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Abstract.This paper provides a semi-analytical approach for computing the flux linkage of a 2Dmeshed coil in
presence of a non-linear magnetic material. First, a method for flux computation is introduced given the field
obtained thanks to a volume integral method. Second, an analytical method for computing the magnetic source
field andmagnetic vector potential induced by a 2Dmeshed coil is presented, those quantities being necessary for
the flux computation. Comparisons to the finite elements methods are carried out to conclude on the
performances of the new method presented.
1 Introduction

One of the key physical quantities while designing an
electrical motor [1,2] is the flux linkage of the inductors
since it allows to compute the back electromotive force
[3,4]. To do so, the finite elements method (FEM) is widely
used at an industrial level (see pre-design softwares such as
Flux Motor issued by Altair motorering). The FEM yields
fairly good results but the computation time can sometimes
be a bit long in a pre-design objective [5]. While the FEM
needs the whole geometry to be meshed (air, active
materials, sources etc…), the volume integral method
(VIM) only requires the meshing of active materials. For a
few years, the VIM has been widely studied [6–8] and is
know today as a good alternative to the FEM for solving
magnetostatic problems in the presence of non-linear
materials thanks to the robust acceleration method for its
resolution. The magnetic field in the magnetic materials
will thus be computed thanks to a 2D VIM presented in [9].
Consequently, the information regarding themagnetic field
outside of the active materials is unavailable without an
expensive post computation. It is thus necessary to use a
flux computation method that requires only the informa-
tion in the active materials. The method for the flux
computation is inspired from [10] and adapted in 2D. This
method will be tested with the calculation of the flux
linkage of the first phase of a three-phased synchronous
permanent magnet electrical motor. The results are
compared to those obtained with the FEM.
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2 Flux computation method

The flux computation method proposed is complementary
to the VIM since it only requires the magnetic field inside
the active materials. The vector potential can be split
into A=A0+Am where A0 is the vector potential created
by the coils in the vacuum and Am is the vector potential
in the magnetic regions. The magnetic flux linkage of
a coil k associated to a domain V0k can be expressed
as [10]:

Fk ¼ ∫V0k
j0k � AdV0k ¼ F0k þFmk ð1Þ

where j0k is the current density vector that creates a current
of 1A in the coil k. F0k is the contribution of all coils and
Fmk is the contribution of the magnetized part. Let us
calculate the contribution of the flux coming from A0. One
can write A0 as:

A0 ¼ m0

2p

XNcoil

l¼0

il∫V0l
j0lGðrÞ dV0l

� �
ð2Þ

with G(r) the 2D Green kernel: G (r)= log(1/k r k), with r
distance between the source point and the target point of
integration. The contribution from the coils to the flux
linkage of the coil k is:

F0k ¼ m0

2p
∫V0k

j0k
XNcoil

l¼0

il∫V0l
j0lGðrÞ dV0l

� �( )
dV0k

¼
XNcoil

l¼0

Lklil

ð3Þ
-p1
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Fig. 1. Example of the meshed the coil of an electrical motor.

Fig. 2. Shifting and rotation of the triangle T.

Fig. 3. Parametrization of the two rectangle triangles.
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where il is the current through the coil l and:

Lkl ¼ m0

2p
∫V0k

j0k⋅∫V0l
j0lGðrÞ dV0l dV0k

¼ ∫V0k
j0ka0l dV0k

ð4Þ

where a0l represents the vector potential generated by
the coil l in the vacuumwitha1Acurrent andLkl the self (for
k= l) and mutual inductance of the coils in the vacuum.

The contribution from the magnetic parts can be
written as:

Fmk ¼ ∫V0k
j0k⋅Am dV0k ð5Þ

that can be modified by the divergence theorem:

Fmk ¼ ∫V0k
H0k⋅∇ � Am dV0k

þ∫G0kn⋅ðAm � H0kÞ dG0k ð6Þ

where H0k is the magnetic field created by the coil k when
crossed by a 1A current, G0k is the boundary of the domain
V0k. The second part of equation (6) is equal to zero since
the potential and magnetic field are conserved through G0k
[10]. We can thus obtain:

Fmk ¼ ∫V0k
H0k⋅∇ � Am dV0k ð7Þ

that can be transformed into [10]:

