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1Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, F-38000 Grenoble, France
2Aperam Alloys Amilly, 45200 Montargis, France

(Received 30 June 2017; accepted 31 July 2017; published online 27 October 2017)

This article focuses on the modeling of the hysteresis loop featured by Fe-Cu-Nb-Si-B
nanocrystalline alloys with transverse induced anisotropy. The magnetization reversal
process of a magnetic correlated volume (CV), characterized by the induced anisotropy
Ku, and a deviation of the local easy magnetization direction featuring the effect of a
local incoherent anisotropy K i, is analyzed, taking account of magnetostatic interac-
tions. Solving the equations shows that considering a unique typical kind of CV does
not enable accounting for both the domain pattern and the coercivity. Actually, the
classical majority CVs obeying the random anisotropy model explains well the domain
pattern but considering another kind of CVs, minority, mingled with classical ones,
featuring a magnitude of K i comparable to Ku, is necessary to account for coercivity.
The model has been successfully compared with experimental data. © 2017 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.4993706

I. INTRODUCTION

The nanocrystalline Fe-Cu-Nb-Si-B Finemet type alloys are characterized by a very low coer-
civity (Hc < 0.5A/m), comparable to the one featured by NiFe permalloys type crystalline alloys, or
Cobalt based amorphous alloys (Hc � 0.3A/m), while exhibiting far greater spontaneous magnetiza-
tion Js � 1.2T compared to 0.55 T for Co based amorphous or 0.75 T for Permalloys.1 In addition, the
low thickness (around 20 µm) of nanocrystalline ribbons, combined with a relatively high resistivity,
dealing with metallic alloys, (ρ� 115 µΩcm1), allow to obtain wound cores with low eddy current
losses. As a result, this family is now widely used in middle frequency applications.

The remarkable magnetic specificity of those alloys, compared with classical crystalline ones,
is that the thickness of a domain-wall (DW) is greater than the typical size D of a nanograin. As a
result, the randomly distributed easy magnetization directions (EDs) featured by nanograins lead,
at the scale of the DW, to an averaged effective anisotropy of amplitude Ke�K1, K1 denoting the
magneto-crystalline constant relative to the nanocrystalline SiFe phase. More accurately, as explained
by the random anisotropy model (RAM),2 the magnetic correlation length obeys Lco �

√
A/〈K1〉,

with A the exchange stiffness and 〈K1〉 the mean fluctuation of the magneto-crystalline anisotropy
averaged on a magnetic correlated volume (CV) Lco

3. With D classically around 12 nm, vanishing
〈K1〉 is obtained. In this limit, Keff is controlled by additional contributions, as the magnetoelastic
anisotropy, explaining that the optimized alloys correspond to a resulting magnetostriction λs � 0,
obtained when the magnetostriction of the residual amorphous phase balances the magnetostriction
of the crystalline phase. The almost perfectly flat energetic landscape fulfilled by optimized ribbons
allows developing coherent induced anisotropy, with magnitude denoted Ku in the following. Ku is
obtained by means of dedicated annealing treatments, i.e. applying during annealing a magnetic field
Han,2 a high magnetic field3 (i.e. µ0Han > 1 T , usually provided by a superconducting magnet), or a
tensile stress.4–6 From an applicative point of view, the case of transverse Ku, i.e. ED perpendicular to
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FIG. 1. (a): Schematic representation of the field annealing process and the induced strip domain structure obtained after
annealing. The resulting coherent rotation magnetization mechanism is illustrated on a plane ribbon. (b): Half-loop obtained
after transverse field annealing applied on a Nanophy® core. The anisotropy constant Ku is obtained measuring the dashed
surface.

the direction of the applied field
−→
Ha, is of great interest, leading to a practically linear behavior Jm(Ha),

Jm denoting the macroscopic polarization, with a slope adjusted by the parameters (magnitude of the
field or stress) applied during the annealing treatment. This case is illustrated on Fig. 1.

According to the RAM, the macroscopic magnetic properties featured by nanocrystalline ribbons
result from the statistical behavior of CVs, but most of the attention of the dedicated literature is
centered on the modeling of the coercivity. The aim of this paper is to extend the analysis to the
description of the hysteretic loop, through an analytical formalism. We’ll focus on cores featuring
transverse Ku, especially interesting regarding applications, as written above. From the modeling point
of view, another positive point is that with Ku great enough, DWs displacements, with their inherent
complexity, are negligible, compared to coherent rotation magnetization mechanism contribution.

This article develops previous results,7 with a revised rigorous modeling of magnetostatic inter-
actions (Sec. II B), a much more detailed study of the contribution of hard Correlated Volumes to the
magnetization, with an accurate description of the different scales involved (Sec. III, introduction),
completing analytic formulations (Sec. III B), illustrating the role of magnetostatics in the asymmetry
featured by local loops (Sec. III C). The discretization of the continuous distribution of hard Corre-
lated Volumes was improved, leading to much more satisfactory simulated macroscopic contribution
(Sec. III D). At least, the approach leading to the analytic estimation of the mean deviation of the
local easy axis is detailed in Appendix.

