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Abstract—This article presents the design and development
of an event-triggered control strategy to solve the problem of
leader-following consensus and formation problem for a group
of UAVs carrying a suspended load individually. In this work,
the vehicles exchange information through a network, which is
represented by a directed and strongly connected graph. Then,
employing a decentralized control law, each UAV decides when
it has to send a new value to its neighbors. The stability of
the complete system is carried out, and numerical results show
the advantages wrt information exchange between UAVs, as well
as excellent performance in the angular stabilization and the
minimum swing for the suspended load.

I. INTRODUCTION

Cooperative distributed control strategies for multiple
vehicles have gained increased attention in recent years in the
control community because such strategies provide attractive
solutions to large-scale multi-agent problems, in which a
group of coordinated agents is potentially able to outperform
a single or several systems operating independently [1],
[2], [3]. As an essential branch of cooperative control,
distributed cooperative control of robotic vehicle networks
has received much research attention [4], [5], in particular, a
focus has been put to the problem of consensus and formation
of under-actuated vertical take-off and landing (VTOL)
unmanned aerial vehicles (UAVs) [6], [7], [8]. The main
reason for this interest is the growing field of applications
of VTOL-UAVs, such as individual transportation [9] or
even collaborative transportation [10]. The development
of transportation techniques with UAV represents many
challenges, among which is the handling and control of the
movements of the packages put due to their composition,
weight or shape which can introduce disturbances and
uncertainties leading instability [11].
The collaborative control approaches for VTOL-UAVs above
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mentioned, consider vehicles with continuous-time dynamics,
and it is assumed that each VTOL can broadcast its state
and have continuous access to the states of their neighbors.
However, in practical, continuous communication between
vehicles is not possible, and it becomes essential to decide how
frequently the aerial vehicles should communicate to preserve
the closed-loop properties for the continuous-time design
[12]. Furthermore, in Networked Control Systems (NCSs) and
multi-agent scenarios where the control loop is closed over a
communication link, energy consumption is correlated with
the sampling rate of sensors, the rate at which processors
recompute control inputs and actuator signals are transmitted.
Then, performing these tasks periodically and at a high rate
can be costly, might lead to inefficient implementations, or
face hard physical constraints. To address these issues, the
event-based paradigm, so-called event-triggered control [13],
[14], [15], [16], [17], [18], appears as a mean to reduce the
communication bandwidth in the network since, contrary
to the classical scheme, an event-triggered can invoke a
communication between the different agents only when a
specific condition is satisfied, i.e., when an event is triggered.
The event-triggered distributed control represents a trending
topic and many groups around the world have carried out
extensive research and reporting remarkable results, for
instance, [19], [20], [21], [22], [23], [24]. Recently, in [25] an
excellent review of event-triggered communication and control
of networked systems for multi-agent consensus has appeared,
where special attention was put to the assumptions on the
capabilities of the network agents and the resulting features
of the algorithm execution, including the interconnection
topology, the evaluation of triggers, and the role of imperfect
information. Although the event-triggered paradigm has
shown advantages and benefits, there are only few reported
works in the framework of aerial autonomous multi-vehicles
where event-triggered feedback and event-triggered distributed
control is developed and applied [26], [27].
In the presented paper a control strategy is developed for
consensus and formation of a group of under-actuated planar
vertical take-off and landing (PVTOL) unmanned aerial
vehicles (UAVs) carrying a suspended load.



The control strategy is two-layer based. Firstly, one designs
an internal control law to stabilize the vertical and horizontal
position and the angular dynamics originated by the
suspended load. This inner layer allows taking into account
the horizontal and pendulum dynamics such that minimum
swing for the suspended load is achieved for each maneuver.
The outer layer of the proposed strategy is charged with
the event-triggered communication and control for the
multi-vehicle system whose aim is to follow a virtual
leader to achieve consensus and formation. The distributive
event-triggered control proposed in the present paper is in
the spirit of the ones proposed in [20], [21]. Whereas in
[20] the agents’ dynamics are represented by simple and
double integrator, in [21] the agent’s is represented by general
linear dynamics. However, both approaches consider only
the consensus problem and the communication between
agents is represented by undirected graphs which is quite a
restrictive condition i.e., only bidirectional communication
is considered. Here the event-triggered distributed control
technique is designed and applied to the problem of
leader-following consensus and formation of a group of
PVTOL-UAVs. The communication topology is represented
by directed and connected graphs which represent a more
realistic scenario. The practical convergence to leader is
guaranteed under such an event-triggered strategy. Simulation
is performed for the formation of four PVTOL-UAVs, where
the effectiveness is illustrated and analyzed. Besides the
development of a collaborative event-triggered control, the
hoped-for contribution of this paper is that of unification, so
that the reader can see how mixing topics such as Unmanned
Aerial Vehicles and event-triggered collaborative control.