Fmk ¼ ∫Vmm0H0k⋅MdVm ð8Þ
where Vm represents the active materials domain and M is
the magnetisation. We finally obtain a general formula for
the flux linkage of a coil k:

Fk ¼
XNbob

l¼0

∫V0k
j0k⋅a0l dV0kil þ ∫Vmm0H0k⋅MdVm ð9Þ

One can notice that the formula necessitates only the
information of the magnetic field in the active materials
(Vm). This makes this formula highly compatible with the
VIM. Nevertheless, the vector potential and the magnetic
20902
field created by the coils are required in the formula (9).
The second part of this paper introduces an analytical
method to obtain those values.

3 Magnetic field and vector potential
induced by a 2D meshed coil

Since the shape of the coils within an electrical rotating
machine are not basic shapes (e.g. squares, circles),
computing the magnetic field and vector potential
generated by those coils is not easy. We have adopted a
semi-analytical approach that consists on meshing
the inductors with triangles and computing analytical
magnetic field and vector potential per triangle
Figure 1. Contrary to the 3D situation where Urankar’s
formulas are well known [11–14], There are no analytical
formulas for the field and potential created by a triangle in
2D. Let T be a triangle of the mesh, we can shift and rotate
this triangle so that it is in a reference frame (longest edge
along the Ox axis) and cut it in two rectangle triangles (see
Fig. 2). We can thus compute analytically the field and
vector potential created by both triangles T1 and T2 (see
Figs. 2 and 3). We could have chosen to work with a
normalised reference triangle and a geometrical Jacobian
transformation [15] but our approach is more straightfor-
ward and easier to implement, that is why we decided to
present it here. Moreover, the use of a jacobian
transformation is less effective regarding the computation
-p2
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time since more mathematical operations are required for
the computation of the field and potential created by each
triangle. We use the complex potential created by each
triangle defined as [16]:

PðzÞ ¼ � J

2p
∫Vlogðz� ziÞdV ð10Þ

whereV is the triangle surface crossed by a current density
J and z the complex coordinate of the target point. From
this potential can be extracted the magnetic field and
vector potential:

dPðzÞ
dz

¼ �iH� ¼ �Hy � iHx ð11Þ

A ¼ ℜeðPðzÞÞ ð12Þ
where i is the imaginary number.

Let us compute the complex potential created by T1
and T2 described in Figure 3. The formula for the complex
potential yields:

PðzÞT1 ¼ � J

2p
∫a0∫

bj=a
0 logðz� ðjþ ihÞÞ dh dj ð13Þ

PðzÞT2 ¼ � J

2p
∫a0∫

b�bj=a
0 logðz� ðjþ ihÞÞ dh dj ð14Þ

Let us focus on the potential created by T1. We use the
fact that a primitive of log(u) is u[log(u)� 1]:

PðzÞT1 ¼ J

2p
∫a0½ðz� j� ihÞðlogðz� j� ihÞ � 1Þ�bj=a0 dj

¼ J

2p
∫a0 �j

ib

a
� ½z� j�logðz� jÞ

�

þ z� j 1þ ib

a

� �� �
log z� j 1þ ib

a

� �� �	
dj

ð15Þ
which leads to, with z0= 0, z1= a, z2= a+ ib:

PðzÞT1 ¼
J

2p
iCte þ ðz� z1Þ2

2
logðz� z1Þ � 1

2

� �"

�ðz� z0Þ2
2

logðz� z0Þ � 1

2

� �

� 1

1þ ib
a

ðz� z2Þ2
2

logðz� z2Þ � 1

2

� � 

�ðz� z0Þ2
2

logðz� z0Þ � 1

2

� ���
ð16Þ
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We then use the equations given in equation (11) to get
the vector potential:

2pA

J
¼ D0

a0

2
þ P 0

1

2
� logðr0Þ

� �

�D1
a1

2
þ P 1 logðr1Þ � 1

2

� �

þ 1

1þ b2

a2

D2
a2

2
þ P 2

1

2
� logðr2Þ

� ��

�D0
a0

2
þ P 0 logðr0Þ � 1

2

� ��

þ
b
a

1þ b2

a2

D2
1

4
� logðr2Þ

2

� ��

�P 2a2 þD0
logðr0Þ

2
� 1

4

� �
þ P 0a0Þ ð17Þ

where Di=(y� yi)
2� (x� xi)