Wounded Nanophy® cores featuring typical composition Fe73Cu1Nb3Si16B7 were provided by
Aperam Alloys Amilly Company for experiments. Dimensions of the cores were outer diameter
Dext = 3 cm, inner diameter Din = 2.5 cm and height h= 1 cm. Those cores were annealed under trans-
verse field, as pictured on Fig. 1a, with typical duration one hour and annealing temperature 550 ◦C,
under hydrogen atmosphere in the G2Elab furnace. After annealing, cores were characterized by flux-
metric measurements. Loops were performed at frequency f = 0.5 Hz, i.e. in the quasi-static regime,
a typical one being plotted on Fig. 1b. Ku = 16.2 J/m3 was determined measuring the dashed area
delimited by the decreasing branch of the loop. This value will be used in the following for numeric
evaluations.

II. MODELING REGARDING TYPICAL CVs

As explained in the introduction, the anisotropy experienced by CVs is mainly due to the coherent
transverse anisotropy Ku. It is worth noting that if Ku was acting alone, the macroscopic law Jm(Ha)
would be perfectly linear, until saturation, with a reference susceptibility µ0 χref = Js

2/ (2 Ku). As

 08 O
ctober 2024 13:17:51



047712-3 Geoffroy et al. AIP Advances 8, 047712 (2018)

shown on the experimental loop illustrated on Fig. 1b, the coercivity is non null, and usually attributed
to a residual uncoherent anisotropy. For analytical convenience, this anisotropy is assumed to exhibit
the same symmetry that the coherent one, i.e. uniaxial, Ki (subscript i as intrinsic) denoting its typical
magnitude.

A. General formulations

The coexistence of those two anisotropies was extensively treated by Herzer et al.2,6,8–10

According to Ref. 8, the effective anisotropy constant Ke obeys

Ke
2 =Ku

2 + Ki
2 (1)

Following Herzer, we consider that the residual magneto-crystalline anisotropy, averaged over
the scale of CVs, is the main origin for Ki for most of the CVs. Those CVs are thus considered "typical"
and, obeying the RAM formalism, will be denoted CVRs in the following, devoted parameters being
labelled with superscript R. According to Ref. 6, KR

i verifies

KR
i = 0.5 x

√
βK1Ku(D/L0)3 (2)

with x the crystalline volume fraction, β = 0.4 a factor reflecting the cubic symmetry of the crystals,
L0 � 40 nm the basic exchange length related to K1 = 8 kJ/m3. This value corresponds to the com-
position of the nanocrystalline phase after crystallization, i.e. Fe80Si20 atomic [Ref. 11, fig. 2.10],
the dependence of K1 with composition being obtained from Ref. 12. Typical values corresponding
to the anneals are x � 0.7, D= 13 nm [Ref. 11 Fig. 2.9], Ref. 13. With Ku = 16 J/m3, (2) leads to
KR

i = 0.17 Ku. With (1) (replacing Ke and Ki by KR
e and KR

i ), one obtains KR
e = 1.014 Ku. As a result,

KR
e is approximated to Ku.

Dealing with the ED resulting from the superposition of Ku and KR
i , ones have to take in mind

that, due to magnetostatic energy, the magnetization vector, at the scale of the magnetic domains,
lies in the plane of the ribbon. As a result, we simplify the description, not considering the absolute
easiest direction featured by a CV, but the easiest direction in the ribbon plane. The direction of this

one can be described by a single variable, θED, referenced to the direction of
−→
Ha. Noting εR the mean

deviation of the local ED, two kinds of CVs are thus considered, noted by subscript + or −, with
θ+

ED = π/2 − εR and θ−ED = π/2 + εR (cf. Fig. 2), the polarizations being associated to angles θ+ and
θ− (cf. Fig. 2). The energy featured by a CV is made up of the anisotropic contribution, with uniaxial
symmetry, the Zeeman contribution (= applied field energy), and the magnetostatic one (long range
interaction with surrounding CVs). Normalizing by Ku, the resulting reduced energy densities are
thus written:

w+ = kR
e cos2 (θ+ + εR) − 2ha cos θ+ + u+ (3)

w− = kR
e cos2 (θ− − εR) − 2ha cos θ− + u− (4)

where ha = 0.5 Js Ha/Ku denotes the reduced applied field, kR
e =KR

e /Ku the reduced anisotropy, (= 1),
u+ and u− referring to the magnetostatic energies.

FIG. 2. Representation of each kind of typical CV (in white) interacting with the surrounding medium in a Weiss Domain
(the EDs are dashed). (a): Configuration Ca; (b) and (c): Configuration Cb in two consecutive Weiss Domains D1 and D2.
Dealing with Cb, the differences between polarizations~j+ and~j− belonging to the same domain are strongly exaggerated for
clarity.
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B. Modeling of the magnetostatic energy

The magnetostatic energy is a key point in the description of soft granular systems, but is often
neglected dealing with continuous media, as in Refs. 14–17. As pointed out by the pioneer work of
Néel,18,19 this should not be the case. We so present here a way to account for it.

It is worth noting that the CV must be considered immersed in a tridimensional environment.
Indeed, even if for a magnetic domain, the magnetization vector is kept in the ribbon by the dipolar

field, the characteristic length of a CV Lco �

√
A/KR

e �
√

A/Ku � 1µm, with A � 1.510−11J/m20 is far
small than the ribbon thickness, around 20 µm.

