisation variable, ˝ : fixed scalar, △ :
given input profile, ‚ : decision variable
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