2, and Pi=(x� xi) (y� yi).
For the magnetic field:

�2pHx

J
¼ xlog

r0
r1

� �
þ yða1 � a0Þ þ alogðr1Þ

þ
xlog r2

r0

� �
þ yða0 � a2Þ � alogðr2Þ þ ba2

1þ b2

a2

þ b

a

ylog r2
r0

� �
þ xða2 � a0Þ � blogðr2Þ � aa2

1þ b2

a2

0
@

1
A

ð18Þ

2pHy

J
¼ ylog

r0
r1

� �
þ xða0 � a1Þ þ aa1

þ
ylog r2

r0

� �
þ xða2 � a0Þ � aa2

1þ b2

a2

þ b

a

xlog r0
r2

� �
þ yða2 � a0Þ � ba2

1þ b2

a2

0
@

1
A ð19Þ
-p3



Fig. 4. Description of test case.

Fig. 5. Results of the test case.
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The analytical formulas for the vector potential and the
field created by T2 are obtained the same way:

2pA

J
¼ D0

a0

2
þ P 0

1

2
� logðr0Þ

� �
�D1

a1

2

þP 1 logðr1Þ � 1

2

� �
þ 1

1þ b2

a2

D1
a1

2
þ P 1

1

2
� logðr2Þ

� ��

�D2
a2

2
þ P 2 logðr2Þ � 1

2

� ��
�

b
a

1þ b2

a2

D1
1

4
� logðr1Þ

2

� ��

�P 1a1 þD2
logðr2Þ

2
� 1

4

� �
þ P 2a2Þ ð20Þ

�2pHx

J
¼ xlog

r0
r1

� �
þ yða1 � a0Þ þ alogðr1Þ

þ
xlog r1

r2

� �
þ yða2 � a1Þ � alogðr1Þ � ba2

1þ b2

a2

þ b

a

ylog r2
r1

� �
þ xða2 � a1Þ � blogðr2Þ þ aa1

1þ b2

a2

0
@

1
A

ð21Þ

2pHy

J
¼ ylog

r0
r1

� �
þ xða0 � a1Þ þ aa1

þ
ylog r1

r2

� �
þ xða1 � a2Þ � aa1 þ blogðr2Þ

1þ b2

a2

þ b

a

xlog r1
r2

� �
þ yða2 � a1Þ � ba2 � alogðr1Þ

1þ b2

a2

0
@

1
A
ð22Þ
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Thanks to those formulas, it is possible to compute the
magnetic field and vector potential created by any
unspecified triangle and thus by any 2D triangularly
meshed coil. Consequently, those formulas allow us to
compute the flux with the semi-analytical equation (9).

4 Validation of the analytical formulas

We validate our analytical formulas with the test case
presented Figure 4. It consists of three triangularly shaped
coils with a current of 1000A and we computed the field
and vector potential along the curve C. We compared the
values obtained with our analytical approach to a FEM
solution: We plotted the mean difference between the
analytical solution and the solution yielded by the FEM for
several mesh qualities:

MeanErrorHx ¼ 1

N

XN
i¼1

Hi
anal⋅ex �Hi

FEM ⋅ex
max
i¼1;::;N

ðHi
FEM ⋅exÞ
















MeanErrorHy ¼ 1

N

XN
i¼1

Hi
anal⋅ey �Hi

FEM ⋅ey
max
i¼1;::;N

ðHi
FEM ⋅eyÞ
















MeanErrorA ¼ 1

N

XN
i¼1

Ai
anal � Ai

FEM

max
i¼1;::;N

ðAi
FEMÞ














 ð23Þ

where N is the number of points along the curve C (we
chosed N=360). The results are displayed Figure 5. The
graph shows that the better the FEM problem is meshed,
the closer its solution is to the analytical solution, which
validates our analytical formulas. The reader can notice
that the error on the potential vector is an order of
magnitude less than on the magnetic field. This can be
explained by the relative “smootheness” of the potential
vector due to the fact that it is a primitive to the magnetic
field.
-p4



Fig. 6. Algorithm for the computation of the inductances.