The modeling of interactions of a peculiar CV with the surrounding CVs is a very difficult
challenge because of the great number of variables. A classical way to simplify the problem is to
work in the frame of a mean field theory, as it will be done here. This kind of approach consists
in replacing the surroundings CVs by an equivalent homogeneous medium (HM in the following),

featuring a mean polarization 〈~J〉D = 〈
−−→
JCV 〉D, i.e.

〈~J〉D =
(
~j+ +~j−

)
x/2 + (1 − x) 〈~ja〉D, (5)

the subscript D indicating the magnetic domain the peculiar CV belongs to. ~j+(−) = cos θ+(−)~ux +
sin θ+(−)~uy denotes the polarization of each kind of CV (the reference system is indicated on Fig. 2),
and 〈~ja〉D the mean polarization of the amorphous phase, at the scale of the considered domain. The
problem is further simplified, noticing that the SiFe phase is the most representative one (x � 0.7),
and thus considering x = 1 in (5).

In addition, the HM features an effective susceptibility χ, assumed isotropic and uniform for
analytical convenience. This means that the HM locally adapts to a local fluctuation of magnetiza-
tion induced by a fluctuation of the ED at the scale of the given CV, with a resulting non uniform

polarization
−→
JD , 〈~J〉D. As a result, the vicinity of a peculiar CV acts as a shielding shell, reducing

drastically the magnetostatic energies, compared to the situation featured by a HM with uniform
polarization.

To quantify this effect, one starts from the reference state pictured on Fig. 3a where the polariza-

tion is uniform everywhere, i.e.
−−→
JCV (thin arrow) = 〈~J〉D (bold arrows), noticing that the directions of

~Ha and 〈~J〉D are considered different because 〈~J〉D is the average polarization at the scale of a mag-

netic domain, different from the macroscopic polarization
−→
Jm = 〈〈~J〉D〉 , where the external brackets

indicate an average of 〈~J〉D on a significant number of domains.

As shown on Fig. 3b, because of local deviation of the ED,
−−→
JCV differs from 〈~J〉D. Magnetostatic

charges appear thus at the interface, inducing a dipolar field (thin lines on Fig. 3b), resulting in a
variation (not pictured) of polarization in the HM.

FIG. 3. (a): reference state:
−−→
JCV = 〈~J〉D ; (b): Due to local fluctuation of ED, the direction of

−−→
JCV differs from the averaged

polarization. As a result, magnetic charges appear at the interface, leading to a dipolar field outside the CV.
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Noticing that the fields associated to the equilibrium resulting from the magnetic charges are
variations with respect to the field ~Ha corresponding to the reference state (a), they will be denoted
with prefix ∆ in the following.

Following the general way indicated in Ref. 12, we obtain ∆~HCV =∆~HCA
CV +∆~Hr

CV where ∆~HCA
CV

and ∆~Hr
CV denote respectively the cavity and the reaction field contributions, according to the

terminology popularized by Onsager.21 In the present case, ∆~HCA
CV and ∆~Hr

CV obey

µ0 ∆~H
CA
CV =

1
3 + 2χ

〈~J〉D µ0 ∆~H
r
CV =

−1
3 + 2χ

−−→
JCV (6)

As expected, ∆~HCV is null if
−−→
JCV = 〈~J〉D

The torque exerted on the macrodipole associated to the central CV by the reaction field being
null, the magnetostatic energy density U coupling the CV to the charges is reduced to

µ0U =−µ0 ∆~H
ca
CV
−−→
JCV =−

1
3 + 2χ

〈~J〉D
−−→
JCV =−

1
3 + 2χ

〈~J〉D
 Js cos (θD − θCV ) (7)

where θD − θCV denotes the angle between 〈~J〉D and
−−→
JCV . Eq. (7) provides a more rigorous evaluation

of the magnetostatic energy than the one simply postulated in Ref. 7 by analogy with Ref. 13.
The determination of the effective susceptibility associated to the HM is of course a tricky task,

the field induced by magnetic charges in the vicinity of the central CV being variable in amplitude
and direction, and the intrinsic behavior featured by the surrounding CVs shaping the HM being
hysteretic! Obviously, only numerical investigations are relevant to face this challenge accurately.
In the frame of this first approach, analytical, we’ll simply consider that the susceptibility χref

introduced above is a reasonable good order of magnitude, i.e. χ = Js
2/(2µ0Ku). One obtains χ �

36000� 1. As a result, 3+2χ can be approximated by 2χ in (7), leading to the reduced magnetostatic
energy

uCV =−
〈~J〉D

 cos (θD − θCV ) (8)

C. Macroscopic law featured by CVRs

In our context,
−−→
jCV equals

−→
j+ or

−→
j− and 〈~J〉D = (

−→
j+ +
−→
j−)/2. After some elementary manipulations,

(8) yields, neglecting constant terms, to the reduced magnetostatic energy featured by a CVR

uR
+ = uR

− =−0.5 cos (θ+ − θ−) (9)

Inserting the magnetostatic contribution (9) in (3) and (4), and remembering that kR
e = 1, leads

to the reduced energies

w+ = cos2 (θ+ + εR) − 2ha cos θ+ − 0.5 cos (θ+ − θ−) (10)

w− = cos2 (θ− − εR) − 2ha cos θ− − 0.5 cos (θ+ − θ−) (11)

