
HAL Id: hal-02278102
https://hal.science/hal-02278102

Preprint submitted on 4 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comprehensive Benchmark of Neural Networks for
System Identification

Antoine Richard, Antoine Mahé, Cedric Pradalier, Offer Rozenstein, Matthieu
Geist

To cite this version:
Antoine Richard, Antoine Mahé, Cedric Pradalier, Offer Rozenstein, Matthieu Geist. A Comprehen-
sive Benchmark of Neural Networks for System Identification. 2019. �hal-02278102�

https://hal.science/hal-02278102
https://hal.archives-ouvertes.fr


A Comprehensive Benchmark of Neural Networks for System
Identification

Antoine Richard1, Antoine Mahé2, Cédric Pradalier3, Offer Rozenstein4, Matthieu Geist5

Abstract— This paper compares a wide variety of neural
network architectures applied in the context of black-box
modeling for robotics and control. We compare six different
architectural concepts and four activation functions, with over
three hundred different models. Those models were applied to
three robotics datasets to show the differences in performance
between the architectures along with their limitations.

I. INTRODUCTION

Following the thriving success of machine learning, it is
more and more common to use Neural Networks (NNs) for
system identification [1], [2], [3]. When using such methods,
the first step is to choose an architecture. This choice is
critical to the learning and representation capabilities of the
NN. It also determines the number of parameters in the
network, which is key to estimating the amount of data
required for training. There are several considerations to the
NNs’ design: the number of layers, their size, the activation
functions they use, and other regularization techniques. The
determination of these parameters relies on either theoretical
insight or experimental intuition.

Training data quality poses a challenge during the learning
process and several solutions have been suggested [4], [5].
On the other end, the architecture choice is often limited
to the input and output layers, which are determined by the
system. The black-box nature of those systems requires an
in-depth-knowledge and thorough analysis of the different
layers’ behaviors to tune them for maximum performances,
which is known to be time-consuming.

In some fields, there is an understanding that certain NN
structures work well for specific applications. The use of
convolutional networks for image classification [6] is such
an example. However, it is difficult to select the right NN
architecture to perform a dynamic regression model for
a given system because there are no good tools to rank
the performance of the different alternatives. This paper
aims to provide such a resource for the most common

1Antoine Richard is with the School of Electrical amd Computer En-
gineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA
30332, USA. antoine.richard@gatech.edu

2 Antoine Mahé is with CentraleSupélec, Uni-
versité de Lorraine, CNRS, LORIA, France
antoine-robin.mahe@centralesupelec.fr

3 Cédric Pradalier is with UMI2958 GT-CNRS, France
cedric.pradalier@georgiatech-metz.fr

4 Offer Rozenstein is with the Institute of Soil, Water and Envi-
ronmental Sciences, Agricultural Research Organization, Volcani Center,
HaMaccabim Road 68, P.O.B 15159, Rishon LeZion 7528809, Israel
offerr@volcani.agri.gov.il

5 Matthieu Geist is with Google Brain, Paris, France
mfgeist@google.com

structures. To this end, we have tested several structures
and activation functions on a system identification task over
various datasets. Those were obtained by recording the
odometry of various autonomous vehicle along with the user
command they received. Three different datasets are used,
corresponding to the following systems : a simulated drone,
a simulated boat, and a real drone in a motion capture setup.

II. RELATED WORK: ARCHITECTURES &
ACTIVATION FUNCTIONS

Neural networks for system identification have been
around for the last thirty years [7], [8]. Recent advances
in both hardware and architecture brought them back to the
front of the scene. However, little work has been carried
out to compare the now abundant models available for the
identification task. Even though some do [9] they rely on old
inadequate datasets such as DaISy [10] which are too small
and contain too few samples for complex networks to learn
appropriately.

The following section describes different types of NN ar-
chitectures, and activation functions that are usually applied
in NNs used for system identification.