Fig. 7. Test case for the flux computation in the vacuum.

Fig. 8. Error and computation time for several Gauss points
number used for integration.

Fig. 9. Test case for the flux computation.
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5 Flux calculation in the vacuum

Since the integration of F0k is semi-analytical (a0l is
computed analytically with the formula described above),
we decide to use an adaptative number of Gauss points to
ensure the convergence of the calculation, which mean we
stop increasing the number of Gauss points when the
variation of the flux is less than a certain value (in this
paper this value is 0.001%). This allows us to use the
coarsest mesh for the coils and still get an accurate value for
mutual and self inductances Lkl in equation (4).

We use the algorithm shown Figure 6 to do the
calculation, whereLi

kl is the value of the mutual inductance
between coil k and coil l computed with a number of Gauss
points i on the V0k domain. We used a value of 10�5 for e.
One has to keep in mind that the further the two coils are
from each other, the less Gauss points the calculation
needs.

To validate our flux in vacuum computation method,
we compute the flux in the coil B of the test case Figure 7
with our adaptative semi-analytical method. To validate
our approach we use a FEM reference solution, obtained
with a sufficiently fine mesh (around 300 000 second order
elements). The FEM yielded a value of the flux of
1.792688� 10�5Wb while our adaptative computation
20902
yielded 1.792684� 10�5Wb (less than 3� 10�5% error).
We plot Figure 8 the relative error and the computation
time of our adaptative approach for several numbers of
Gauss points. We can see that we used 25 Gauss points,
computing the result in less than 0.05 s. To obtain this level
of precision with the FEM, at least 10 s and a very refined
mesh (200 000 elements and 3 gauss points per elements,
almost as refined as our “reference solution”) are required
while we used only 18 triangles Figure 8.

6 Flux computation through the phase of an
electrical motor

In order to validate our flux computation method, we used
a 24 slot � 8 poles permanent magnet electrical motor (see
Fig. 9). We calculated the flux in the phase A of the motor
with no current in the coils for several positions of the rotor
(from 0 to p/4). Three qualities of mesh have been used for
the resolution of the magnetostatic problem via the VIM:
70, 205 and 371 unknowns for one anti-periodicity of the
motor. A comparison between the 70 and 371 unknowns
mesh can be found Figure 10.
-p5



Fig. 10. 70 and 371 unknowns mesh for the used for the flux
computation.

Fig. 11. Flux linkage of the phase A of the test motor for several
positions of the rotor.

Fig. 12. Flux linkage of the phase A of the test motor for several
positions of the rotor (zoomed).

Fig. 13. Difference between the reference and the semi-analytic
solution for several positions of the rotor.

Fig. 14. Error and computation time of FEM and VIM+ the
proposed semi-analytical approach (per position for the compu-
tation time).
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We compared the solution obtained by our flux
computation method with one solution obtained via the
FEM with a very high quality mesh (around 400 000
elements). The plot of those four curves (one for the FEM
reference and three for our method at different qualities of
mesh) can be found Figures 11 and 12 while the relative
differences between the reference and our method can be
found Figure 13. The plot of the computation times
required for the FEM and the VIM and the analytical
method approach can be found Figure 14.
20902
One can notice that even with a very low number of
unknowns, our semi-analytical method yields very accurate
results for a very reduced amount of calculation: indeed,
while the mean difference between the FEM reference and
the solution obtained with 70 unknowns is 2.28% with a
maximum difference of 3.81%, the computation time is less
than 0.3 s per position of the rotor. This low computation
time makes this method very effective in a pre-design
context (which was the aim of this study). In opposite, the
FEM takes at least 1.5 s per position for the same level of
precision (we used a 5000 elements mesh) compared to the
reference.

7 Conclusions

Original analytical formulas for the computation of the
magnetic field and the potential created by a 2D
unspecified triangle have been introduced. Those formulas
have been rigorously validated with a Finite Elements
model. They allow us to calculate semi-analytically the flux
linkage of a 2D meshed coil of any shape. This semi-
analytical method of flux computation is very well suited
-p6
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for the post processing of a solution yielded by a VIM. We
thus used the coupling of the VIM and the proposed
method to compute the flux linkage of the phase of a
permanent magnet synchronous electrical motor. This
coupling allows to gather good quality results rather
quickly compared to the Finite Element Method. We can
see that in addition to being as precise as the FEM for
normally meshed problems [7,8,17] is very efficient in a pre-
design context, which was the aim of this study.