Equilibrium angles θe
+(−) are roots of equations ∂w+(−)/∂θ+(−) = 0. Differentiating (10) and (11)

and introducing the new equilibrium variables θav =
(
θe

+ + θe
−

)
/2, θd =

(
θe

+ − θ
e
−

)
/2, one obtains the

equilibrium equations:

sin 2 (θav + θd + εR) − 2ha sin (θav + θd) − 0.5 sin 2θd = 0 (12)

sin 2 (θav − θd − εR) − 2ha sin (θav − θd) + 0.5 sin 2θd = 0 (13)

Adding (12) and (13) leads to

(−cos θav cos 2 (εR + θd) + ha cos θd) sin θav = 0 (14)

Two configurations solutions Ci =
(
θavi , θdi

)
start to emerge, verifying

θava = 0 (15a)

cos θavb = ha cos θdb/ cos 2
(
εR + θdb

)
(15b)
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It is noticeable that Cb entails no coercivity. From this point of view, configuration Ca seems
to be more convenient to model the experimental macroscopic behavior. But another crucial point
is that the y transverse component 〈ji

tr〉D of the mean polarization in a Weiss domain associated to
configuration i= a or b obeys

2〈ji
tr〉D = sin

(
θavi + θdi

)
+ sin

(
θavi − θdi

)
(16)

From (16) and (15a) 〈ja
tr〉D = 0 is obtained, as illustrated on Fig. 2a. This means that, at the scale of

a Weiss Domain, there is no magnetostatic energy. The cost associated to domain walls in the strip
structure classically observed by Kerr effect (see for instance Ref. 9, Fig. 5), schematically pictured
on Fig. 1a, is thus not justified in this case. In other words, Ca cannot account for the strip structure.
We underline that those deductions are very strong, being independent of the procedure used to model
the magnetostatic interactions, the magnetostatic term being cancelled when adding (12) and (13) to
obtain (14).

One completes the description of configurations Ca and Cb subtracting (13) to (12). This leads,
besides relations (15a) and (15b), to

2ha =
(
sin 2

(
εR + θda

)
− 0.5 sin 2θda

)
/ sin θda (17a)

2ha
2 =

1 + 0.5 sin 2θdb/ sin 2
(
εR + θdb

)
cos2θdb

cos22
(
εR + θdb

) +
sin 2θdb

sin 4
(
εR + θdb

) (17b)

From (17a), one deduces the coercivity featured by configuration Ca, i.e.

ha
c = 0.5 sin 2εR (18)

Fig. 4a shows the simulated loops associated to configurations Ca (Eq. 15a, 17a) (bold) and
Cb (Eq. 15b, 17b) (dashed). We simulated with εR = π/125, for matching the experimental value
hex

c = 0.025 and ha
c . Apart from the disagreement already pointed out about the domain structure,

the configuration Ca fails to reproduce the experimental mean slope and exhibits a crossing of the
branches followed by the instability at point Q clearly unrealistic in regard to the experimental loop.

At the opposite, Cb exhibits a non null transverse polarization, as schematized on Fig. 2b and 2c.
Moreover, as shown on Fig. 4b, 〈jb

tr〉D decreases when ha increases, agreeing well with the evolution
of the magneto-optical contrast shown in Ref. 2, Fig. 2b. Lastly, Fig. 5a shows that θdb is nearly null,
leading with (9) to the cancellation of the local dipolar energy. As a result, Cb is more favorable, as
Fig. 5b shows, comparing the mean equilibrium energies 〈we〉i =

(
we

+ + we
−

)
i/2.

Looking to typical CVs featuring residual incoherent anisotropy attributed to RAM, it is thus
concluded that Cb is the only eligible configuration, which does not account for hc.

FIG. 4. (a): Simulated loops for configurations Ca (bold) and Cb (dashed), compared to the experimental loop (thin red).
εR = π/125 was chosen for matching experimental value of hc and the simulated one ha

c . (b) Transverse polarization for
configuration Cb.
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FIG. 5. (a). Evolution of differential angle θd for the two configurations (b). Comparison of energies for Ca and Cb.

It is noticeable that the existence of the configuration solution Cb is due to the coupling of θ+ and
θ− through the magnetostatic term (see Eqs. 10 and 11). Without this term, a unique configuration
would emerge, equilibrium angles θe

+ and θe
− obeying the classical Stoner-Wolfarth formalism,22

leading to a macroscopic behavior very comparable to the one featured by configuration Ca. This
reinforces our initial statement, that is, independently of the way to model it, to take into account the
magnetostatic term is of crucial importance.

III. INTRODUCING HARD CVs

According to previous conclusions, CVRs are considered obeying the anhysteretic Cb behavior.
To account for hc, some minority CVs (noted CVHs, as harder) have so to be involved, featuring
a reduced uncoherent anisotropy kH

e > kR
e . Parameters characteristic of this new population will be

labelled with superscript H. We’ll describe at first how CVHs interact with CVRs and finally the impact
of this cohabitation at the macroscopic scale. Between those extremes, different intermediate scales
will appear. To facilitate the comprehension, we propose on Fig. 6 a global view of those different
scales and corresponding polarisations notations, thick double arrows indicating the magnetostatic
coupling.