A. Architectures

System identification and Time-series forecasting are
closely related from the data perspective. In both cases, one
uses a sequence1 of input to predict a sequence or a single
data point. In model-identification, we often found archi-
tectures such as Multi Layer Perceptrons (MLPs), or more
recently, Long Short-Term Memorys (LSTMs). However,
there are many more approaches for time-series-forecasting:
1D Convolutional Neural Networks (CNNs) [11], Multi-head
Convolutional Neural Networks (MH-CNNs), the large fam-
ily of Recurrent Neural Networks (RNNs) [12] that includes
Gated Recurrent Units (GRUs) [13] and LSTMs [14] and
their variations. Bellow, we briefly outline those architectures
and highlight their pros and cons.

1) Multi-Layer Perceptron: MLP is one of the most
common NN architectures used for system identification. It
relies on stacked dense layers, also called fully-connected
layers. Those layers are composed of a matrix multiplication
and bias addition. Often, They are completed by an activation
function, a normalization function or a dropout function.
While the activation function will be studied, the normal-
ization and dropout function effects will not be reviewed.
We assume that MLP networks are both shallow and simple

1The term sequence implies that the used data are chronologicaly ordered



enough not to require dropout or batch normalization. Hence,
the investigation of different regularization techniques falls
outside the scope of this paper.

2) 1D Convolutionnal Neural Network: 1D CNNs are less
famous than their 2D counterparts, but they have a significant
advantage over the simpler MLPs. By construction, a 1D
CNN processes its input sequence from left to right, which
means that even though it was not designed for that purpose,
it processes the data in an ordered fashion. This temporal
processing is compelling as it behaves a bit like a recurrent
neural network but without the complexity of those networks.
As will be described later, RNNs training requires careful
training and tuning. Their main disadvantages lies in the extra
amount of hyper-parameters, longer training time, and slower
inference time when compared to the MLPs. Nevertheless,
they are simple to train and use.

3) Multi-head Convolutionnal Neural Network: MH-
CNNs are an extension of the 1D CNNs. Their main advan-
tage is their flexibility: in most cases, those networks have
one “head” per input variable. Those heads are composed
of specifically tuned 1D CNN for the variable they process.
The kernel, the number of channel, and the depth of the head
can be adapted for each input individually. The results of the
heads are then concatenated together and processed through
some fully connected layers. Their main default is the high
level of customization required since each head has to be
tuned individually. Moreover, those networks are larger then
standard CNN adding both training and inference time.

B. Recurrent-Architectures

In recent years, recurrent architectures have been used to
achieve state of the art results in Natural Language Process-
ing. Some of them have also been used to perform time-
series-forecasting or gap-filling [15]. Recurrent neural net-
works are a class of neural networks that explicitly depends
on time. RNN uses their internal memory (also referred to
as hidden-state) to store their current context. For instance,
contextualization allows them to process sentences naturally.
Where the next word of the sentence, is read while retaining
information about previously read words. This makes them a
perfect tool for Natural Language Processing but also time-
series-forecasting or model identification. Figure 12 shows
a “rolled” RNN on the right side and its “unrolled” version
on the left side. As can be seen, the same network is used
to iterate on the different elements of the sequence while
the network retains the hidden-state. The main drawback of

Fig. 1. Structure of a RNN

2Image from http://colah.github.io/posts/
2015-08-Understanding-LSTMs/?source=post_page

the recurrent architectures is their hidden state that needs to
be handled expertly to maximize the performances of the
networks.

1) Recurrent Neural Networks: In the rest of the paper,
the term RNN is used to designate a simple RNN cell that
does not contain any memory mechanism but only a tanh
layer. This simple cell is here as a control to demonstrate
whether the memory mechanisms involved in the GRU and
LSTM are needed.

2) Long Short Term Memory: The LSTMs were invented
to learn long-term dependencies. They feature three gates
(the input gate, the output gate, and the forget gate) used to
predict the output and update their hidden state. Those gates
are a form of regulation allowing more or less information
to pass through them. They are composed out of a sigmoid
layer and a point-wise multiplication operation. Figure 23

illustrates a simple LSTM cell.

