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5APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité, Paris 75013, France
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ABSTRACT
The escape process of particles accelerated at supernova remnant (SNR) shocks is one of the
poorly understood aspects of the shock acceleration theory. Here we adopt a phenomenological
approach to study the particle escape and its impact on the gamma-ray spectrum resulting from
hadronic collisions both inside and outside of a middle-aged SNR. Under the assumption that
in the spatial region immediately outside of the remnant the diffusion coefficient is suppressed
with respect to the average Galactic one, we show that a significant fraction of particles are still
located inside the SNR long time after their nominal release from the acceleration region. This
fact results into a gamma-ray spectrum that resembles a broken power law, similar to those
observed in several middle-aged SNRs. Above the break, the spectral steepening is determined
by the diffusion coefficient outside of the SNR and by the time dependence of maximum energy.
Consequently, the comparison between the model prediction and actual data will contribute to
determining these two quantities, the former being particularly relevant within the predictions
of the gamma-ray emission from the halo of escaping particles around SNRs, which could be
detected with future Cherenkov telescope facilities. We also calculate the spectrum of runaway
particles injected into the Galaxy by an individual remnant. Assuming that the acceleration
stops before the SNR enters the snowplow phase, we show that the released spectrum can be
a featureless power law only if the accelerated spectrum is ∝ p−α with α > 4.

Key words: acceleration of particles – shock waves – cosmic rays – ISM: supernova rem-
nants.

1 IN T RO D U C T I O N

Understanding the escape of accelerated particles from expanding
spherical shocks is a key ingredient to establishing a connection
between supernova remnants (SNRs) and the origin of Galactic
cosmic rays (CRs). It is often assumed that the spectrum of
particles released into the Galaxy by a single SNR resembles
the instantaneous spectrum of particles accelerated at the shock.
According to the predictions of diffusive shock acceleration theory
(DSA), such a spectrum is a featureless power law in energy E−α

with slope α ≈ 2 over a very broad energy interval (see e.g.
reviews by Malkov & Drury 2001; Blasi 2013). The validity of
such assumption depends on several subtleties of the acceleration
process, i.e. (i) the amount of time that particles spend inside
the SNR, during which they would suffer severe adiabatic losses,

� E-mail: silvia.celli@romal.infn.it

(ii) the rate at which particles of different energy are released
from the SNR at each time, and (iii) the temporal evolution of
the acceleration efficiency during the remnant evolution.

In a scenario where particles are confined inside the remnant
until it dissolves into the interstellar medium (ISM), these would
lose a substantial fraction of their energy because of the adiabatic
expansion of the shocked plasma. On the other hand, the observation
of the knee in the CR spectrum at a particle energy of few PeV
suggests that the sources of Galactic CRs should be able to inject
in the ISM particles up to at least such energies. This implies that,
in order to compensate for adiabatic energy losses, SNR shocks
should in fact be able to accelerate particles well beyond the PeV
domain, which seems so prohibitive (Lagage & Cesarsky 1983) that
this scenario does not appear to be realistic.

A more realistic, though still qualitative picture for the particle
escape emerges from the fact that SNR shocks slow down as the
mass of the ISM swept up by the shock increases. During the Sedov–
Taylor (adiabatic or ST) phase (Taylor 1950; Sedov 1959), the shock
radius expands with time as t0.4, which is slower than the t0.5 root
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mean square displacement of CRs expected if their transport is
governed by spatial diffusion. In such a scenario, particles start to
diffuse away from the shock and the probability that they might
return to it from upstream is gradually reduced (see e.g. Drury
2011). The dilution of particles over large volumes also reduces
their capability of exciting magnetic turbulence upstream of the
shock due to various plasma instabilities. Less turbulence means
less confinement of particles at shocks, and therefore at some point
CRs will become completely decoupled from the shock and will
escape the SNR. Even though there is a broad consensus on the
fact that the escape should be energy dependent – higher energy
particles escaping the shock earlier – the details of such a process
are still not well understood.

In fact, a similar reasoning may be applied also to describe
particle escape during the ejecta-dominated phase, which precedes
the Sedov one and is characterized by a very mild deceleration of
the SNR shock (Chevalier 1982; Truelove & McKee 1999). While
in this case the expansion rate of the SNR shell is larger than the
spatial diffusion rate of CRs (the shock radius scales as ts with s
> 0.5), particles of very high energy (VHE) might still escape the
SNR. This is because even a mild deceleration of the shock suffices
to reduce appreciably the effectiveness of CR streaming instability.
In addition, also the non-resonant instability, often invoked as the
main mechanism for the magnetic field amplification in the ejecta-
dominated phase, requires that a sizeable fraction of particles at
the highest energy should escape in order for the instability to be
effective (Bell 2004; Amato & Blasi 2009; Bell et al. 2013; Schure &
Bell 2014). Nevertheless, the behaviour of particle escape during
this phase is not particularly relevant to the objectives of this paper,
as a very minor fraction of particles is expected to escape the shock
in this way.