FIG. 6. Global synoptic of the different scales at which the magnetic behavior can be apprehended, with corresponding
notations, starting from the local individual CVH until the macroscopic level. z denotes the hard CVs volumic fraction. In
this symbolic scheme, kH

e and k′He represent the actual continuous distribution of hardnesses. The distribution will in fact be
approximated by 3 hardnesses (Sec. III D).
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A. Equilibrium equations

To study the behavior of CVHs, the frame of the mean field theory introduced above is still
followed. The major difference, compared with the case of CVRs, is about the link between the
environment and the peculiar CV considered: Indeed, the CVHs volumetric part is expected to be
only some % of the totality. The environment of a CVH can thus be nearly considered entirely made
of CVRs, the mean properties of the corresponding HM being so disconnected from the central CVH
considered now.

CVRs feature configuration Cb and for simplicity the corresponding differential angle is assumed
to be null, according to Fig. 5a. As a result, all the CVRs belonging to a Weiss Domain exhibit the
same polarization, described by a single angular variable and denoted~jR = cos θR~ux + sin θR~uy. It is
obtained with (15b) cos θR = ha/ cos 2εR, that is, neglecting cos 2εR:

cos θR = ha (19)

For analytical convenience, in the frame of the description of the surrounding medium of a pecu-
liar CVH,~jR will be assimilate with~jD, neglecting the influence of the minority CVHs contribution.
It is thus obtained ‖〈~jD〉‖ = 1 and θD = θR, yielding with (8) to the magnetostatic energy associated
to a CVH

uH
+(−) =−cos

(
θR − θ+(−)

)
(20)

Equations (19) and (20) are inserted in (3), (4), replacing kR
e = 1 by kH

e and εR by εH , yielding
to:

w+ = kH
e cos2(θ+ + εH ) − 2 cos θR cos θ+ − cos(θR − θ+) (21)

w− = kH
e cos2(θ− − εH ) − 2 cos θR cos θ− − cos(θR − θ−) (22)

This leads, after differentiation, to the equilibrium equations

3 cos θR sin θe
+ − cos θe

+ sin θR = kH
e sin 2

(
θe

+ + εH
)

(23)

3 cos θR sin θe
− − cos θe

− sin θR = kH
e sin 2

(
θe
− − εH

)
(24)

B. About irreversibility

A key point is to evaluate the typical hardness required to allow irreversibility, this point con-
ditioning the possibility to account for dissipation and thus for coercivity. We’ll denote θ j

+ a critical
angle (subscript j as jump). θ j

+ verifies (23), being a peculiar equilibrium angle, and the additional

relation ∂2w+

∂θ+
2

)
θ

j
+
= 0. Denoting θ j

R the peculiar value of θR at which the jump occurs, it is thus obtained

6 cos θ j
R sin θ j

+ − 2 cos θ j
+ sin θ j

R = 2kH
e sin 2

(
θ

j
+ + εH

)
(25)

3 cos θ j
R cos θ j

+ + sin θ j
+ sin θ j

R = 2kH
e cos 2

(
θ

j
+ + εH

)
(26)

Similar expressions are obtained for θ j
−, replacing εH by −εH .

θ
j
R given, to determine the corresponding expression of kH

e , one can express the combined equation
(25)2 + (26)2. This leads to the second order equation(

2W + V2
)

x2 + 2
(
V

(
U − 4kH2

e

)
−W

)
x +

(
U − 4kH2

e

)2
= 0 (27)

Where = cos2θ
j
+ ; V = 3

(
sin2θ

j
R − 9cos2θ

j
R

)
; U = 1 + 35cos2θ

j
R; W = 40.5 sin22θ j

R.

The minimum value kH
e lim to obtain a jump for a given θ j

R corresponds to the cancellation of the
discriminant of Eq. (27), that is

kH
e lim =

1
2

√
U
√

2W + V2 + UV −W
√

2W + V2 + V
(28)

Injecting (28) in (27), one obtains the corresponding critical angle
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FIG. 7. Graphical determination of the representative minimum hardness to allow irreversibility determined as the intersect
of the curve describing the intrinsic relation εlim

H

(
kH

e lim

)
and the curve 〈εH 〉

(
kH

e

)
associated to representative CVHs.

cos2θ
j
+ =

U − 4kH
e lim

2

√
2W + V2

(29)

The corresponding deviation εlim
H is obtained injecting (28) and (29) in (26), and obeys finally

εlim
H =Arccos

√
W

√
2W + V2V + 2W + V2

(30)

The curve εlim
H

(
kH

e lim

)
is plotted on Fig. 7 (continuous black). As expected, this curve is decreasing, a

little value of kH
e requiring a great deviation of the ED to maintain the anisotropy energy at a sufficient

level to allow irreversibility.
Nevertheless, the question of the representability of a couple

(
kH

e lim, εlim
H

)
has now to be asked.

Indeed, from a general point of view, the effect of a given hardness kH
e should ideally be rendered

averaging the contributions considering all deviations εH , according with the distribution εH

(
kH

e

)
.