Author contribution statement

The vast majority of the work has been carried out by
Quentin Debray who was then a PhD student under the
direction of Dr. Gerard Meunier (Univ. Grenoble Alpes,
CNRS, Grenoble INP) and supervised by Dr. Olivier
Chadebec (Univ. Grenoble Alpes, CNRS, Grenoble INP),
Dr. Jean Louis Coulomb (Univ. Grenoble Alpes, CNRS,
Grenoble INP) and Dr. Anthony Carpentier (Altair
Engineering). Nevertheless, Drs. Meunier, Chadebec,
Coulomb and Carpentier played an essential role of
counseling during both the research and redaction phase.

References

1. A.O. Di Tommaso, F. Genduso, R. Miceli, Tenth Interna-
tional Conference on Ecological Vehicles and Renewable
Energies (EVER) (Monte Carlo, 2015), pp. 1–7

2. J. Pythonen, T. Jokinen, V. Hrabovcova, Design of rotating
electrical machines (Wiley Editions, 2009)

3. S.G. Min, B. Sarlioglu, IEEE Trans. Magn. 53, 1 (2017)
20902
4. R. Imamura, T. Wu, R.D. Lorenz, Design of variable
magnetization pattern machines for dynamic changes in the
back-EMF waveform, Energy Conversion Congress and
Exposition (ECCE), (IEEE, 2017)

5. I. Farmaga, P. Shmigelskyi, P. Spiewak, L. Ciupinski, 11th
International Conference The Experience of Designing and
Application of CAD Systems in Microelectronics (CADSM)
(2011) pp. 213–214

6. G.Meunier, O. Chadebec, J.M. Guichon, IEEETrans. Magn.
51, 1 (2015)

7. V. Le-Van, G. Meunier, O. Chadebec, J.M. Guichon, IEEE
Trans. Magn. 51, 1 (2015)

8. A. Carpentier, O. Chadebec, N. Galopin, G. Meunier, B.
Bannwarth, IEEE Trans. Magn. 49, 1685 (2013)

9. Q. Debray, G. Meunier, O. Chadebec, J.L. Coulomb, A.
Carpentier, IEEE Trans. Magn. 54, 1 (2018)

10. L. Huang, G. Meunier, O. Chadebec, J.M. Guichon, Y. Li, Z.
He, IEEE Trans. Magn. 53, 1 (2017)

11. L. Urankar, IEEE Trans. Magn. 16, 1283 (1980)
12. L. Urankar, IEEE Trans. Magn. 18, 911 (1982)
13. L. Urankar, IEEE Trans. Magn. 18, 1860 (1982)
14. L. Urankar, IEEE Trans. Magn. 26, 1171 (1990)
15. R. Graglia, IEEE Trans. Antennas Propag. 35, 662

(1987)
16. E. Durand, Magnetostatique, Vol. 1 (1968)
17. V. Le-Van, G. Meunier, O. Chadebec, J.M. Guichon, IEEE

Trans. Magn. 52, 1 (2016)

Open Access This article is distributed under the terms of the
Creative Commons Attribution License https://creativecom
mons.org/licenses/by/4.0 which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original
author(s) and source are credited.
Cite this article as: Quentin Debray, Gerard Meunier, Olivier Chadebec, Jean-Louis Coulomb, Anthony Carpentier, A semi-
analytical method to compute the magnetic flux linkage of a 2D meshed coil in presence of magnetic materials � application to
electrical motor pre-design, Eur. Phys. J. Appl. Phys. 83, 20902 (2018)
-p7

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

	A semi-analytical method to compute the magnetic flux linkage of a 2D meshed coil in presence of magnetic materials - application to electrical motor pre-design&x2605;
	1 Introduction
	2 Flux computation method
	3 Magnetic field and vector potential induced by a 2D meshed coil
	4 Validation of the analytical formulas
	5 Flux calculation in the vacuum
	6 Flux computation through the phase of an electrical motor
	7 Conclusions
	Author contribution statement
	References