After the decoupling from the SNR, the transport of particles will
be determined by the properties of the ambient magnetic turbulence.
In fact, the same particles that are escaping from the SNR could
generate the magnetic turbulence by means of plasma instabilities
such as the streaming instability (Skilling 1971) as well as the
non-resonant instability (Bell 2004). In such a scenario, the diffu-
sion coefficient outside of the remnant Dout might be suppressed
in the transition region between the shock and the unperturbed
ISM with respect to the average Galactic coefficient DGal(p) �
1028(pc/10 GeV)1/3 cm2 s−1 (e.g. Maurin, Melot & Taillet 2014). It is
hence clear that one of the main uncertainty of modelling the escape
process concerns the value of Dout. In principle, there is no reason
why Dout should be equal to DGal: in fact, the latter is usually inferred
from secondary over primary CR ratios and it represents an average
value over the particle propagation time within the whole magnetic
halo of the Galaxy, hence it could be very different from the diffusion
coefficient inside the Galactic Plane. Given that a theoretical
determination of Dout is challenging, one may wonder whether
it could be possible to constrain this physical quantity by means
of observations, particularly in the high-energy (HE) and VHE
gamma-ray domain, and to provide some understanding concerning
how the escape mechanism works by means of a phenomenological
approach towards the existing gamma-ray measurements of SNRs.
Indeed, gamma-ray emission is expected from the vicinity of SNRs
due to the interactions of escaping particles with ambient gas,
especially (but not only) if the gas is structured in massive molecular
clouds (Gabici, Aharonian & Casanova 2009). The study of such
emission is of paramount importance because it allows us to directly
observe a manifestation of particle escape from shocks, and to
constrain this poorly understood aspect of particle acceleration
at SNRs.

Particle escape from SNR shocks has been the subject of several
works, exploring either the connection between runaway particles
from the SNR shock and the CR spectrum observed at Earth
(Ptuskin & Zirakashvili 2003; Bell et al. 2013; Malkov et al.
2013; Cardillo, Amato & Blasi 2015) or studying the signatures
of escaping particles in terms of gamma-ray emission from nearby
molecular clouds (Gabici et al. 2009; Ohira et al. 2011). Note that a
proper treatment of the escape process is extremely relevant in the
search for PeV particle accelerators (Gabici & Aharonian 2007),
as observationally HE particles are more likely to be found outside
of the SNR shock than inside or in its shell (Aharonian 2013). On
the other hand, we are mostly interested in the very initial stages
of the escape, when the runaway particles are still located in the
close vicinity of the shock, in order to explore the escape conditions
through the gamma-ray spectrum detected from the SNR. Given the
large uncertainties of current theoretical models aimed at describing
particle escape from shocks (Malkov et al. 2013; Nava et al. 2016;
D’Angelo et al. 2018), here we will adopt a phenomenological
approach. The transport of particles that decoupled from the SNR
shock will be described by means of a diffusion coefficient, which
is both isotropic and spatially homogeneous. Though deviations
from this simplest scenario, such as anisotropies and/or spatial
variations in the transport of particles, may play an important
role (Giacinti, Kachelrieß & Semikoz 2013; Nava & Gabici 2013;
D’Angelo et al. 2018), we will neglect them in this work as we
aim at describing the radiative signatures from SNRs produced by
escaping particle in the most simple scenario. This study will be
limited to middle-aged SNRs, namely remnants evolving through
the adiabatic phase, mainly because of two reasons: (i) the amount of
escaping particles should be large enough to produce more evident
observational effects in secondary gamma rays and (ii) the remnant
hydrodynamical evolution can be well approximated by the ST
solution, which allows to provide a simple analytical model for
the description of particle propagation. Therefore, the treatment
presented does not apply to young SNRs that are still evolving in
the ejecta-dominated phase.

Within a simplified description of the particle transport in spher-
ical symmetry, we obtain a time-dependent analytical solution for
the density distribution of both the particles confined by the shock,
undergoing acceleration and adiabatic losses, as well as the escaping
particles still diffusing in the remnant region. Note that, in order
to derive an analytical solution to the particle transport equation,
we assume a homogeneous diffusion coefficient and neglect non-
linear effects. The obtained solutions depend on the SNR temporal
evolution and on the diffusive regime operating at the time when
the particles start to escape the shock. It is therefore possible to
quantify the density of particles located within the shock radius and
outside of it. Consequently, we derive both the morphology and
the spectral energy density of the secondary gamma rays produced
at the interaction between the accelerated protons and the target
gas, in order to explore the possibility of constraining the regime of
operation of particle escape by means of HE and VHE observations.
Moreover, as the same escaping particles will eventually contribute
to the Galactic CR flux, we quantify the flux of runaway particles
from middle-aged SNRs, investigating several different acceleration
spectra.

The paper is structured as follows. In Section 2, a simplified
model that describes the particle propagation within and around a
middle-aged SNR is presented. Though the model is not intended
to provide a complete description of the particle escape mechanism,
it predicts interesting features on the particle spectrum, which
are discussed in Section 3. The predicted fluxes of secondary
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gamma rays produced in hadronic collisions between runaway
particles and ambient gas are presented in Section 4, where the
presence of extended TeV haloes around SNRs is discussed and
their detectability by future generation instruments such as CTA is
investigated. In addition, since the escape process is a key ingredient
to understand the formation of the Galactic CR flux detected at
Earth, the contribution of the runaway particle flux from middle-
aged SNRs to the flux of Galactic CRs is evaluated and discussed in
Section 5. The results obtained are summarized in Section 6, where
conclusions are also derived.

