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Abstract—This paper provides an alternative approach to the
finite elements method of solving magneto-static field for an
efficient pre-design of electrical rotating machines [2][3]. First,
the 2D volume integral formulation will be presented. Second, this
formulation will be extended to periodic systems. Comparisons
to the finite elements methods will be carried out to conclude on
the performances of the new method presented.

I. INTRODUCTION

For a few years, Volume Integral Method (VIM) has been
widely studied [6][1][4] and is know today as a good al-
ternative to the Finite Elements Method (FEM) for solving
magnetostatic problems in the presence of non-linear mate-
rials. While the FEM needs the geometry to be completely
meshed, the VIM only requires the meshing of active ma-
terials. Moreover, while the FEM only takes into acount
local approximated interactions between Degrees Of Freedom
(DOF), VIM considers Green kernel type interaction. Those
types of interactions allow to be as efficient as possible on
a given mesh since the quality of the calculation of the
interaction is very high. Nevertheless, analytical methods are
necessary to correcly compute the integration of the Green
kernel since they are singular. This allows the use of lighter
meshes. While several VIM formulations have already been
proposed in 3D [5][1][4] using different types of unknows
(magnetization, scalar potential, magnetic field, etc...), 2D
VIM have never been developed. Moreover VIM have been
used in eletrical engine simulation. Since the 3D VIMs yield
good results, we decided to implement them in 2D to test
its efficiency in an electrical engine pre-design context. The
switchover form 3D to 2D is far from being trivial since the
Green kernels are different. Thus all the analytical integration
are to be recalculated. This papers presents a 2D formulation
based on the magnetic vector potential. We will first display
the major equations leading to the non linear system to be
solved and then apply this technique to electrical engine pre-
design.

II. 2D VOLUME INTEGRAL METHOD

The Volume Integral Method (VIM) used in this paper is a
vector potential formulation. It will be briefly presented in this
document however the reader can refer to the full description
of this method in 3D in [1]. The problem to be treated is
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presented in figure 1. The domain Ω is a surface domain

Fig. 1. Statement of the problem

representing the ferro-magnetic region including the magnets
(described with red and black color on the figure 1). Domain
ΓE represents the set of facets on the outside of the domain Ω
while ΓI reprensents the internal facets Ω. We can thus define
ΓT = ΓI + ΓE . Induction vector B can be approximated by
the Whitney facet elements [7] which yields the first order
interpolation :

B =

Nf∑
i=1

wfiΦi (1)

where Φi is the magnetic flux across the facet i. The con-
stitutive equations of the magnetosatic B = µ(B)H and
H +∇ϕred = H0 lead to the equation :

ν(B)B +∇ϕred = H0 + Hc (2)

ϕred is the scalar reduced potential that can be expressed as
displayed in equation (3) :

ϕred =
1

2π

∫
Ω

M · ∇G dΩ (3)

where G(r) is the 2D Green kernel definied as G(r) =
− log(‖r‖) and M is the magnetization of the material. H0

is the source term created by the coils. A Galerkin projection
of this equation over the facet shape functions of the domain
leads to : ∫

Ω

wiν(B)BdΩ +

∫
Ω

wi · ∇ϕreddΩ =∫
Ω

wi · (H0 + Hc)dΩ

(4)

which conducts the matricial system :

RBΦ + I = FB (5)



where R is a finite element like matrix and F is the second
hand :

RBij =

∫
Ω

wi · ν(B)wjdΩ (6)

FBi =

∫
Ω

wi · (H0 + Hc)dΩ (7)

Ii =

∫
Ω

wi · ∇ϕreddΩ (8)

I is the Green kernel-like interaction term. After the develop-
ments found in [1] the matricial system (5) is modified :

find Φm ∈ RNfi such as :

M(RB + LB)MTΦm =M(FB + GB)
(9)

where matrix M is and independant loop matrix, Φm is the
loop flux defined as Φm = MΦ and Nfi is the size of the
vector Φm. Matrices LB and GB are defined as :

LBij =
1

2π

δνj
lilj

∫
ΓE
i

∫
ΓT
j

G(r) dΓTj dΓEi (10)

GBi =
1

2π

1

li

Nf∑
j=1

∫
ΓE
i

∫
ΓT
j

G(r)δHcnj dΓTj dΓEi (11)

where δνj is the reluctivity jump between the two
elements sharing facet j, and δHcnj is the normal residual
magnetization jump between the two elements sharing facet
j (which is not equal to zero unless facet j is at the border
of a magnet). Scalar lj represents the length of the facet j.
One would notice that the LB is not be integrated for every
iterations of the Newton-Raphson solver in the presence of
non linear materials. The matrix only have to be uptated with
the vector of reluctivity jumps. This saves a considerable
amount of time during the non-linear solving process.