The rest of the paper is structured as follows. Section
II contains mathematical preliminaries addressing the graph
theory and the modeling of a PVTOL-UAV with a suspended
load. In section III, the internal control is designed integrated
by the attitude control, vertical control, horizontal and
pendulum control for stabilizing a vertical and horizontal
position and the angle of the suspended load of a PVTOL.
In section IV, the event-triggered distributed control for
a group of agents is developed. Section IV is devoted
to simulation results, which show the effectiveness of the
proposed algorithm. Finally, in section V the conclusions are
presented.

II. PRELIMINARIES

A. Graph theory

Consider G = {V, E} consisting of a set of vertices (or
nodes) V = 1, ..., N and edges E . If there is an edge (i, j)
between nodes i and j, then i and j are called adjacent, i.e.
E = (i, j) ∈ V × V : i, j adjacent. G is called undirected
if (i, j) ∈ E ⇔ (i, j) ∈ E . The adjacency matrix A is
defined by aij = 1 if i and j are adjacent and aij = 0
otherwise. A path from i to j is a sequence of distinct nodes,
starting from i and ending with j, such that each pair of
consecutive nodes is adjacent. If there is a path from i to j,
then i and j are called connected. If all pairs of nodes in G
are connected, then G is called connected. The distance d(i, j)
between two nodes is the number of edges of the shortest path

from i to j. The diameter d of G is the maximum distance
d(i, j) over all pairs of nodes. The degree matrix D of G is
the diagonal matrix with elements di equal to the cardinality
of node i’s neighbor set Ni = {j ∈ V : (i, j) ∈ E}.
The Laplacian matrix L of G is defined as L = D − A. For
undirected graphs, L is symmetric and positive semi-definite,
i.e., L = LT ≥ 0. The row sums of L are zero. Thus, the
vector of ones is an eigenvector corresponding to eigenvalue
λi(G) = 0, i.e., L1 = 0. For connected graphs, L has exactly
one zero eigenvalue, and the eigenvalues can be listed in
increasing order 0 = λ1(G) < λ2(G) ≤ ... ≤ λN (G). The
second eigenvalue λ2(G) is called the algebraic connectivity.
A component of graph G is a connected subgraph that is
maximal. The leader is represented by vertex 0 and information
is exchanged between the leader and the agents which are in
the neighbors of the leader. Then, we have a graph Ḡ, which
consists of graph G, vertex 0 and edges between the leader
0 and its neighbors. Furthermore, let G = diag(g1, ..., gN )
be the diagonal matrix of pinning gains which describes the
connections between the leader and the follower nodes [28],
[3].

Lemma 2.1: The matrix H = L + G corresponding to a
graph Ḡ has the following properties:
1) The matrix H has nonnegative eigenvalues;
2) The matrix H is positive definite if and only if the graph
Ḡ is connected.

B. Modeling

The modeling of this system has been studied in the
literature, and the mathematical model is now well known (e.g.
[9]). However, for clearness, this will be briefly presented here.
Consider the UAV carrying a suspended mass, as shown in Fig.
1. Let pM = (x z)T ∈ R2 describe the position of the center of
mass of the UAV in the inertial reference frame Ef and θ ∈ R
be the angle between the horizon and the UAV. Moreover,
let α ∈ R be the rotation angle between the gravity vector
and the cable of length L connecting pM to the suspended
mass. The vehicle is actuated by two propellers generating the
only positive forces f1, f2 ∈ R. To simplify the notation, the
system inputs are defined as u1 = f1 +f2 and u2 = (f1−f2)l
where l is the distance between the motors and the center of
mass. Note that u1 and u2, represent the total thrust and the
moment generated by the propellers, respectively. Assuming
that the cable is rigid, inextensible and massless, the following
dynamical model is obtained [9]:

(M +m)(z̈ + g) +mL(cosαα̇2 + sinαα̈) = u1 cos θ

(M +m)ẍ+mL(sinαα̇2 − cosαα̈) = u1 sin θ

mL2α̈+mL sinαz̈ −mL cosαẍ+mgL sinα = 0

Jθ̈ = u2

(1)

where M and m are the mass of the UAV and the load
respectively, g is the gravitational constant, J is the inertia
of the UAV.
System (1) can be decoupled and the following dynamic model
is obtained



Fig. 1. PVTOL

ΣT :=


z̈ = fz(α, θ) + gz(α, θ)u1

ẍ = fx(α, θ) + gx(α, θ)u1

α̈ = gα(gα, θ)u1

(2)

and
ΣR :=

{
θ̈ = J−1u2 (3)

where

fz(α, θ) = −g − m

M +m
L cosαα̇2 (4)

fx(α, θ) = − m

M +m
L sinαα̇2 (5)

gz(α, θ) =
1

M +m

(
cos θ +

m

2M
(cos θ − cos (θ − 2α))

)
(6)

gx(α, θ) =
1

M +m

(
sin θ +

m

2M
(sin θ − sin (θ − 2α))

)
(7)

gα(α, θ) =
1

ML
sin (θ − α) (8)

Note that (2) and (3) constitute a cascade system. ΣT
represents the vertical-horizontal and pendulum dynamics
which depends on ΣR, whereas ΣR represents the attitude
which does not depend on ΣT . As a consequence u2 can be
firstly and independently designed.

III. INNER CONTROL DESIGN

In this section, we are interested in the design of an internal
control to stabilize the vertical and horizontal position and the
angular dynamics originated by the suspended load which can
be viewed as a pendulum.

A. Attitude control

Firstly, one proposes a simple and robust control law that
stabilizes the attitude.

Definition 3.1: Given a positive constant M , a continuous,
non-decreasing function σM : R→ R is defined by

(1) σM (s) = s if |s| < M ;
(2) σM (s) = sign(s)M elsewhere

(9)

Then, one has the following result inspired in this one
reported in [29] for the attitude stabilization of rigid bodies.

Proposition 3.2: Consider the attitude dynamics described
by (3) with the following bounded control input

u2 = −σM2

(
a1θ̇ + σM1(a2θ̇ + a1a2(θ − θD))

)
(10)

where σM.
is defined in (9) with M2 > 2M2. a1, a2 ∈ R+ are

tuning parameters. Then the input (10) stabilizes global and
asymptotically the UAV’s attitude to the desired attitude θD.

Proof: The proof follows the ones presented in [29], [30].

B. Vertical control

Now consider the vertical dynamics described by z̈ =
fz(α, θ) + gz(α, θ)u1 with the following control law

u1 =
1

gz(α, θ)
(−fz(α, θ) + rz)

consequently, the closed-loop the vertical dynamics becomes

z̈ = rz (11)

with rz to be defined later.

C. Horizontal and pendulum control

Consider the horizontal and pendulum dynamics

ΣHP :=

{
ẍ = fx(α, θ) + gx(α, θ)u1

α̈ = gα(gα, θ)u1
(12)

Assume that using the control law (10), one can stabilize the
attitude dynamics of PVTOL, that is θ = θD ≈ 0 . Then, using
the trigonometric identities: cos(θD−2α) = cos 2α+θD sin 2α
and sin(θD−2α) = θD cos 2α−sin 2α and after a sufficiently
long time, system (12) becomes

ẍ = f1(α, u1) + g1(α, u1)θD
α̈ = f2(α, u1) + g2(α, u1)θD

(13)

where

f1(α, u1) = − 1

M +m
(mL sinαα̇2 + u1 sinα)

g1(α, u1) = − u1

M +m
(1 +

m

2M
(1 + cos(2α)))

f2(α, u1) = − u1

ML
sinα

g2(α, u1) = − u1

ML
cosα

(14)