2 A SIMPLIFIED MODEL FOR PA RTICLE
P RO PAG AT I O N

In this Section, we model the propagation of accelerated particles
inside and outside a middle-aged SNR in order to properly calculate
the spectrum of protons contained in these regions. For the sake of
simplicity, we assume spherical symmetry both inside and outside
the remnant. We note that the assumption of spherical symmetry
outside the SNR is justified in case of highly turbulent medium,
like core collapse supernovae (CC-SNe), which expand in the
wind-blown bubble produced by their progenitor (Zirakashvili &
Ptuskin 2018) or in superbubbles, like e.g. the complex Cygnus
region (Parizot et al. 2004). Indeed, simulations of stellar wind-
blown bubbles show that the variation of the wind properties
during the stellar evolution causes the termination shock to be non-
stationary and to inject vorticity in the shocked wind (Dwarkadas
2008). On the other hand, if a regular magnetic field is present, a
cylindrical symmetry would be more suitable (for this scenario the
reader is referred to Nava & Gabici 2013; D’Angelo et al. 2018).
The transport equation in spherical coordinates describing the
evolution of the phase-space density f(t, r, p) of accelerated protons
reads as

∂f

∂t
+ u

∂f

∂r
= 1

r2

∂

∂r

[
r2D

∂f

∂r

]
+ 1

r2

∂(r2u)

∂r

p

3

∂f

∂p
, (1)

where u(t, r) is the advection velocity of the plasma and D(t, r, p) is
the effective spatial diffusion coefficient experienced by particles. In
the following, we will solve equation (1) by adopting two different
approximations, tailored at describing the propagation of respec-
tively (i) the particles confined inside the remnant, tightly attached
to the expanding plasma, and (ii) the non-confined particles, which
freely diffuse in the space after having escaped the shock region. In
order to solve analytically equation (1), several assumptions will be
introduced, concerning: (i) the evolutionary stage of the remnant, as
described in Section 2.1, (ii) the particle spectrum accelerated at the
shock, which is discussed in Section 2.2, and (iii) the temporal
evolution of the particle maximum momentum produced at the
shock that is explored in Section 2.3. Consequently, the results
derived in Sections 2.4 and 2.5 apply within the range of validity of
the aforementioned assumptions.

2.1 Evolution of middle-aged SNRs

We define middle-aged SNRs as those evolving in the ST phase,
when the shock slows down as the swept-up matter becomes larger
than the mass of the ejecta Mej while radiative losses are still not
significant. Their characteristic age is TSNR � 104 yr. During this
evolutionary stage, the shock position Rsh and the shock speed ush

evolve in time according to the adiabatic solution (Sedov 1959;
Matzner & McKee 1999; Truelove & McKee 1999) that in the case
of a shock expanding through a uniform medium with density ρ0

reads as

Rsh(t) =
(

ξ0
ESN

ρ0

)1/5

t2/5, (2)

ush(t) = 2

5

(
ξ0

ESN

ρ0

)1/5

t−3/5, (3)

where ξ 0 = 2.026 and ESN represents the kinetic energy released
at the supernova (SN) explosion. The time that marks the transition
between the ejecta-dominated phase and the ST phase is the so-
called Sedov time, namely

tSed � 1.6 × 103 yr

(
ESN

1051 erg

)−1/2 ( Mej

10 M�
)5/6 (

ρ0

1 mp cm−3

)−1/3

,

(4)

where mp is the proton mass. The internal structure of the SNR is
determined by the hydrodynamical evolution of the moving plasma:
in the following, we will adopt the linear velocity approximation
introduced by Ostriker & McKee (1988), in which the plasma
velocity profile for r ≤ Rsh is given by

u(t, r) =
(

1 − 1

σ

)
ush(t)

Rsh(t)
r , (5)

σ being the compression ratio at the shock (σ = 4 for strong shocks).

2.2 CR distribution at the shock

Following Ptuskin & Zirakashvili (2005), we assume that the
efficiency in converting the shock bulk kinetic energy into rela-
tivistic particles, ξCR, is constant in time. The distribution function
of CR accelerated at the shock is determined by DSA and it is
predicted to be a featureless power law in momentum with slope
α. A maximum value of the particle momentum pmax , though not
naturally embedded in the DSA theory, has to exist in order to limit
the spectral energy density of accelerated particles. Such a value is
either connected with the accelerator age, that implies a finite time
for acceleration, or with the particle escape from the system. In a
simplified form, we can write the particle spectrum at the shock as

f0(t, p) = 3 ξCRu2
sh(t)ρ0

4π c(mpc)4	(pmax,0(t))

