Benoît Lalloué 
email: benoit.lalloue@univ-lorraine.fr
  
Jean-Marie Monnez 
email: jean-marie.monnez@univ-lorraine.freliane.albuisson@univ-lorraine.fr
  
Eliane Albuisson 
  
Streaming 
  
  
  
  
  
  
  
  
Streaming constrained binary logistic regression with online standardized data

   

Streaming constrained binary logistic regression with online standardized data

Benoît Lalloué * , * * , Jean-Marie Monnez * , * * , Eliane Albuisson * * * , * * * * ,

Introduction

One type of method to analyse streaming or massive data is online learning which proceeds in successive steps, the results of the analysis being updated at each step taking into account a batch of new data. Recursive stochastic algorithms can be used for observations arriving sequentially to estimate for example parameters of a linear regression model [START_REF] Duarte | Sequential linear regression with online standardized data[END_REF] or principal components of a factorial analysis [START_REF] Monnez | Convergence of a normed eigenvector stochastic approximation process and application to online principal component analysis of a data stream[END_REF] or centres of classes in non-hierarchical clustering [START_REF] Cardot | A fast and recursive algorithm for clustering large datasets with k-medians[END_REF], whose estimations are updated by each new arriving data batch. In this context, it is not necessary to store the data and, due to the relative simplicity of the computation involved, much more data than with classic methods can be taken into account during the same duration of time. For massive datasets, recursive algorithms can be used by randomly drawing at each step a data batch from the dataset.

Why use online standardized data (each continuous variable is standardized with respect to the estimations at the current step of its expectation and of its standard deviation computed online) and a constrained process? First to avoid a numerical explosion as it is studied in [START_REF] Duarte | Sequential linear regression with online standardized data[END_REF] in the case of sequential multidimensional linear regression. The experiments conducted have shown better performance of processes with online standardized data compared to those with raw data. Second, when using a shrinkage method such as LASSO or ridge, we have first to standardize the explanatory variables. In the case of a data stream, when the mathematical expectation and the variance of each variable are a priori unknown, these variables can be standardized online and a process of the same type can be used but with a projection at each step on the convex set defined by the constraint on the parameters of the regression function. More generally this type of process can be used for any convex set, for example if it is imposed that the parameters associated to the explanatory variables are positive. Third we can consider the case where a logistic model with standardized explanatory variables is defined and where explanatory variables have an expectation and a variance that may depend on time or on the values of controlled variables according to a specific model; this assumes that we can estimate online the expectation and the variance of these variables.

A suitable choice of step-size is often crucial for obtaining good performance of a stochastic gradient process. If the step-size is too small, the convergence will be slower. Conversely, if it is too large, a numerical explosion may occur during the first iterations. We use here an averaged stochastic gradient process, with a piecewise constant step-size as suggested in [START_REF] Bach | Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression[END_REF] in order that the step-size does not decrease too quickly and reduces the speed of convergence.

Study of a stochastic gradient process

Suppose that data are realizations of a random vector

(R 1 , ..., R p , S) in R p × {0, 1}. Let A be the transpose of a matrix A. Let R be the random column vector R 1 ... R p 1 , m = E R 1 ... E [R p ] 0 , R c = R -m, r c a realization of R c , σ k the standard deviation of R k , k = 1, .
.., p, Γ the diagonal (p + 1, p + 1) matrix with diagonal elements 1 σ 1 , ..., 1 σ p , 1 (taking by convention σ k = 1 for a discrete variable), Z = ΓR c , whose continuous components are standardized, z = Γr c a realization of Z, θ = θ 1 ... θ P θ P +1 a column vector of real parameters.

Consider the logistic model with standardized covariates:

P (S = s | R = r) = f (s; z, θ) = e z θ 1 + e z θ s 1 1 + e z θ 1-s = e z θs 1 + e z θ . E [S | R] = h (Z θ) with h(u) = e u 1+e u = 1 1+e -u . Define the loss function -ln f (s; z, x) = -z xs + ln 1 + e z x . The cost function F (x) = -E [ln f (S; Z, x)] = E -Z xS + ln 1 + e Z x
has θ for unique minimizer since F is a convex function with positive hessian. θ is the unique solution of:

F (x) = E -ZS + Ze Z x 1 + e Z x = E [Z (h (Z x) -S)] = 0. Let (R 1 n , ..., R p n , S n ), n 1 be an i.i.d. sample of (R 1 , ..., R p , S), for n 1, R n = R 1 n ... R p n 1 , for k = 1, ..., p, R k n the mean of the sample R k 1 , ..., R k n of R k and V k n 1 n n i=1 R k i -R k n 2 its variance, both recursively computed, R n = R 1 n ... R p n 0 and Γ n the diagonal (p + 1, p + 1) matrix with diagonal elements 1 √ n n-1 V 1 n , ..., 1 √ n n-1 V p n , 1.
Suppose that m n observations (R i , S i ) are taken into account at step n of the defined process. Let