Let’s define F = x+ α, then one has the following

F̈ = f̄(α, u1) + ḡ(α, u1)θD (15)

with

f̄(α, u1) = f1(α, u1) + f2(α, u1)

ḡ(α, u1) = g1(α, u1) + g2(α, u1)
(16)

Note that θD becomes an input, then choosing

θD =
1

ḡ(α, u1)

(
−f̄(α, u1) + rF

)



the closed-loop system for the horizontal and pendulum
dynamics becomes

F̈ = rF (17)

Consequently, from (11) and (17) the closed-loop overall
system (2) can be written as follows

ΣPV TOL :=

{
z̈ = rz

F̈ = rF
(18)

Note that rz and rF can be chosen for regulation or tracking
purposes. Furthermore, the selection of F = x + α allows
taking into account the horizontal and pendulum dynamics
such that minimum swing for the suspended load is achieved
for each maneuver. The design of rz and rF will be carried
out in the next section in a framework of cooperative control.

IV. EVENT-TRIGGERED COOPERATIVE CONTROL

In this section, we are interested in the design of a
control law to obtain consensus and formation of multiples
PVTOL-UAVs carrying a suspended load, as represented in
Figure 2. For that, we consider a group of vehicles described
by equation (1). Besides, we assume that control signals
u1 and u2 are applied for an inner control-loop. Then, for
leader-following consensus control purposes, each follower
vehicle is modeled by equation (18), that is

ΣPV TOLi
:=

{
z̈i = rzi

F̈i = rFi

(19)

with i ∈ V . Let’s define the following variables: ξi1 = zi,
ξi2 = żi, ξi3 = Fi, ξi4 = Ḟi. Then, system (19) can be written
as

ξ̇i = Āξi + B̄ūi (20)

where ξi = (ξ1i
ξ2i

ξ3i
ξ4i

)T , ūi = (rzi rFi
)T , Ā ∈ R4×4,

B̄ ∈ R4×2. Furthermore, the dynamics of a leader, labeled 0
is given by

ξ̇0 = Āξ0 (21)

where ξ0 ∈ R4. The leader vehicle can be considered as
a command generator exosystem that generates the desired
target reference or trajectory. The objective is to design local
controllers ūi for all follower nodes.

Fig. 2. Group of N -PVTOL

Definition 4.1: The event-triggered leader-following
consensus of system (20)-(21) is said to be practically
achieved if, for each vehicle i ∈ V , there is a local state
feedback ūi which depends on mi and mj , with j ∈ Ni (node
i’s neighbor set), such that the closed-loop system satisfies

lim
t→∞

‖ξi(t)− ξ0(t)‖ = ∆, i = 1, ..., N

for any initial condition ξi(0), i = 0, 1, ..., N . Note that mi is
the latest broadcast state of vehicle i, i.e. mi(t) = ξi(t

i
k), t ∈

[tik, t
i
k+1[, where ti0, t

i
1... is the sequence of event times of

vehicle i.

Then, we have our main result.

Theorem 4.2: Consider the multi-vehicle system (20)-(21),
under the following control law

ūi = K

∑
j∈Ni

(mj −mi) + gi(ξ0 −mi)

 (22)

with K = ρB̄TP , being P a solution to the Riccati equation

ĀTP + PĀ− 2ρPB̄B̄TP = −Q

Suppose the trigger function is given by:

ei (ξi,mi) = ẽi1 ∧ ẽi2 ∧ ẽi3 ∧ ẽi4 (23)

where eis = |ēis | − δ with ēis = mis − ξis , and ẽis = 1 if
eis ≥ 0 and ẽis = 0 elsewhere. δ ∈ R+, i ∈ V and s =
{1, 2, 3, 4}. Then, all the agents follow the leader from any
initial condition and they converge to a neighborhood given
by

lim
t→∞

‖ε(t)‖ =
2
√
Nδ
∥∥∥B̃∥∥∥ ᾱ

λÃ1
= ∆

where ε = (ε1, ε2, ..., εN )T and εi = ξi−ξ0. Moreover, λÃ1 =
λmin(Ã) being Ã = IN ⊗ Ā − B̃, ᾱ = ‖R‖

∥∥RT∥∥, with R a
matrix which diagonalizes matrix Ã. B̃ = −H ⊗ B̄K, with
H = L+G.