Fig. 2. Structure of a LSTM cell

3) Gated Recurrent Unit: GRU, as introduced by [13],
is somewhat similar to the LSTM, but it combines the forget
and input gates into one gate called update gate.

As we have seen, there are several architectures of net-
works to choose from, but another important aspect of neural
network design is the selection of an activation function for
each layer. This fundamental function allows the network
to represent nonlinearities and triggers the activation of
neurons, making the training process more efficient.

C. Saturated Activation Functions

Saturated activation functions that were initially used in
machine learning, have been slowly replaced by Rectified
Linear Unit (ReLU) in most applications. Indeed, the fact
that they are saturated can lead to the vanishing gradient
problem: preventing the network from learning correctly.
Yet, unlike the ReLU, they are strongly non-linear, which
may be an appropriate choice for our application domain.
Also, it is worth noting that both of the following activation
functions are “dense,” hence, their gradient is more expensive
to compute than the ReLU gradient, which is “sparse.”

1) Sigmoid: The sigmoid activation function is an activa-
tion function that features a smooth non-linearity.

2) Hyperbolic Tangent: The hyperbolic tangent, also
known as tanh used to be a standard activation function.
This function is very similar to the sigmoid. The main
differences are a negative mapping and a steeper gradient.

3Image from http://colah.github.io/posts/
2015-08-Understanding-LSTMs/?source=post_page

http://colah.github.io/posts/2015-08-Understanding-LSTMs/?source=post_page
http://colah.github.io/posts/2015-08-Understanding-LSTMs/?source=post_page
http://colah.github.io/posts/2015-08-Understanding-LSTMs/?source=post_page
http://colah.github.io/posts/2015-08-Understanding-LSTMs/?source=post_page


D. Unsaturated Activation functions

Unlike the sigmoids, ReLU does not suffer from the
vanishing gradient problem. Its unsaturated nature prevents
that. The large ReLU family is composed of three primary
functions : the standard ReLU, the Leaky Rectified Linear
Unit (Leaky-ReLU) and, the Parametric ReLU. We have not
studied the parametric ReLU since it adds more training
parameters and because it effectively acts like a trainable
Leaky-ReLU, hence, if the Leaky-ReLU performs better than
the ReLU, then the parametric ReLU will also perform better.
In the opposite case, it means that it is probably not worth
studying further.

1) Rectified Linear Unit: First applied to neural networks
in [16] the ReLU is defined as in (1).

yi =

{
xi, if xi ≥ 0
0, otherwise

(1)

2) Leaky Rectifier Linear Unit: Introduced in [17], the
Leaky-ReLU is defined as in 2 where α is generally a
substantial value.

yi =

{
xi, if xi ≥ 0
− xi

α
, otherwise

(2)

The Leaky-ReLU prevents some “locked” neurons from
blocking the learning of the whole stack by propagating some
of the gradients to the upper layers.

III. METHOD

This section details how we evaluated the different archi-
tectures and activation functions. This resulted in a bench-
mark of the relative performances of the different types
of architectures and evaluates how the parameters of an
architecture impact its performances in the context of system
identification.

A. Neural Networks

To evaluate the performance of the different architecture
types and activation functions, we designed a large number
of models. In total, 332 models have been developed, in order
to test different key-components of the architectures. Please
note that in the following architectures, the last layer (the
one that casts the output of the neural network to the size of
the considered state) is not counted in the number of layers.
A two-layer MLP would have three dense layers, the last
layer being used to cast the correct number of output.

1) MLP: For the MLP, we tested the importance of the
number of layers, along with the impact of their number of
neurons 4. In total, we derived 43 architectures, ranging from
1 layer to 4 layers with four possible dense layer sizes: 16,
32, 64 and 128. From 1 to 2 layers, all the combinations
were covered, but for 3 to 4 layers, only some combinations
were used to limit the number of tested models.