A variation of this loop flux formulation is an A formulation
where A is interpolated on edge elements :

A =

Na∑
i=1

waiAi (12)

where wai is the shape function of the edge number i. Indeed,
the facet flux can be expressed as Φ = [∇×]A where [∇×] is
the discrete version of ∇× differential operator. This discrete
version corresponds to the incidence matrix facet→ edge. This
incidence matrix presents the same properies as an idependent
loops matrix [1]. Thus an A formulation is obtained similarly
to (9) :

find A ∈ RNa such as :

[∇×]
T

(RB + LB) [∇×] A = [∇×]
T

(FB + GB)
(13)

where all the matrices are defined above and Na is the number
of edges of the domain Ω. One of the key points of this method
is to accuratly calculate the terms :

e =

∫
ΓE
i

∫
ΓT
j

G(r) dΓTj dΓEi (14)

in (10) and (11). A semi-analytic approach is used to discretise
this expression to :

e '
NG∑
k=1

∫
ΓE
i

log(
1

rk
) dΓiw

G
k (15)

where wG
k is the Gauss weight of gauss point k, NG is the

number of Gauss points used to discretize ΓTj and rk is the
distance between Gauss point k of ΓTj and the integration point
along ΓEi . Analytical formulas exist [8] to calculate the exact
value of : ∫

ΓE
i

log(
1

rk
) dΓi (16)

This approach allows us to compute integrals (10) and (11)
with a high level of precision and thus attain fairly accurate
results even with a very coarse mesh.

III. VALIDATION

The formulation has been tested by calculating the field in
the air gap of a permanent magnet rotating machine (PMRM).
Since this machine is periodic, only one quarter is shown in
figure 2. The radial magnets are opposed in direction (the one
on the far right is oriented towards the outside while the other
one is oriented in the opposite direction). The coils of PMRM
are powered with a 1000A tree-phase current. The magnetic
field in the air gap of the machine is computed with the relation
(17) where M is obtained via M = (ν0 − ν(B))∇×A. The
results obtained with the VIM are compared to a converged
finite element solution and plotted in figure 4.

B = −µ0

2π
∇

∫
Ω

M · ∇G(r)dΩ + µ0H0 (17)

Fig. 2. Description of test case

For this test case, we used a mesh quite poor in quality
(900 unknowns for the full PMRM) illustrated figure 3 that
nevertheless gave us a mean error of 2.5% with a maximum
error of 10%. We can conclude from this test that even with
few DOF, the VIM is efficient for difficult cases of magneto
static field computation.



Fig. 3. Mesh used for the validation of the formulation

Fig. 4. induction profile in the airgap of the machine (red line displayed
figure 2)

IV. PERIODICITY ADAPTED VIM

Since most PMRM are periodic one would want to take
advantage of this characteristic in order to decrease the number
of unknowns and thus the computation time. An adapted
formulation for the VIM is described below. In order to to
properly describe this adapted formulation, one must firstly
define several domains : indeed, in contrast to the FEM
in which the periodicities are taken care of with boudary
conditions on the periodic domain, the VIM and its Green
kernel interaction terms impose to use the whole mesh for the
integration of the terms LB and GB . Thus we define a ”real”
domain, for which ΩR, ΓER and ΓTR refer. The construction
of the linear system will concern the DOF contained in ΩR.
Nevertheless, contribution from ”ghost” domains will be taken
into account. The ”ghost” domain are indiced ”Fk”. Letter ”k”
corresponds to the number of ghost domains since there can

Fig. 5. notations for the periodicity adapted formulation

be several. A summary of those notations is found figure 5
which is a simplified description of a π

2 anti-periodic PMRM.
The contribution of the ghost domains to the matrices LB

and GB yields a new equation system :

find A ∈ RN
per
a such as :

[∇×]
T

(RBper + LBper) [∇×] A = [∇×]
T

(FBper + GBper)
(18)

where

(RBper)ij =

∫
ΩR

∇×wi · ν(B)∇×wjdΩR

(LBper)ij =
1

2π

δνRj
lEi l

T
j

∫
ΓER
i

∫
ΓTR
j

G(r)dΓTRj dΓERi

+
1

2π

δνFkj
lEi l

T
j

NF∑
k=1

∫
ΓEFk
i

∫
ΓTR
j

G(r)dΓTRj dΓEFki

(19)

and

(FBper)i =

∫
ΩR

∇×wi · (Hc + HR
0 )dΩR

+

NF∑
k=1

∫
ΩR

∇×wi ·HFk
0 dΩR

(GBper)i =
1

2πlEi

∫
ΓER
i


Nper

a∑
j=1

∫
ΓTR
j

δHR
cnG(r)dΓTRj

dΓERi

+
1

2πlEi

NF∑
k=1

∫
ΓEFk
i


Nper

a∑
j=1

∫
ΓTR
j

δHFk
cn G(r)dΓTRj

dΓEFki

(20)

One can notice that this new system requires the values of
δνFk and δHFk

cn but since those values are scalar it is possible
to express them from δνR and δHR

cn. If the ghost domain
is periodic,δνFk = δνR and if the ghost domain is anti-
periodic, δνFk = −δνR. It is similar for δHFk

cn . Thanks
to this periodic formulation, the real domain becomes 1/8th

of the full PMRM. It is possible to decrease the number of
unknowns again since one eighth of the domain presents an
axial symmetry if there is no current in the coils. Neverthless,
we didn’t consider this in the study since the symmetry is
easily lost (non symmetrical coils, movement of the rotor).