Proof: Let’s define the following error variables ēi =
mi − ξi and εi = ξi − ξ0, then, the control law (22) can
be written as follows

ūi = K

∑
j∈Ni

(εj − εi) + giεi +
∑
j∈Ni

(ēj − ēi)− giēi


and the closed-loop system becomes

ε̇i = Āεi +

B̄

(
K
∑
j∈Ni

(εj − εi) +Kgiεi
+K

∑
j∈Ni

(ēj − ēi)−Kgiēi

)
=

Āεi + B̄K
∑
j∈Ni

(εj − εi) + B̄Kgiεi
+B̄K

∑
j∈Ni

(ēj − ēi)− B̄Kgiēi

By introducing ε = (ε1, ε2, ..., εN )T , G =
diag(g1, g2, ..., gN ), ē = (ē1, ē2, ..., ēN )

T and by using
the Laplaciane L of the graph G, one has

ε̇ =

(IN ⊗ Ā)−H ⊗ B̄K︸ ︷︷ ︸
Ã

 ε+

−H ⊗ B̄K︸ ︷︷ ︸
B̃

 ē (24)

where H = L+G. Lemma 2.1 states the properties of H .
To continue with the proof, firstly, one assumes ē = 0, and it



will be shown ε̇ = Ãε is asymptotically stable. For that, let’s
consider the following Lyapunov function

V (ε) = εT (IN ⊗ P )ε

whose derivative along the trajectories of (24) is

V̇ (ε) = εT
[(
IN ⊗ ĀT

)
−
(
H ⊗KT B̄T

)
(IN ⊗ P )

]
ε

+ εT
[
(IN ⊗ P )

(
IN ⊗ Ā−H ⊗ B̄K

)]
ε

= εT
[
IN ⊗

(
PĀ+ ĀTP

)
−H ⊗

(
2PB̄B̄TP

)]
ε

Since H is symmetric, there exists a matrix T ∈ RN×N such
that THTT = Λ := diag (λ1, ..., λN ) where λ1, ..., λN are
the eigenvalues of H which are positive (see Lemma 2.1).

Let ε̃ = (T ⊗ IN )ε be a linear transformation, then one
has

V̇ = ε̃T
[(
IN ⊗

(
PĀ+ ĀTP

))
− Λ⊗

(
2PB̄B̄TP

)]
ε̃

≤
N∑
i=1

ε̃Ti
[
PĀ+ ĀTP − λi

(
2PB̄B̄TP

)]
ε̃i

≤ −
N∑
i=1

ε̃Ti Qε̃i

≤ −
N∑
i=1

εTi (IN ⊗ TT )Q(T ⊗ IN )︸ ︷︷ ︸
Q̄

εi < 0 ∀ εi 6= 0

=⇒ Ā is Hurwitz and εi → 0 when ē = 0 and t→∞.
Now, the case ē 6= 0 is considered and assuming that λÃ1 =
λmin(Ã), then the solution of

ε̇ = Ãε+ B̃ē

is given by

ε(t) = eÃtε (0) +

∫ t

0

eÃ(t−τ)B̃ē (τ) dτ

‖ε (t)‖ ≤
∥∥∥eÃtε (0)

∥∥∥+

∫ t

0

∥∥∥eÃ(t−τ)B̃ē (τ) dτ
∥∥∥

Furthermore, let RÃRT = Φ = diag
(
λÃ1 , ..., λ

Ã
N

)
be a

diagonal matrix, it results

‖ε (t)‖ ≤ ᾱe−λ
Ã
1 t ‖ε (0)‖+ ᾱ

∫ t

0

e−λ
Ã
1 (t−τ)