Regarding the complexity of the task, we simplify, considering that the couple
(
kH

e , 〈εH〉
(
kH

e

))
is representative of the actual average. In the present context, this means that among all couples(
kH

e lim, εlim
H

)
, the one featuring εlim

H = 〈εH〉
(
kH

e lim

)
is relevant, others playing a role of curiosities

weightless. It is thus necessary to complete the study looking to mean properties of deviation to
provide a comprehensive overview of the representative minimum value H

e kre
lim to obtain a jump. This

is done in the Appendix. Particularizing notations to the present context, the mean deviation 〈εH〉 for
a given intrinsic hardness kH

i obeys

〈εH〉= 0.25π tanh 0.45kH
i (31)

Inserting (1) (replacing Ke by KH
e and Ki by KH

i ) in (32), one obtains

〈εH〉= 0.25π tanh 0.45
√(

kH2
e − 1

)
(32)

The corresponding curve is plotted on Fig. 7 (dashed red). In the context of irreversibility,
the representative minimum hardness H

e kre
lim to obtain a jump is so determined by the intersect of

εlim
H

(
kH

e lim

)
and 〈εH〉

(
kH

e

)
curves, as shown on Fig. 7. One obtains H

e kre
lim � 1.234. With (1), this

leads to an intrinsic anisotropy H
i kre

lim � 0.72 Ku. In the peculiar case featured by the experimental
loop pictured on Fig. 1, one obtains H

i kre
lim � 4.3 KR

i . As expected, the population of minority CVs
considered has to be harder that the majority CVRs studied at first, to account for coercivity. This is
consistent with our scheme.
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Dealing with representative CVHs, we’ll consider in the next only couples
(
kH

e , εH

)
featuring

εH = 〈εH〉
(
kH

e

)
given by (32).

C. Local loops

The magnetic behavior featured by CVHs immersed in CVRs is deduced from Eqs. (23) and
(24). Dealing with CVHs+, we consider (23)2, obtaining the second order equation

Ay2 − 2B y + C = 0 (33)

Where y= cos θR A= 1+8sin2θe
+ B= 3 kH

e sin θe
+ sin 2

(
θe

+ + εH
)

C = kH2

e sin22
(
θe

+ + εH
)
−cos2θe

+
θe

+ given, two roots are obtained, verifying

cos θa
R =

(
B +

√
B2 − AC

)
/A cos θb

R =

(
B −

√
B2 − AC

)
/A (34)

Ones has to take in mind that, according to the strip structure, θR ∈ [0, π] or θR ∈ [π, 2π], depending
on the Weiss Domain the CVH belongs to. We’ll arbitrary consider θR ∈ [0, π]. cos θa

R and cos θb
R

been known, θa
R and θb

R are so entirely determined. Considering the input variable θe
+ ∈ [0, 2π],

one obtains the relevant solution θR checking what root θa
R or θb

R verifies (24). Remembering that
ha = cos θR (Eq. 20), one obtains the local loop featured by CVHs+ plotting the points

(
ha, cos θe

+
)
.

The same approach will apply to CVHs−, replacing θe
+ by θe

− and εH by −εH in parameters
A, B and C.

kH
e given, the corresponding averaged loop is obtained plotting the points

(
ha, j−+ =

(
cos θe

+
+ cos θe

−

)
/2

)
. At this stage, ha is the entrance variable. This means that it is necessary to inter-

polate corresponding values of cos θe
+ and cos θe

−. This will impact the strategy we’ll adopt looking
to macroscopic scale (Sec. III D).

1. kH
e � kH

e lim

Fig. 8a and 8b illustrate the case kH
e = 1.23

(
� H

e kre
lim

)
. The loops associated to each kind of CVH

are plotted on Fig. 8a. They are anhysteretic, as expected, the double arrows indicating that the same
route is travelled increasing or decreasing the field. Logically, the averaged loop is anhysteretic too.
Nevertheless, the thin arrows point the approach of instability which will lead to irreversibility for an
infinitesimal increase of kH

e .
A non-trivial characteristic is the negative slopes observed towards saturation (|ha | > 0.81), look-

ing to individual behaviours (Fig. 8a). It is explained noticing that the natural tendency of the local
polarization is to proximate the ED. But the magnetostatic cost being related to θD − θCVH (see Eq
20), the local Polarization has to proximate ~jD too. As a consequence, different stages occur, i.e.,
considering CVH+ for illustrating (see Fig. 9):

FIG. 8. (a). Local anhysteretic loops characteristics of CVHs featuring kH
e = 1.23 (b). Corresponding averaged anhysteretic

loop.
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FIG. 9. Qualitative explanation of the negative slope observed for |ha | > 0.81 on the loops illustrated on Fig. 8a: illustration
of the evolution of~j+ towards negative saturation, |ha | increasing from I to IV. The differences of orientations are amplified
for visibility.

Stage I:~j+ is late with respect to~jD, looking towards the easy angle θED = π/2 − ε;
Stages II, III, IV:~j+ is in advance, looking towards the approaching easy angle θED = 3π/2 − ε;
We now focus on stages II and III. The situation can be explained considering for simplicity that the
evolution of ha is small enough in these stages to neglect the variation of the Zeeman contribution
in regard of the magnetostatic and anisotropic energy variations (note that the evolution of ha is
anyway partially accounted trough the evolution of θD, impacting the magnetostatic term). As a
result, optimizing the energetic compromise between anisotropic contribution and magnetostatic one
leads to the increase of θe

+ with θD, that is
Stage II: θe

+ increasing with θD (and so with |ha | = |cos θD |), ��j+
x
��= ��cos θe

+
�� increases too, so long as

θe
+ < π;

Stage III: θe
+ being greater than π, the increase of θe

+ with θD leads to a decrease of ��j+
x
�� with |ha |;

Stage IV: The energetic compromise is here essentially driven by the anisotropic term and the Zeeman
one, the sharp increasing values of |ha | due to the asymptotic approach to saturation leading to a
Zeeman contribution more significant than the magnetostatic one. As a result, ��j+

x
�� increases with |ha |

until saturation.
In the frame of our modeling, the stage IV is not observed, the asymptotic approach to saturation

being not rendered, due to the crude simplifications characteristic of our analytic approach, leading
to jD

x = ha and thus a saturating field equal to 1. For this reason, we restrict our simulations to the
arbitrary interval |ha | < 0.95.