4The term dense layer is similar to fully-connected. It refers to the
fundamental building block of the MLP

2) Activation Functions: We also used the MLP as a
benchmark for the activation function. Nineteen MLP models
were been selected to study the impact of each activation
function. Only models with 1 to 3 layers were considered,
with dense layer sizes smaller than 128. This left us with 19
models for each activation function. The objective here was
to evaluate if some specific activation function yields better
results on all the networks or if some activation function
gets more of their potential as the number of parameters
increased. Finally, we intended to identify which activation
function is best suited for these networks.

3) CNN: In the case of the CNN, we were interested in
three main concepts:

• The impact of the augmentation of the number of
channels. The depth of the convolution ranged from one
time the number of input to four times the number of
input.

• The advantages of having a smaller or larger kernel size.
Theoretically, larger kernels are interesting to recognize
patterns that are far away. They also allow blending
information on a larger scale. The kernel size ranged
from 3 to 6.

• Do deeper networks, as seen in computer vision, im-
prove performances in model identification? At most,
we stacked 4 convolutions and 2 pooling layers.

To this end, we tested 40 different architectures with an
increasing number of channels for a fixed number of layers
and kernel size, increasing kernel size for fixed channel and
layer numbers, and finally increasing the number of layers
for fixed channels numbers and kernesl sizes. We also tested
some VGG-like [18] architectures. The dense layers used
to cast the encoder5 outputs into the desired state are three
combinations of two layers MLP with respective dense layer
size 128-64, 64-64 and 128-32.

4) MH-CNN: MH-CNNs are attractive because of their
ability to decouple each input since each head processes
one input while the kernel size of the convolution (and their
depth) can be adjusted to match the “rhythm” of the data.
Yet, in our case, this would require tuning each branch indi-
vidually for each dataset. To avoid this, one can consider two
types of Networks. Networks’ whose convolutions’ kernels
and the depth are fixed and similar on all the branches.
Alternatively, networks, where each branch corresponds to
a different setup in the kernel size and the whole data (as
opposed to one variable), is sent through all the branches
allowing the network to “choose” what to do with the input
and adapt the kernel size automatically. We tested kernel
sizes ranging from 3 to 6, such that the network had 4
branches. In total we evaluated 48 variations of MH-CNNs.

5) RNN, LSTM and GRU: In the case of the recurrent
neural networks, our focus was on the size of the hidden state
and the depth of the RNN. The depth of the RNN ranged
from 1 hidden cell (RNN, LSTM, or GRU cell) and up to

5an encoder in computer vision refers to the convolutional part of
the network that “encodes” the input data by bringing it onto a smaller
representation space



3 hidden cells. The hidden state had three different values:
16, 32, or 64. Finally, we also evaluated the MLP that casts
the RNN encoded output into the correct size output. Three
configurations were tested from 0 layers to 1 layer with three
possible dense layer sizes: 16, 32 or 64. Overall, this resulted
in a total of 48 combinations per recurrent network type or
144 variations of recurrent neural networks.

B. Networks Training

To train the networks, they were fed sequences of sixteen
states and commands. These sequences are used to predict
the next state i.e., the state that comes chronologically right
after the fed sequence.

All the neural networks were trained using the same
optimizer: the ADAM optimizer [19]. This optimizer reduces
the need to tune the initial learning rate and its decay over
time, allowing us to minimize the learning rate changes be-
tween different architectures. Furthermore, the non-recurrent
architectures (MLP, CNN, MH-CNN) were trained using a
regression loss: the L2 norm and a learning rate of 0.01.
While the recurrent architectures (RNN, LSTM, GRU) were
trained using the Huber loss and a learning rate of 0.005. The
Huber loss has shown slightly better results on the recurrent
neural networks over the L2 loss but did not improve the
performance on the non-recurrent architectures. Finally, the
results presented in the section thereafter are the results
averaged over 5 runs for the same architecture on the same
dataset.