∥∥∥B̃ē (τ)
∥∥∥ dτ

where
ᾱ = ‖R‖

∥∥RT∥∥
since

∥∥∥B̃ē∥∥∥ ≤ ∥∥∥B̃∥∥∥ ‖ē‖, and due to the event condition, one
has

‖ē‖ =
√

4δ2 + 4δ2 + ...+ 4δ2 = 2δ
√
N

Substituting, the error is bounded as follows

‖ε(t)‖ ≤ ᾱe−λ
Ã
1 t ‖ε (0)‖+ ᾱ

∫ t

0

e−λ
Ã
1 (t−τ)2δ

√
N
∥∥∥B̃∥∥∥ dτ

≤ ᾱe−λ
Ã
1 t ‖ε (0)‖+ 2ᾱe−λ

Ã
1 t
∥∥∥B̃∥∥∥ δ√N ∫ t

0

eλ
Ã
1 τdτ

≤ ᾱe−λ
Ã
1 t ‖ε (0)‖

+2ᾱe−λ
Ã
1 t
∥∥∥B̃∥∥∥ δ√N (eλÃ

1 t

λÃ1
− 1

λÃ1

)

‖ε(t)‖ ≤
2ᾱδ
√
N
∥∥∥B̃∥∥∥

λÃ1
= ∆ (25)

As a consequence, with the event-triggered distributive control
law, the leader-following consensus is achieved practically, i.e.
the error between the followers and the leader converges to a
ball centered at the origin with radius ∆.

A. Formation control

Formation control is characterized as geometrical patterns
to be realized by the vehicle group. The event-triggered
leader-following consensus control law (22) can be extended to
leader-following formation. In this case, followers should move
along a leader’s trajectory or target reference while maintaining
the desired shape.
Let Υ be a set of relative, desired inter-agent distances, that
is,

Υ = {%ij ∈ R | %ij > 0, i, j = 1, ..., N, i 6= 0} (26)

with %ij = %ji and where it is assumed that Υ is a feasible
formation, that is, there are points ζ1, .., ζN ∈ R4 such that

‖ζi − ζj‖ = %ij (27)

Then, consensus algorithm is extended to formation control if
the formation is represented by vectors of relative positions of
neighboring agents. In this case, the control law (22) becomes

ūi = K

∑
j∈Ni

(mj −mi)− (ζj − ζi) + gi(ξ0 −mi)

 (28)

Note that since one desires that followers achieve a target
reference with zero velocity (similar to regulation case) then,
second and fourth component of vectors ζi and ζj must to be
zero, i.e., ζi2 = ζi4 = ζj2 = ζj4 = 0 for all i, j = 1, ..., N .

V. SIMULATION RESULTS

In order to test and validate the efficiency of the
proposed control law, a set of numerical simulations were
performed. For the numerical simulations, one considers
four agents, where a PVTOL represents each agent. Both
the mathematical model of the PVTOL and the proposed
event-triggered cooperative control law were simulated in
the MATLAB/Simulink software. During the simulations, an
interconnection between the agents was considered as shown in
Figure 3, where only agent 1 (PVTOL 1) receives information
from the leader. Note that Figure 3 represents a direct and
connect graph.

Fig. 3. Graph of interconnection between the PVTOLs

The simulations aimed to verify that the developed control
law drives each agent to the desired formation, maintaining
the consensus between them while removing the oscillation
created by the suspended load of each agent. Note that
the leader vehicle is a command generator which generates



the desired target reference. For the following numerical
simulation, the target reference is given by ξ0 = (0, 0, 4, 0).
Then, followers must achieve consensus in this position.
However, using control law (28) one obtains a leader-following
formation. Note that, the desired formation refers to the
positions that each agent must reach and maintain after the
consensus with respect to the leader is achieved. The desired
formation for the presented simulations is shown in Table I.

Agent (ζi1 , ζi2 , ζi3 , ζi4 )

PVTOL 1 (5,0,0,0)

PVTOL 2 (2,0,0,0)

PVTOL 3 (-1,0,0,0)

PVTOL 4 (-4,0,0,0)

TABLE I. DESIRED FORMATION FOR AGENTS.

For the simulation, different initial conditions were
established for the positions of the agents and the angle
generated by the suspended load of each agent. The initial
conditions’ numerical values for each agent are depicted in
table II.