2. Coercive case

A coercive behavior, corresponding to kH
i = 2, is pictured on Fig. 10 for comparison with the

anhysteretic preceding case. An interesting characteristic of local loops is the asymmetry featured
by increasing and decreasing branches, as evidenced looking to the different values of remanences

FIG. 10. Local coercive loops characteristics of CVHs featuring kH
i = 2 (b). Corresponding averaged coercive loop.
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FIG. 11. Illustration of the interplay of the local polarization and the polarization of the surrounding domain explaining the
asymmetry featured by local loops. Letters P and P′ refer to points P and P′ indicated on the local loop featured by a CVH+,
as illustrated on Fig. 10a.

or critical fields, i.e., considering for instance the loop associated to CVH− : ���h
j
↓

���= ha
2 = 0.72 hj

↑
=

hb
2 = 0.84 jr

↓
= 0.655 jr

↑
=−0.44

where arrows refer to the increasing and decreasing branches.

This is explained looking again to magnetostatic interactions, controlled by
−→
jD. Figure 11 illus-

trates this question, dealing with a CVH+, looking to the peculiar situation of points P (decreasing
branch) and P′ (increasing branch) corresponding to ha =±h0 indicated on Fig. 10a. As illustrated

on Fig. 11 by bold vectors, the local polarization
−→
j+(P′) would be symmetrical of

−→
j+(P) if the

polarization of the environment was fulfilling this property too, according to Curie’s principle, i.e.
θD(P′)= θD(P)+π. This is not the case, θD(P′) equaling= π−θD(P). As a result, the absolute value of

the x component of
−→
j+(P′) is much greater than the one of

−→
j+(P). The symmetry is of course restored

looking to the averaged loop, as shown on Fig. 9b, the asymmetry featured by CVHs− compensating
the one of CVHs+, but even at this scale, the memory of the local asymmetry is present, revealed by
the two levels of irreversibility ha

2 and hb
2.

According to this explanatory framework, the asymmetry will be stronger the relative pound of
magnetostatic interactions stronger is. This is illustrated on Fig. 12a, simulating the case kH

i = 1, the
local loop corresponding to CVHs− being not pictured to preserve clarity. Compared to Fig. 10a, the
strengthening of the asymmetric character is spectacular, illustrating the sensitivity of the resulting
loop to values of parameters when the energetic compromise involves contributions of comparable
magnitudes.

FIG. 12. (a): Illustration of the interplay between magnetostatic interactions and local anisotropy on the resulting asymmetry
featured by ascending and descending branches of a local loop. The relatively small value kH

i = 1 yields to an asymmetry much
more pronounced than in the case kH

i = 2 pictured on Fig. 10a. (b) Compensation of asymmetries looking to the averaged
polarization (= considering the contribution of CVH− together with the one of CVH+).
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D. Impact of CVHs at the macroscopic scale

To simulate the impact of CVHs on the macroscopic loop, the continuous distribution of kH
i

should be rendered. We simplify, choosing arbitrary 3 CVHs type of same pound for discretizing
the distribution of hardnesses, i.e. αkH

i = 2, βkH
i = 1.5 and γkH

i = 1. The resulting averaged loop (=
mixing those 3 contributions) is plotted on Fig. 13a.

Denoting z the CVHs volumetric part, the macroscopic polarization jm obeys:

jm(ha)= (1 − z) ha + jH
av(ha)z (35)

z is determined matching the experimental remanence jex
r with the simulated one jav

H r = 0.46
(indicated on Fig. 13a). In the case of the sample pictured on Fig. 1, jex

r = 0.0265. This leads to
z16 = 5, 76%, the subscript referring to the corresponding experimental value of Ku. The CVHs are
clearly minority, in accordance with our hypothesis.

As mentioned at the beginning of Sec. III, CVHs were introduced for accounting coercivity or
equivalently hysteretical character of the macroscopic loop. It is obvious that the narrow elongated
look featured by the experimental loop pictured on Fig. 1b does not allow an easy characterization
of this specific aspect, retaining the conventional graphical representation jm(ha). It is so preferable
to get rid of the anhysteretic skeleton. Facing this problem, it is considered in Ref. 7 the hysteretic
component of the field hhy( jm)=

(
h↑a( jm) − h↓a( jm)

)
/2. The entrance variable being the polariza-

tion, this involves interpolating excitation fields. Remembering that data were at first interpolated
with respect to polarizations (cf. Sec. III C), a loss of accuracy may occur due to successive inter-
polating operations, especially in regions associated to fronts. To avoid this problem, we propose
here an equivalent alternative, retaining, as for local investigations, ha as entrance variable: fol-
lowing Ref. 23, we so focus on the hysteretic component jhy of the macroscopic polarization, jhy

obeying
jhy(ha)=

(
j↓m(ha) − j↑m(ha)