(
p

mpc

)−α



[
pmax,0(t) − p

]
, (6)

where c is the speed of light. We leave the slope α as a free parameter
of the model. It is worth to recall, however, that DSA predicts α

to be equal or very close to 4. The function pmax , 0(t) represents
the maximum momentum accelerated at the shock at the time t, as
will be discussed in the next Section, while 	(pmax , 0) is required
to normalize the spectrum such that the CR pressure at the shock is
PCR = ξCRρ0u

2
sh. We thus have

	(p) =
∫ p/mpc

pmin/mpc

y4−α
(
1 + y2

)−1/2
dy . (7)

The fact that the efficiency ξCR is constant in time is a key element
of the whole problem, including the calculation of the final CR
spectrum injected by SNRs into the ISM (see Section 5). Such
assumption is usually connected with the idea that the acceleration
efficiency should saturate at roughly the same level, regardless
of the shock speed, provided that the shock is strong. Though
a proof of this conjecture is still missing, hints in this direction
are provided by particle-in-cell simulations (Caprioli & Spitkovsky
2014). In addition, analytical models that implement the thermal
leakage recipe and account for non-linear effects have shown that
the efficiency remains constant as long as the condition M � 1 is
fulfilled (see e.g. fig. 1 in Caprioli 2012).
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2.3 Maximum energy at the shock

A self-consistent description of the maximum energy achievable in
the acceleration mechanism in a non-stationary framework requires
the correct modelling of the evolution of the magnetic turbulence,
which is supposed to be self-generated by the same accelerated
particles and possibly damped through frictional effects and wave
cascade. Since such a complete description does not exist yet,
we will here use a quite general recipe, often adopted in the
literature, which assumes that the maximum momentum increases
with time during the free expansion phase, when the shock is
actively accelerating particles, and then it decreases during the ST
phase according to a power law in time (see e.g. Gabici et al. 2009),
namely

pmax,0(t) =
{

pM (t/tSed) if t � tSed

pM (t/tSed)−δ if t > tSed ,
(8)

where pM represents the absolute maximum momentum, achieved
at t = tSed. The reason for considering a transition for pmax at the
Sedov time is connected with the fact that during the free-expansion
phase the particles achieve a maximum momentum generally higher
than during the adiabatic phase. However, as at this stage the
number of accelerated particles is rather low, the average spectrum
of escaping particles will result steeper than during the adiabatic
phase (Ptuskin & Zirakashvili 2005). Hence, the fact that more
particles are accelerated during the Sedov stage (the remnant is more
extended) has the net effect of producing a peak in pmax right at the
Sedov time. Note that the evolution of pmax(t) during the ED phase is
largely uncertain: for this reason, we also explored the case of pmax =
pM for t ≤ tSed, and observed that it produces marginal differences
in the gamma-ray spectrum of middle-aged SNRs. In equation (8),
δ is a free parameter of the model, bounded to be positive. The value
of this parameter strongly depends on the temporal evolution of the
magnetic turbulence. In the simple stationary test-particle approach
δ = 1/5. This value should be regarded purely as a lower limit, since
in a more realistic scenario the strength of the magnetic turbulence
is expected to be proportional to some power of the shock speed,
which decreases in time (see Appendix A for more details).

By inverting equation (8), we can also define the escape time for
particles of given momentum p, corresponding to the time when
these particles cannot be confined anymore by the turbulence and
start escaping from the shock. The particle escape time reads as

tesc(p) = tSed (p/pM)−1/δ . (9)

It is also useful to define the escape radius as

Resc(p) = Rsh (tesc(p)) . (10)

The onset of the escape process in the acceleration scenario intro-
duces a unique feature in the evolution of the particle distribution
that will behave differently before and after tesc(p). In fact, at times
smaller than tesc(p), particles closely follow the shock evolution as
they are strictly tightened to the turbulence. On the other hand,
at later times, when the turbulence starts to fade out, particles
behave disconnected by the shock. Particles evolving in these
two regimes will be named, respectively, confined particles and
non-confined particles, as described in Sections 2.4 and 2.5. Note
that, while confined particles are only located inside the remnant
radius (by definition), the non-confined population can be located
both inside and outside the radius, depending on the diffusion
conditions operating there. In fact, even if non-confined particles
have nominally escaped the shock, they can possibly be scattered
towards the remnant interior, and reside there for some time after

the escape time, thus producing observable effects in the secondary
radiation emitted at hadronic interactions. Later, once the turbulence
has reduced significantly, these particles are able to leave the source
region, propagate through the ISM and eventually reach the Earth,
contributing to the diffuse flux of CRs.