Agent ξi(0) = (ξ1i (0), ξ2i (0), ξ3i (0), ξ4i (0)) Load angle (α(0))

PVTOL 1 (3,0,0,0) 28.6◦

PVTOL 2 (1,0,0,0) −28.6◦

PVTOL 3 (-1,0,0,0) 17.2◦

PVTOL 4 (-2,0,0,0) 0◦

TABLE II. INITIAL CONDITIONS FOR AGENTS

The obtained results are depicted in the following. The
agents’ state evolution is shown in Figure 4-6. During the
simulation, disturbances forces are introduced to show the
efficiency of the proposed control strategy. In the second 40,
a disturbance affects the suspended load of PVTOL-3. The
second disturbance occurs in the second 55, where the position
of PVTOL-2 is altered, changing both the x and z position of
the PVTOLs’ group.
Figure 4 shows the evolution of the position of the agents
on the x-axis. It is observed that each PVTOL begins in its
initial conditions and approximately in the second 30 reaches
the desired formation and maintains a constant position until
the first disturbance in the second 40. PVTOL 4 shows more
significant movement, while the other agents also have slight
changes. Later in the second 55, the second perturbation
occurs, the evolution of the positions on the x-axis shows how
the control algorithm leads the agents to their desired location
in spite of the disturbance.

x

Time (sec)

Fig. 4. Evolution along the x axis

The evolution of the position of the PVTOLs on the
z-axis is shown in Figure 5. For the present work, the z-axis
corresponds to the height, so all agents begin at 0. It is
observed that the PVTOLs have a movement on the z-axis
until they reach the desired formation. The first perturbation
is applied to the suspended load of the PVTOL 4, but it can
be seen that it does not affect the z-axis. However, the second
disturbance generates a change in the positions of the PVTOLs.
After a sufficiently long time, the desired formation is reached.

z

Time (sec)

Fig. 5. Evolution along the z axis

Figure 6 shows the angles’ evolution of each agent’s
load (depicted in degrees). The angles’ load initial conditions
were defined with non-zero values for the different agents.
Note that approximately in the second 20, the oscillations
of the suspended loads have been removed. Then, the first
disturbance is applied to the second 40, causing an abrupt
change of the angle α of the PVTOL 4. The control law
reduces the oscillations caused by the disturbance. Also, the
changes produced by the second disturbance are removed
approximately for the second 80.



α

Time (sec)

Fig. 6. Evolution of each load angle

Note that when an event is generated, the state of an agent
is transmitted to its neighbors. Figure 7 shows the evolution of
the number of events generated by each of the agents during
the simulation. Also, the counting of transmissions that would
be issued under a continuous time approach is represented
for comparison (assuming a sampling time of 0.01 second).
It is observed that in the first seconds, behaviors for both
the event-triggered and continuous time approach are close.
However, from the second 7, a difference can be observed that
denotes the reduction in the transmission times. Considering
that there is a sampling time of 0.01 second and a total
simulation time of 100 seconds, then under the continuous
time approach, there would be 10000 transmissions from each
of the agents to their neighbors. With the event-triggered
approach, it was obtained that agent number 1 transmitted
1012 times; agent 2 transferred 1095 times, agent 3 sent 1233
times and agent 4 transmitted 1328 times. Furthermore, an
increase in the rate of transmission between agents takes place
due to the introduced disturbances. With the support of figure
7, it is clear that there exists a considerable reduction in
the communication between agents, even in the presence of
disturbances, in comparison with a continuous approach.

E
ve

nt

Time (sec)

Fig. 7. The number of events

Figure 8 shows the evolution of the agents’ positions on
the plane (x, y). The movements of each one of the agents
are observed from their initial conditions until they reach the
desired formation introduced in Table I.

z

x

Fig. 8. Center of mass evolution for each UAV in the plane

VI. CONCLUSION

In this work, an event-triggered cooperative control strategy
applied to the problem of consensus and formation of a
group of PVTOL carrying a suspended load was proposed.
The control strategy was tested on simulation. The control
strategy is two-layer based, and although inner layer is
responsible of attitude stability which is an essential point
of this work, we firmly believe that the most significant
contribution is the development of an event-triggered control
strategy used in the transmission of states between agents.
The communication topology is represented by directed and
connected graphs which represent realistic scenarios. This
event-triggered control strategy reduces the number of transfers
between agents, which demonstrate the superiority in terms of
load on the communication medium. The control law, together
with the event-trigger function, is designed to ensure a Minimal
inter-Sampling Interval (MSI)[18] and then to avoid zero
inter-sampling time leading to Zeno phenomena at finite time.
This property and real-time experiments will be addressed in
future work.
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