)
/2 (36)

With (35), this simply yields to

jhy(ha)=
(
jav↓
H (ha) − jav↑

H (ha)
)

y/2 (37)

The resulting jhy curve is plotted (bold red) on Fig. 13b, and compared to two experimental curves:
the hysteretic polarization j16

hy obtained from the sample illustrated on Fig. 1, featuring Ku = 16.2 J/m3

(black continuous), and j12
hy obtained from the sample illustrated on Fig. 1,7 featuring Ku = 12.1 J/m3

(black dashed). In this last case, the reduce remanence equals 0.0285. This impacts the volumic part
of CVHs, leading to z12 = 6, 2% instead of z16 = 5, 76% (considering the same distribution of CVHs,
indexed on the value of Ku). To facilitate the comparison, j12

hy has been renormalized, actual values

being multiplied by j16
r /j

12
r for equaling the amplitude of the corresponding curve (black dashed) with

FIG. 13. (a): Averaged loop relative to the distribution of CVHs, i.e. αkH
i = 2, βkH

i = 1.5 and γkH
i = 1 with equal pounds.

(b): resulting macroscopic hysteretic component of the polarization (magenta), compared with experimental curves (Ku =

16.2 J/m3, Ku = 12.1 J/m3).
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others. From this, it is concluded that the postulated distribution of CVHs used for simulating is in
qualitative agreement with experimental results.

IV. CONCLUSION

The simulations reported concern nanocrystalline soft ribbons featuring transverse loops. They
are based on an analytical minimization of the total energy, made of Zeeman, anisotropic, and
magnetostatic contributions, evaluated at the scale of individual CVs. Particular care is brought
to the description of the magnetostatic interactions, modelled in the frame of a mean field
theory.

The solving of equations show that majority CVs obeying the RAM explain well the domain pat-
tern but one has to consider another kind of CVs, minority, featuring a magnitude of local uncoherent
anisotropy Ki comparable to Ku, to account for the hysteretic character.

These investigations are very general and not addressed to the specific loops chosen for
illustrating.

Hc reflecting the contribution of minority CVs, its use, in the context of transverse loops, as an
experimental parameter reflecting the RAM, seems to be somewhat questionable.

The origin of the "hard" CVs is an opened question. In the case of transverse field annealing,
a residual uncoherent magnetoelastic anisotropy could result from external stress applied during
annealing.7 Our own experimental investigations concerning field annealing, dealing with stress
induced anisotropy, the evolution of coercivity with Ku reported in Ref. 6 should allow fruitful
complementary experimental confrontation for modeling.

Numerous simplifications, inherent to the analytic approach, have been applied, dealing for
instance with the uniaxial character of the uncoherent anisotropy or its 2D treatment, or the absence
of hard CVs in the description of the environment of a given CV. The toughest problem is probably
the assumption of an isotropic susceptibility χ for describing the equivalent homogeneous medium
surrounding a peculiar CV, and the subsequent magnetostatic interactions. This crude simplification
is probably responsible for the impossibility to simulate the asymptotic approach to saturation. This
interpretation is reinforced by preliminary advanced modeling, simulations restoring the asymptotic
behavior when the anisotropic character of χ is taken into account. This will be the subject of a future
publication.
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APPENDIX

We consider a population of CVHs featuring an intrinsic uniaxial anisotropy of amplitude Ki

with randomly distributed intrinsic Easy Directions in a plane, superimposed on a coherent uniaxial
anisotropy of amplitude Ku and easy direction EDKu in the same plane. The objective of this appendix
is to provide an analytic estimation of the mean deviation 〈ε〉 of the ED featured by the resulting
effective anisotropy with respect to EDKu as a function of Ki/Ku, starting from the 3D simulations
reported by Flohrer et al.9

In Ref. 9, Ki was attributed to the RAM, however simulations do not require any hypothesis
about the origin of Ki. The results can so be reused in a more general context. We’ll do it focusing
on the asymptotic values featured by 〈ε〉 in the limit Ki�Ku: the mean deviation is thus entirely
determined by the random distribution of intrinsic Easy Directions, 〈ε〉lim obeying

〈ε〉3D
lim =

∫ π/2

0
ε sin εdε= 1 rad (A1)

〈ε〉2D
lim =

2
π

∫ π/2

0
ε dε=

π

4
rad (A2)

 08 O
ctober 2024 13:17:51



047712-15 Geoffroy et al. AIP Advances 8, 047712 (2018)

FIG. 14. Evolution of the average orientation of the ED for randomly oriented individual EDs with uniaxial anisotropy
constant Ki and a superimposed uniform uniaxial anisotropy Ku.

We’ll so adapt the 3D simulations of Flohrer et al to the 2D context by a simple linear correction
carried out for matching the simulated asymptotic value 〈ε〉lim to the 2D situation, multiplying thus
by 〈ε〉2D

lim/〈ε〉
3D
lim = π/4 the values 〈ε〉 taken from Ref. 9, Fig. 3, uniaxial curve. The resulting sampled

points are plotted on Fig. 14 and fitted by the law

〈ε〉= 0.25 π tanh 0.45ki (A3)
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