C. Evaluation

The evaluation of the models was done using the same
validation set for all the models. As they were trained, we
evaluated the model performances every 50 steps on two
metrics:

• The single-step-accuracy. This metric measures the in-
stantaneous accuracy of the model. It is measured by
running the model on the whole validation set. The
Mean Squared Error (MSE) is then used to evaluate
the performance of the model at a given point during
training.

• The multi-step accuracy. This trajectory metric measures
the capacity of the model to iterate over its predictions.
Fifty trajectories of twenty elements are randomly sam-
pled from the evaluation set. Then the models make
predictions for these trajectories of 4 seconds for the
simulation datasets and 200ms for the ASCTEC drone.
A per-trajectory MSE is then computed and averaged
over the fifty trajectories giving us the final metric.

Additionally, we collected the size of the model in both
RAM and raw-parameters number, as well as the inference
execution time. These extra variables were used to assess
performance and computational cost (that relates to energy
consumption). All our models ran on an intel i7-4770 CPU.
These metrics were received from the The profiling tool
embedded in TensorFlow. Please note that we ran these
models on a CPU because running them on a GPU degrades
the training performances. his was most likely because the

data exchange between the CPU and the GPU was too
slow. That being said, when inferring large batches (≈ 1000
samples or more) it might be beneficial to run this on a GPU.

The reader may observe that the training times were not
evaluated; this was due to the relatively short time required
to train these networks. It took 2 minutes to train the smallest
network and about 10 minutes to train the largest.

IV. EXPERIMENTS

A. Datasets

Here we introduce three datasets. They have been collected
using a non-linear multiple-input multiple-output (MIMO)
robotics systems. Two of them are simulated datasets,
whereas the last one is a real-world robotic system.

1) Drone Simulation: Bebop Dataset: This dataset sim-
ulates the behavior of a Bebop 2 drone by Parrot. The
simulation was done in Gazebo [20], using Robotic Op-
erating System (ROS) [21] and a drone emulated by the
ROS-package tum simulator6. This system includes the
simulated drone and its low-level controller. The dataset
created for this experiment was obtained using a control
algorithm that moved the drone such as it uniformly explore
the action space without crashing. We recorded nineteen
hours of simulation with a sampling rate of 5Hz. We used
3 hours for the test set, 2 hours for the validation set,
and, 14 hours for the train set. The state of the drone was
composed of the linear velocity of the drone (vx, vy, vz) and
its angular velocity around z (ωz). The command consisted
of four variables (u1, u2, u3, u4), the first three are linear
speed command along x,y and z axis and the fourth one
is the angular velocity command around the z axis. Please
note that these commands are input to the low-level drone
controller: thus, the models based on this dataset included
the joint dynamics of the drone and its low-level controller.

2) Heron Simulation: Heron Dataset: The Heron simu-
lated dataset was based on a simulation package for the
Heron made by Clearpath Robotics. The system was sim-
ulated in Gazebo [20], using ROS [21] and the Unmanned
Surface Vessel (USV) was emulated using the UUV Simu-
lator [22]7 along with the Heron official repository 8. Like
the drone, the USV was left to explore its action space for
twenty hours. We used 3 hours for the test set, 2 hours for the
validation set, and, 15 hours for the training set. The state of
the Heron is comprised of the linear velocity in x and y (vx,
vy), and the angular velocity (ωz) while the command inputs
were the signals sent to the two turbines of the boat (u1, u2).
The models based on this dataset should exhibit strong non-
linearities since the turbine non-linear efficiency was taken
into account by the simulator along with the resistance of
the water.