Though equation (8) may appear too simplistic, it allows to
explore the escape mechanism independently on the microphysics
of the process. However, we will also explore a situation where
a more refined calculation of pmax ,0 is adopted. In particular, we
will use the description derived by Schure & Bell (2013) and
Schure & Bell (2014) and also adopted in Cardillo et al. (2015),
who considered the possibility that the escaping CRs excite plasma
instabilities, leading to the growth of both resonant and non-resonant
modes, thus achieving efficient magnetic field amplification and
particle scattering. Both the instability channels are driven by the
fact that CRs stream at super-Alfvénic speed, thus inducing a
reaction in the background plasma to restore a null net current.
The essential difference between the resonant and non-resonant
linear instability is that non-resonant modes result from a collective
effect of CRs, namely from their strong drift, while individual
CRs are responsible for resonant modes. Considering the non-
resonant instability developed by the CR streaming from a remnant
expanding into a homogeneous medium, in the assumption that
a constant fraction of the shock kinetic energy is instantaneously
transferred to the escaping particle flux, one derives the following
implicit equation in the maximum energy Emax, 0(t)

Emax,0(t) ln

(
Emax,0(t)

Emin

)
= e

√
4πρ0

10c
ξCRu2

sh(t)Rsh(t) , (11)

where Emin is the minimum energy produced by acceleration during
the Sedov phase, which does not depend on time, and e is the electron
charge. Note that the maximum energy is connected to the maxi-

mum momentum by the relation Emax,0(t) =
√

p2
max,0(t)c2 + m2

pc
4.

Equation (11) holds whenever the differential energy spectrum
produced during the acceleration is ∝ E−2, since it was derived by
combining equations (2) and (9) of Cardillo et al. (2015) (and setting
m = 0, corresponding to expansion into a homogeneous medium).
The approach defined by equation (11) implies that the maximum
momentum produced at the shock varies with time according to the
remnant evolutionary stage: as already discussed in Section 2.1, in
the following we will only consider remnants evolving through the
ST stage. Correspondingly, within this scenario, the escape time of
particles with energy E would be dictated by

tesc(E) =
[

4
√

πρ0e

125c
ξCR

(
ξ0ESN

ρ0

)3/5 1

E ln(E/Emin)

]5/4

. (12)

On the other hand, in the case of an acceleration spectrum ∝ E−(2 + β)

(with β 
= 0), the equation regulating Emax, 0(t) reads as

Emax,0(t)

[(
Emax,0(t)

Emin

)β

− 1

]
=

(
β

1 + β

)
e
√

4πρ0

10c
ξCRu2

sh(t)Rsh(t), (13)

while the escape time is

tesc(E) =
[

4
√

πρ0e

125c
ξCR

(
ξ0ESN

ρ0

)3/5 (
β

1 + β

)
1

E

(
E

β
min

Eβ − E
β
min

)]5/4

. (14)

Note that equations (11) and (13) show explicitly the fact that the
maximum energy depends on the acceleration efficiency, since the
higher is the efficiency, the larger is the current of escaping particles.
In addition, these are implicit equations for Emax,0(t), which can be
solved with standard numerical techniques.
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2.4 Distribution of confined particles

When t < tesc(p) particles with momentum p are confined inside
the SNR and do not escape the shock, due to the wall of turbulence
generated at the shock itself. A reasonable approximation for the
distribution of these confined particles, that we call fconf(t, r, p)
from here on, can be obtained by solving equation (1) in the
approximation that the diffusion term can be neglected (Ptuskin &
Zirakashvili 2005). This is a good approximation if the typical
diffusion length is much smaller than the SNR size, namely if√

Dint � Rsh(t), which in the ST phase translates into the following
condition on the diffusion coefficient inside of the shock

Din � 1028

(
ESN

1051erg

) 1
2
(

M�
Mej

) 1
6 ( n0

cm−3

)− 1
3

(
t

tSed

)− 1
5

cm2s−1 . (15)

The above condition depends only weakly on t and it is satisfied if
Din(p) is suppressed with respect to the average Galactic diffusion
coefficient by at least a factor ∼ (p/10 GeVc−1)−1/3. The simplified
transport equation for confined particles reads as

∂fconf

∂t
+ u

∂fconf

∂r
= 1

r2

∂(r2u)

∂r

p

3

∂fconf

∂p
(16)

and its solution can be easily obtained by using the method of char-
acteristics, where the plasma speed inside the SNR is approximated
by equation (5). The solution can be written in the terms of the
acceleration spectrum f0 (see equation 6) as follows:

fconf(t, r, p) = f0

((
Rsh(t)

Rsh(t ′)

)1− 1
σ

p, t ′(t, r)

)
(17)

(see Ptuskin & Zirakashvili 2005), where t
′
(t, r) represents the time

when the plasma layer, that at the time t is located at the position r,
has been shocked. Such quantity can be obtained from the equation
of motion of a plasma layer, i.e. dr/dt = u(t, r), where the velocity
profile is given by equation (5): integrating this equation by parts
from t

′
to t, and using equation (2), one obtains

t ′(t, r) =
(

ρ0

ξ0ESN

)σ/2

r5σ/2 t1−σ . (18)

We can recast equation (17) in a simpler form, by using equa-
tions (2), (3), and (6) and neglecting the mild dependence of 	(pmax )
on t, thus getting

fconf(t, r, p) = f0(p, t)

(
t ′

t

)ε
	(t)

	(t ′)

 [pmax(t, r) − p] , (19)

where 	(t) is a shortcut for 	(pmax , 0(t)), while the exponent ε is
defined as

ε = 2α(σ − 1)

5σ
− 6

5
. (20)

The function pmax (t, r) is the maximum momentum of particles
located at position r and time t, and it is equal to the maximum mo-
mentum of particles accelerated at time t