V. COMPUTATION PERFORMANCES

We tested this periodic formulation on the test case de-
scribed figure 2 in short circuit. We used two qualities of mesh,
a coarse one with 900 DOF in the full geometry and one more
refined with 3600 DOF in the full geomtry. The computation
time for several exploitation of the geometry are summed up
in the table I. For each cell of the table, the first value is the
time required to do the calculation with the fine mesh, and
the second number refers to the coarse mesh. Considering the
small number of unknowns, we compared two techniques to
solve the linear systems (iterative solver GMRES and direct
solver via LU decomposition).



TABLE I
COMPARISON OF COMPUTATION TIME FOR PERDIODIC AND

ANTI-PERIODIC DOMAIN AND DIFFERENT SOLVERS

Linear system
construction

One iteration
of NR solver

Total compu-
tation time

Full geometry
(GMRES) 3.75s/0.41s 2.02s/0.40s 33.78s/5.16s

Periodic Domain
(GMRES) 0.94s/0.12s 0.53s/0.081s 8.22s/1.37s

Periodic Domain
(LU) 0.85s/0.29s 0.46s/0.044s 7.55s/0.89s

Anti-periodic
Domain (GMRES) 0.58s/0.19s 0.27/0.081s 4.27s/1.12s

Anti-periodic
Domain (LU) 0.72s/0.16s 0.13s/0.023s 2.80s/0.45s

We can see that the less unknowns in the system, the more
the LU solver is efficient compared to the GMRES solver.
For the system with less than 900 DOF, the LU solver is
then chosen. Since the symetric & anti-periodic case is rarely
useful, we will consider the computation time of the 1/8th of
the domain with the LU solver as main result of this study. In
short circuit, the mean error of the induction in the airgap drops
to 1.5% with 125 DOF. This perfomance has to be compared to

Fig. 6. two qualities of mesh for the FEM method. Good quality on the left
(A) and bad quality on the right (B)

the FEM : the necessity to mesh the air (thus the airgap) with
the FEM makes it impossible to drasticaly decrease the number
of DOF an consequently the computation time. The test case
displayed in figure 2 has been solved with the FEM solver
embeded in the Flux software. The minimal number of DOF
is constrained by the thinness of the airgap. It is not possible to
decrease the number of elements in the airgap while keeping a
good form factor for the elements. This is illustrated in figure
6. We tested the FEM method with those two meshes. While
mesh (A) - 5000 DOF - yields good results (0.5% mean error)
for the induction in the air gap, it takes the software roughly
4.01 seconds to compute the solution. 750 DOF are necessary
to reach this level of precision with the periodic VIM. The
mesh (B) has less DOF, around 3000, and yields less accurate
results (2% mean error) in 3.72s. A summary of those results
can be found in table II.

We can see that while the FEM is very well-suited for
obtaining precise results (the sparsity of the linear system

TABLE II
COMPUTATION TIME AND PRECISION FOR METHODS FEM AND PERIODIC

VIM

FEM
5000 DOF

FEM
3000 DOF

P-VIM
125 DOF

P-VIM
750 DOF

Computation
time 4.1s 3.7s 0.45s 4.6s

Mean
error 0.55% 2.04% 1.5% 0.51%

to solve makes it easier to increase the number of DOF to
a high level), it is poorly effective in terms of computation
time for a pre-design objective. In contrast, the VIM - in
addition to being as precise as the FEM for normaly meshed
problems [1][5][4], last column of table II) - is very efficient
for pre-design needs when the quality of the mesh is strongly
degraded. Moreover, it is very to manage movement with the
VIM since we just need to move the nodes of the moving
part of the geometry. Indeed, the air is not meshed with this
method and thus has not to be remeshed.

VI. CONCLUSIONS

An original 2D integral formulation has been presented
and enhanced to take into account periodical systems. This
method shows great promise for rotating machines pre-design
since it yields fairly good results for a very limited amount
of computation time and has a broad field of application (no
hypotheses were made on the geometry nor the materials).
This work has to be deepend to implement adapted post
processing techniques. Two important post-processing would
be the calculation of the torque on the rotor and the magnetic
flux through the coils.
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