3) Drone Real-Data: AscTec Dataset: We derived this
last dataset from the EuRoC MAV Dataset [23] and its
Vicon Room 2 scenes. Despite being only 2 minutes long,

6 http://http://wiki.ros.2org/tum_simulator
7 https://uuvsimulator.github.io/
8 https://github.com/heron

http://http://wiki.ros.2org/tum_simulator
https://uuvsimulator.github.io/
https://github.com/heron


these scenes feature a 100Hz Vicon, allowing for a precise
measurement of the drone position. Thanks to the 100Hz
sampling rate, the dataset was composed of 27000 data
points. We split the dataset in a 10% test set, 10% validation
set, and 80% train set. The drone was an ASCTEC Hexa-
rotor; its state was expressed as the velocity of the drone
in cartesian coordinates (vx, vy, vz), and its orientation as a
quaternion (qx, qy, qz, qw). Hence, the state was composed
of seven variables while the commands were composed
of six variables: one per rotor. This makes it the largest
MIMO system evaluated. However, because of the very high
sampling rate, the predicted system was mostly dominated
by the open-loop dynamic of the system; the command sent
by the user has little immediate impact on the response of
the system. Please note that this dataset was too small to
train the RNNs.

B. Neural Networks

We implemented all the previously mentioned architec-
tures in Tensorflow[24], the non-recurrent architectures were
coded with high-level tf.layers blocks while the recur-
rent networks were coded using the fixed RNN library em-
bedded in Tensorflow. However, it had one main drawback:
when using this framework, it was not possible to directly
access the hidden-state for each element of the processed
sequence. This prevented us from performing multi-step-
prediction, as the hidden state after the first element of
the sequence prediction was required. To get access to this
variable, the “rolling” of the LSTM was cut in two parts:
the first part where we only loaded the first element of the
sequence and the second part where we loaded the remainder.
Please note that we also tested the dynamic RNN frame-
work without significant differences in accuracy, training, or
inference time.

C. Networks Training

When training the neural networks, the dataset was shuf-
fled at every epoch except for the recurrent networks where
we preserved the continuity of the hidden state by ordering
the sequences chronologically and shifting them by one time-
increment at the end of every epoch. All the models were
run 5 times on each dataset, and their results were averaged
for each dataset individually. Due to lack of space, we only
show the results of the best performing architectures for each
type of network.

V. RESULTS

This section first discusses the performances between the
different architectures. We then discuss the intra-architecture
parameters for each architecture. Last, the results of the dif-
ferent activation functions on the MLP models are analyzed.

A. Architectures

Table I summarizes the results for different architectures.
It can be seen that for all datasets, the LSTMs and GRUs
performed the best in single-step-accuracy with relative im-
provement over the best non recurrent network of almost

50%. Still; considering the single-step-accuracy, the simple
RNNs, performed better than the MLPs which yield better
results than the CNNs. The multi-head version of the con-
volutional neural networks improved the performance over
the standard CNNs, but it remained less accurate than the
MLPs. In single-step-accuracy, we thus have the hierarchy
shown in (3):

LSTM ≈ GRU > RNN > MLP > MHCNN > CNN (3)

When looking at the multi-step-accuracy, we can see that
the hierarchy is not as clear. The first thing we notice is that
the recurrent networks had a significantly worse accuracy
on the Heron dataset. Additionally, the MLPs, performed
as well or better than the CNNs. However, we believe
that the implementation of the recurrent neural networks
in TensorFlow may be the cause of such degradation in
multi-step-MSE. For this reason, we refrain from making any
strong conclusion with regards to the RNNs based on these
results. Nonetheless, this clearly demonstrates that the MLPs
are very easy to train and tune while achieving excellent
results, making them an attractive option when the single-
step-accuracy of the model is not of paramount importance.

From the computational cost and inference time require-
ments, it is clear that the multi-head-CNNs are slower than
the rest of the other architectures while being much more
massive than any of them. As for the MLPs, they are the
fastest of the tested networks while achieving correct single-
step-performances and reliable multi-step-results.

TABLE I
BEST RESULTS FOR EACH TYPE OF ARCHITECTURE

(LOWER IS BETTER).