′
diminished by adiabatic

losses occurred between t
′
and t, i.e.

pmax(t, r) = pmax,0(t ′)
(

Rsh(t ′)
Rsh(t)

)1− 1
σ

= pmax,0(t)

(
t ′

t

) 2(σ−1)
5σ

−δ

,

(21)

where the last step has been obtained by using equation (8) for t >

tSed. The latter equation implies that, for δ < δ∗ ≡ 2(σ − 1)/(5σ )

(namely δ∗ = 3/10 for strong shocks), the decrease of the maximum
energy at the shock is slower than the decrease of the maximum
energy in the remnant interior, as due to adiabatic losses. In such
a case, at any given time t, particles with momentum pmax , 0(t) are
only located close to the shock. On the contrary, for δ > δ∗, at every
position r the distribution function is f(t, r, pmax , 0(t)) > 0. In other
words, the condition δ > δ∗ is a necessary requirement in order to
have particles with p = pmax , 0(t) in the whole SNR.

It is interesting to note that under the assumption of test-particle
DSA, where α = 3σ /(σ − 1), the distribution function of confined
particles as reported in equation (19) becomes almost independent
on r. In fact it results that ε = 0 and the function 	(t

′
) has a very

mild dependence on r. In such a case neglecting diffusion is justified
because ∂ rfconf � 0.

2.5 Distribution of escaping particles

As soon as t > tesc(p), particles with momentum p cannot be
confined anymore by the turbulence operating in the shock region
and they start escaping. Note that in several works, the escape
is treated as an instantaneous process, in the sense that all non-
confined particles are assumed to be located outside the remnant
right after tesc(p), without accounting for the fact that the particles
can still be propagating inside the SNR for some time. While this
assumption can be considered a good approximation for studying
the total particle spectrum released into the Galaxy, it is no more
valid when attempting a description of the early phase of the escape
process in the region close to the SNR, in particular in the estimate
of the gamma-ray flux from that region. In fact, if the propagation
outside of the SNR is diffusive, escaping particles have a finite
probability to be scattered back and re-enter the SNR, even if they
do not feel the shock discontinuity anymore and do not undergo any
further acceleration. This process will be especially important if the
level of turbulence in the vicinity outside of the SNR is much higher
than the average Galactic one, in such a way that the confinement
time in that region would be significantly enhanced. As discussed in
Section 1, there are several reasons to think that such an increase of
the turbulence might be realized, including the CR self-generated
turbulence. In Appendix C we show that such effect can, under
certain conditions, be important especially in the close proximity of
SNRs.

In order to describe the particle evolution at early times after
the escape, namely for t > tesc(p), an approximate solution is
obtained by assuming that particles decouple from the SNR and
their evolution is governed by pure diffusion. The particle evolution
is hence described by the same equation (1) but dropping the terms
including ush, which gives

∂fesc

∂t
= 1

r2

∂

∂r

[
r2D(p)

∂fesc

∂r

]
, (22)

where from now on we will address fesc(t, r, p) as the distribution of
non-confined particles. Since the particles will start escaping after
they have been confined by the turbulence, this equation will be
solved with an initial condition given by the distribution function
of confined particles at t = tesc(p). By defining fconf(tesc(p), r, p) ≡
fconf, 0(r, p), the initial condition reads as{

fesc(tesc(p), r, p) = fconf,0(r, p) r < Rsh(tesc(p))

fesc(tesc(p), r, p) = 0 elsewhere .
(23)

The diffusion coefficient in the region outside the SNR, Dout, is
assumed to be spatially constant. Such assumption is made in order
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4322 S. Celli et al.

Figure 1. Distribution of escaping particles as in equation (25), at the arbitrary fixed momentum p = 10 TeV c−1, as a function of the radial coordinate
normalized to Resc(p). For both panels, we used pM = 1 PeV c−1, δ = 4, and α = 4. Left: Different thick lines refer to different times, as labelled, and the
vertical thin lines with the same colour correspond to the shock position at those times. The diffusion coefficient is Kolmogorov-like, normalized to χ = 0.01.
Right: Different lines refer to different value of the diffusion coefficient, as labelled. The time is fixed to t = 2tesc and the vertical black line marks the shock
position at that time.

to derive an approximate analytic solution of equation (22), by using
the method of Laplace transforms. As Dout is an unknown of the
model, it might possibly be constrained by HE and VHE gamma-
ray observations. Unless specified differently, we will assume a
Kolmogorov-like diffusion, namely

Dout(p) ≡ χDGal(p) = χ1028
( pc

10 GeV

)1/3
cm2 s−1 , (24)

where the parameter χ quantifies the difference with respect to the
average Galactic diffusion coefficient. Inside the SNR the diffusion
coefficient Din is in general different from the one outside, never-
theless for the sake of simplicity we will assume a homogeneous
diffusion coefficient D(p), such that Din(p) = Dout(p) ≡ D(p). Note
that the analytical solution is only obtained for some values of the
slope α: we show here only two cases of interest, namely α = 4 and
α = 4 + 1/3, both assuming σ = 4. The case α = 4 corresponds to
the standard case for DSA in the test-particle limit and the solution
reads as (see Appendix B for the full derivation)

fesc(t, r, p) = fconf,0(p)

2

{
Rd√
π r

[
e
−

(
R+
Rd

)2

− e
−

(
R−
Rd

)2]

+ Erf

(
R+
Rd

)
+ Erf

(
R−
Rd

)}
× 
 [t − tesc(p)] ,

(25)

where R±(p) ≡ Resc(p) ± r, Rd(t, p) ≡ √
4D(p) (t − tesc(p)) is the

diffusion length and Erf(x) = 2/
√

π
∫ x

0 e−z2
dz is the error function.