µ n = n i=1 m i , I n = {µ n-1 + 1, ..., µ n }, R n = R µn , Γ n = Γ µn and for j ∈ I n , Z j = Γ n-1 R j -R n-1 : for k = 1, ..., p, each component R k j of R j is pseudo- standardized with respect to the empirical mean R k n-1 and to the empirical estimation of σ k , n n-1 V k µn-1
. Suppose that θ is constrained to belong to a convex subset K of R p+1 . Let Π be the projection operator on K. Recursively define the stochastic approximation processes (X n ) of the Robbins-Monro type [START_REF] Robbins | A stochastic approximation method[END_REF] and X n in R p+1 :

X n+1 = Π   X n -a n 1 m n j∈In Z j h Z j X n -S j   , X n+1 = 1 n + 1 n+1 1 X i .
Theorem 1 Suppose there is no affine relation between the components of R, the moments of order 4 of R exist and a n > 0,

∞ n=1 a n = ∞, ∞ n=1 an √ n < ∞, ∞ n=1 a 2 n < ∞. Then (X n ) and X n converge to θ a.s.
The proof is in [START_REF] Lalloué | Streaming constrained binary logistic regression with online standardized data[END_REF].

Experiments

Stochastic approximation processes were compared, including classic stochastic gradient descent (SGD) with a variable step-size, averaged stochastic gradient descent (ASGD) with a piecewise constant step-size with level sizes 50, 100 or 200, and the same processes but with online standardization of the data (Section 2). For these 8 processes, 3 variants with 1, 10 or 100 new observations per step were tested. Therefore 24 processes are studied. For processes with a variable step-size, we have defined a n = c (b+n) α , for those with a piecewise constant step-size, a n = c (b+ n τ ) α where . denotes the integer part and τ is the size of the levels. We set α = 2/3, b = 1, c = 1. All processes were initialized with X 1 = 0.

We used as "gold standard" the vector of coefficients θ c obtained by classic logistic regression (using R's glm function). Let θn+1 be the estimated vector obtained by a tested process after n iterations. The cosine of the angle between θ c and θn+1 was used as a convergence criterion: cos(θ c , θn+1 ) = θ c θn+1 θ c θn+1 . The processes were tested on five datasets available on the Internet (Twonorm, Ringnorm, Quantum, Adult, EEG) and the HOSPHF30D dataset derived from the EPHESUS study [START_REF] Pitt | Eplerenone, a selective Aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction[END_REF], all already used to test the performance of processes with online standardized data in the case of online linear regression [START_REF] Duarte | Sequential linear regression with online standardized data[END_REF]. Twonorm and Ringnorm contain simulated data. Adult, EEG and HOSPHF30D contain observed data with outliers, variables of different types and scales, unlike Quantum.

At each step of a process a data batch is randomly drawn from the dataset. All processes were applied on all datasets for a fixed number of observations used and for a fixed processing time (the cumulative time to compute the process updates, excluding operations such as data sampling, data management, formatting and recording of results). As an example, for a processing time of 60s (Figure 1) all tested processes using raw observed data, except Quantum, had a numerical explosion. Abbreviations used in Figure 1 are: C for classic SGD or A for ASGD, R for raw data or S for online standardized data, V for variable step-size or P for piecewise constant step-size; for instance, AR1P50 is the averaged process with raw data, 1 observation per step, piecewise constant step-size with level size 50, CS1V is the classic process with online standardized data, 1 observation per step and variable step-size.

FIG. 1 -Cosines for 1 minute of processing time

For each dataset and at each recording point (see below), processes were ranked from the best (highest cosine) to the worst (lowest cosine). The mean rank over all datasets was used to compare the processes at a given recorded point and globally. Over all datasets, the processes with the best results after 60s are averaged processes with online standardization and piecewise constant step-sizes, the best one with levels of size 200 and 100 new observations per step (AS100P200).

As in [START_REF] Duarte | Sequential linear regression with online standardized data[END_REF], the values of the criterion for each process were recorded every N observations used from N to 100 × N , N being the number of observations in a dataset, and every second of processing time from 1 to 120s. As an example, when studying the evolution of the rankings with the processing time, two groups of processes appear clearly from the beginning and remain during all the studied period. The group with the worst rankings (at the top in Figure 2) contains all processes using raw data, all processes using only one new observation at each step, and all "classic" processes. The group with the best rankings (at the bottom in Figure 2) contains all averaged processes with online standardization, piecewise constant step-sizes, and using 10 or 100 new observations per step, the best one with levels of size 200 and 100 new observations per step. Other results can be found in [START_REF] Lalloué | Streaming constrained binary logistic regression with online standardized data[END_REF]. 

Conclusion

We have studied an averaged constrained stochastic gradient algorithm for performing online a constrained binary logistic regression. We have proposed to use an online standardization of the data to avoid a numerical explosion, or when a shrinkage method (such as LASSO) is used, or even when expectations or variances of explanatory variables change (varying with time or depending on the values of controlled variables) and can be estimated online. We have proposed to use a decreasing piecewise constant step-size in order that it does not decrease too quickly and consequently reduces the speed of convergence of the process. We have made experiments on observed and simulated datasets. The results confirm the validity of the choices made: online standardization of the data, averaged process and piecewise constant step-size. This algorithm is used for scoring online heart failure (Lalloué et al., 2019a).

FIG. 2 -

 2 FIG. 2 -Evolution with the processing time

  

Acknowledgement

Results incorporated in this article received funding from the investments for the Future Program under grant agreement No ANR-15-RHU-0004.