Architecture Single-step
MSE

Multi-step
MSE

Inference
Time

Parameters

B
eb

op

MLP 0.079 1.09 0.64 / 0.62 23k / 6k
CNN 0.085 1.07 0.78 / 0.79 57k / 11k

MH-CNN 0.072 1.08 1.57 / 2.6 126k / 122k
RNN 0.058 0.43 0.71 / 0.71 6k / 1k

LSTM 0.036 0.42 0.71 / 0.71 54k / 2k
GRU 0.036 0.42 0.71 / 0.71 39k / 15k

H
er

on

MLP 0.0032 0.018 0.67 / 0.72 5k / 41k
CNN 0.0047 0.016 0.87 / 0.79 40k / 24k

MH-CNN 0.0031 0.018 1.34 / 1.47 87k / 43k
RNN 0.0022 0.035 1.02 / 1.02 1k / 1k

LSTM 0.0021 0.028 1.02 / 1.02 4k / 2k
GRU 0.0022 0.032 1.02 / 1.02 2k / 5k

A
sc

Te
c MLP 0.010 0.015 0.40 / 0.44 5k / 8k

CNN 0.034 0.021 0.64 / 0.58 54k / 20k
MH-CNN 0.021 0.015 1.71 / 1.87 551k / 146k

Time is expressed as a relative unit. There are two measure-
ments in the parameters and the inference time; the left one
is related to the best signle-step model while the right one is
related to the best multi-step model.

Among the different MLP models tested, the networks
with less than 2 layers performed better than the networks
with 3 layers or more in single-step-accuracy, yet, it’s the
opposite for multi-step-accuracy. This could be due to the
relative simplicity of the prediction at one step which means
that simpler shallower networks are best suited for this task.



While, in multi-step the task is more complicated: it requires
to account for the lag in the command and a resiliency to
its own errors. This would explains why deeper and more
complex models fair better on this task.

Within the CNNs, the networks with a kernel of size 3 per-
formed better on all the datasets. The VGG like architectures
did not demonstrate a particular interest. Also, similarly to
the MLPs, smaller networks perform better on single-step-
accuracy when larger networks perform better on multi-step-
accuracy.

Hence, when it comes to building an architecture, bigger is
not always better. It must be tailored to the application needs:
when only considering single-step predictions, smaller mod-
els will work well enough. However, if multi-step predictions
are relevant for the application, larger models will probably
yield a higher accuracy.

B. Activation functions

Table II, shows which activation performed best for the
different dataset. It can clearly be seen by looking at these
tables that the sigmoid and the tanh are outperformed by
both the ReLU and Leaky-ReLU on single-step-MSE and
multi-step-MSE. Between the different ReLUs, it seems
that the Leaky-ReLUs are better than the normal ReLUs.
This indicates that using parametric ReLU (P-ReLU) might
increase the accuracy of the network.

TABLE II
BEST RESULTS FOR EACH TYPE OF ACTIVATION FUNCTION

(LOWER IS BETTER).

Activation
Function

Single-step
MSE

Multi-step
MSE

Inference
Time

Parameters

B
eb

op

tanh 0.120 1.17 0.54 / 0.63 6k / 3k
sigmoid 0.087 1.07 0.94 / 0.55 14k / 2k

relu 0.089 1.09 0.63 / 0.63 14k / 14k
leaky-relu 0.084 1.13 0.69 / 0.66 9k / 4k

H
er

on

tanh 0.0063 0.028 0.61 / 0.86 4k / 5k
sigmoid 0.0048 0.024 0.71 / 0.67 1k / 4k

relu 0.0032 0.021 0.67 / 0.67 5k / 6k
leaky-relu 0.0031 0.0206 0.86 / 0.72 2k / 6k

A
sc

Te
c tanh 0.059 0.060 0.65 / 0.65 3k / 3k

sigmoid 0.034 0.035 0.56 / 0.56 3k / 3k
relu 0.010 0.016 0.40 / 0.42 5k / 12k

leaky-relu 0.0093 0.015 0.42 / 0.46 3k / 4k

Time is expressed as a relative unit. There are two measure-
ments in the parameters and the inference time; the left one
is related to the best single-step model while the right one is
related to the best multi-step model.