The spatial behaviour of fesc(r), as derived from equation (25), is
shown in Fig. 1 for different times after the escape time and different
normalizations χ of the diffusion coefficient. Note that typical
values of the parameters describing the evolution of a middle-aged
SNR and the acceleration process have been adopted to obtain the
plots, as indicated in Table 1. The results clearly show that, if χ is as
small as 0.01, roughly half of the escaped particles are still located
inside the SNR at a time twice the escape time.

The second case considered, i.e. α = 4 + 1/3, represents a steeper
acceleration spectrum, close to the values inferred from the gamma-
ray observations of several SNRs (like Tycho and Cas A) which
have α � 4.2 ÷ 4.3. It is worth remembering that, to date, there
is no consensus yet on the physical reason that would produce

Table 1. Benchmark values for the set of parameters describing the SNR
evolution and the particle acceleration: ESN is the kinetic energy released
at the SN explosion, Mej the mass of the ejecta, n0 the upstream density,
TSNR the remnant age, ξCR the acceleration efficiency, and pM the maximum
momentum at the Sedov time.

ESN Mej n0 TSNR ξCR pM

1051 erg 10 M� 1 cm−3 104 yr 0.1 1 PeV c−1

spectra steeper than p−4. Some possibilities invoke the role of
the speed of the scattering centres (Zirakashvili & Ptuskin 2008;
Morlino & Caprioli 2012), or the modification produced on to the
shock structure by the presence of neutral hydrogen (Morlino &
Blasi 2016), while a recent work ascribes the steepening to a
combination of effects, including the shock spherical expansion,
its temporal deceleration and the tilting of the magnetic field at
the shock surface (Malkov & Aharonian 2019). Regardless of the
physical reason producing such a steeper spectrum, we have chosen
α = 4 + 1/3 because an analytical solution for the non-confined
particle density can be obtained, which is (see Appendix B for the
full derivation)

fesc(t, r, p)

k(tesc)
=

{
Rd√
π

e
−

(
r

Rd

)2

+ Rd

2
√

π

(
R−
r

)
e
−

(
R+
Rd

)2

+

− Rd

2
√

π

(
R+
r

)
e
−

(
R−
Rd

)2

+
(

r + R2
d

2r

)
Erf

[
r

Rd

]

+ 1

2

(
r + R2

d

2r

)
Erfc

[
R+
Rd

]
−

(
1 − Erf

[
R−
Rd

])

×
(

r

2
+ R2

d

4r

) }

[t − tesc(p)], (26)

where Erfc(x) = 1 − Erf(x) and the function k(t) reads as

k(t) = 3ξCRρ0

25πc(mpc)4−α	(t)

(
ξ0ESN

ρ0

)1/5

t−8/5 . (27)

The spatial behaviour of the non-confined distribution function of
equation (26) is plotted in Fig. 2(a) for different times after tesc(p),
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Figure 2. Distribution of escaping particles at the arbitrary fixed momentum p = 10 TeV c−1, as a function of the radial coordinate normalized to Resc(p).
Different thick lines refer to different times, as labelled, and vertical thin lines represent the shock position at those times. The model here assumes pmax(t)
regulated by pM = 1 PeV c−1 and δ = 4. The diffusion coefficient is Kolmogorov-like, normalized to χ = 0.01. Left: Escaping particles from the remnant
interior, for an acceleration spectrum with slope α = 4 + 1/3, as in equation (26). Right: Escaping particles from the shock precursor, as in equation (30).

where we fixed p = 10 TeV c−1 and χ = 0.01. The main difference
with respect to the solution presented in equation (25) resides in the
initial distribution function fconf(r), which is flat in r for the case α =
4, while it increases linearly with r for α = 4 + 1/3. The difference
at later times just reflects the different initial condition.