VI. CONCLUSIONS

In this paper, we compared the six main neural network
architectures that are used for system identification along
with the four most commonly used activation functions
in this field. The results show that recurrent architectures
outperform all the other architectures in single-step-accuracy,
and therefore, they hold interesting potential for system
identification applications. However, MLP networks also
proved attractive with their simple architectural design and

easy implementation. Finally, we showed that leaky ReLUs
consistently improved the overall performances of the net-
works. Hence we recommend using these activation func-
tions. Further work should be focus on newer architectures
or more complex activation functions such as the P-ReLU.

REFERENCES

[1] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning.”

[2] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-
road obstacle avoidance through end-to-end learning,” in Advances
in neural information processing systems, 2006, pp. 739–746.

[3] A. Mahé, C. Pradalier, and M. Geist, “Trajectory-control using deep
system identication and model predictive control for drone control
under uncertain load.” in 2018 22nd International Conference on
System Theory, Control and Computing (ICSTCC), Oct 2018, pp. 753–
758.

[4] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

[5] A. Katharopoulos and F. Fleuret, “Biased importance sampling for
deep neural network training,” CoRR, vol. abs/1706.00043, 2017.
[Online]. Available: http://arxiv.org/abs/1706.00043

[6] W. Rawat and Z. Wang, “Deep convolutional neural networks for
image classification: A comprehensive review,” Neural computation,
vol. 29, no. 9, pp. 2352–2449, 2017.

[7] K. S. Narendra and K. Parthasarathy, “Neural networks and dynamical
systems,” International Journal of Approximate Reasoning, vol. 6,
no. 2, pp. 109–131, 1992.

[8] K. S. Narendra and S. Mukhopadhyay, “Intelligent control using neural
networks,” IEEE Control systems magazine, vol. 12, no. 2, pp. 11–18,
1992.

[9] O. Ogunmolu, X. Gu, S. Jiang, and N. Gans, “Nonlinear systems
identification using deep dynamic neural networks,” arXiv preprint
arXiv:1610.01439, 2016.

[10] B. De Moor, P. De Gersem, B. De Schutter, and W. Favoreel, “Daisy:
A database for identification of systems,” JOURNAL A, vol. 38, pp.
4–5, 1997.

[11] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[12] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[13] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific reports, vol. 8, no. 1, p. 6085, 2018.

[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international con-
ference on machine learning (ICML-10), 2010, pp. 807–814.

[17] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[20] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, pp. 2149–2154.

[21] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

http://arxiv.org/abs/1706.00043


[22] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and
T. Rauschenbach, “UUV simulator: A gazebo-based package for
underwater intervention and multi-robot simulation,” in OCEANS
2016 MTS/IEEE Monterey. IEEE, sep 2016. [Online]. Available:
https://doi.org/10.1109%2Foceans.2016.7761080

[23] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, 2016.
[Online]. Available: http://ijr.sagepub.com/content/early/2016/01/21/
0278364915620033.abstract

[24] M. A. et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

https://doi.org/10.1109%2Foceans.2016.7761080
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://www.tensorflow.org/

	INTRODUCTION
	RELATED WORK: ARCHITECTURES & ACTIVATION FUNCTIONS
	Architectures
	Multi-Layer Perceptron
	1D Convolutionnal Neural Network
	Multi-head Convolutionnal Neural Network

	Recurrent-Architectures
	Recurrent Neural Networks
	Long Short Term Memory
	Gated Recurrent Unit

	Saturated Activation Functions
	Sigmoid
	Hyperbolic Tangent

	Unsaturated Activation functions
	Rectified Linear Unit
	Leaky Rectifier Linear Unit


	METHOD
	Neural Networks
	MLP
	Activation Functions
	CNN
	MH-CNN
	RNN, LSTM and GRU

	Networks Training
	Evaluation

	EXPERIMENTS
	Datasets
	Drone Simulation: Bebop Dataset
	Heron Simulation: Heron Dataset
	Drone Real-Data: AscTec Dataset

	Neural Networks
	Networks Training

	RESULTS
	Architectures
	Activation functions

	CONCLUSIONS
	References