2.6 The precursor region

An additional contribution to the CR escaping density function
comes directly from the shock precursor region (see Ptuskin &
Zirakashvili 2005; Schure & Bell 2014). We can estimate such
contribution by adopting the steady state solution of the transport
equation in the plane shock approximation, which reads as

fp(t, r, p) = f0(t, p) exp

[
− ush(t)

Dp(p)
(r − Rsh)

]
, (28)

where Dp(p) represents the diffusion coefficient within the precur-
sor. In order to simplify the description of particle escaping from
the precursor region, we approximate the exponential function in
equation (28) with a δ-function centred on the shock position r =
Rsh such that it conserves the total number of particles contained in
the precursor itself, namely

fp,conf(t, r, p) � f0(t, p)
Dp(p)

ush(t)
δ(r − Rsh) . (29)

As before, the temporal evolution of the particle density escaping
the precursor region at t > tesc(p) is described by equation (22),
provided that equation (29) is adopted as its initial condition. The
solution so obtained is found to be1 (see Appendix B)

fp,esc(t, r, p)

f0(tesc, p)
= 1√

π

Resc

Rd

Dp(p)

ush(tesc)r

[
e
−

(
R−
Rd

)2

− e
−

(
R+
Rd

)2]

×
[t − tesc(p)] . (30)

1Note that equation (30) is formally identical to the solution found by
Ohira et al. (2010) (their equation 6). Nevertheless, there is a fundamental
difference between their work and ours: Ohira et al. (2010) assume that all
particles accelerated by the SNR are located only at the shock when they
start escaping, while we account for two different contributions, the one
from the particle distribution inside the SNR (equation 25) plus the one
from the precursor. Both contributions are needed to correctly model the
gamma-ray spectrum as explained in Section 4.

This is shown in Fig. 2(b) as a function of the radial coordinate
for p = 10 TeV c−1 and assuming χ = 0.01 for the diffusion
coefficient. The initial δ-function rapidly expands, filling both the
interior and the exterior of the remnant. For the chosen value of
the parameters, at t = 2tesc(p) the majority of the particles are still
located inside the remnant also because the shock keeps moving.
We will show in the next two Sections that the presence of particles
escaped from the precursor and still located inside the shock radius
can in principle produce a peculiar feature in the gamma-ray
spectrum resulting from hadronic collisions occurring inside the
remnant.

3 THE PROTON SPECTRUM

The key result of this work is that the escape process can produce
a particle spectrum inside the remnant different from the one
accelerated at the shock. A general believe is that the escape should
produce an exponential suppression of the particle spectrum at the
highest energies. Nevertheless, if the diffusion coefficient is small
enough, the contribution from non-confined particles in the remnant
interior makes the final spectrum resembling rather a broken power-
law distribution, as we will show in this Section, where we are going
to derive the spectrum of particles located both inside and outside
the SNR.

The average proton spectrum resulting from all the particles
contained inside the remnant radius, including both confined and
non-confined ones, as well as the contribution from particles
released through time by the precursor, is computed as

J in
p (t, p) = 4π

VSNR

∫ Rsh(t)

0
[fesc(t, r, p)

+fp,esc(t, r, p) + fconf(t, r, p)
]
r2dr , (31)

where VSNR = 4πR3
sh(t)/3 is the remnant volume. The result of

this computation is shown in Fig. (3), where we have assumed
an acceleration spectrum f0(p) ∝ p−4 and a maximum momentum
scaling with time given by equation (8) with pM = 1 PeV c−1.
Different values of the slope δ and of the diffusion coefficient
normalization χ are explored, while the remaining parameters are
fixed to the values given in Table 1.

In all the plotted spectra a break is clearly visible at pbr =
pmax , 0(TSNR) that is the maximum momentum achieved in corre-
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Figure 3. Total proton spectrum inside an SNR, contributed by confined plus non-confined particles. Different curves refer to different values of the index δ,
which regulates the time-dependence of the maximum momentum at the shock (see equation 8). The acceleration spectrum is assumed ∝ p−4 and the diffusion
coefficient is normalized to χ = 0.1 (left-hand panel) and χ = 1 (right-hand panel). The remaining parameters are given in Table 1 for both panels. The particle
distributions without the contribution from shock precursor are always shown as dashed lines.

Table 2. Values for the momentum break in the spectrum of pro-
tons confined within a middle-aged SNR, in the parametrization
of equation (8). Benchmark values adopted from Table 1.

δ pbr (GeV c−1)

1 1.6 × 105

2 2.5 × 104

3 4.1 × 103

4 6.5 × 102

spondence of the shock position at the observation time (the remnant
age). Its value depends on the parameter δ which regulates how fast
the maximum momentum decreases with time, as shown in Table 2.
Below and above the break the spectrum is contributed by confined
and non-confined particles, respectively. At any given time, the
spectral trend above the momentum break strongly depends on δ and
on the energy dependence of the diffusion coefficient assumed. On
the other hand, the number of particles contributing above the break
is regulated by the normalization value of the diffusion coefficient:
by comparing Figs 3(a) and (b), where respectively χ = 0.1 and
χ = 1 were adopted, one can derive that by increasing the value
of the diffusion coefficient, the amount of non-confined particles
located inside the SNR is reduced and the spectral break rather
becomes a sharp cut-off. In addition, a flattening is visible at the
highest energies, where the contribution of particles escaping from
the precursor becomes important. In fact the spectrum of particles
contained in the precursor is harder than that of particles located
inside the SNR, being proportional to f0(p)Dp(p).

It is now worth to compare the results obtained above with the
case of a different recipe for the time dependence of the maximum
energy at the shock. We will use the calculation from Cardillo et al.
(2015) as summarized in Section 2.3 (equations 11 and 12) for the
case with α = 4, and equations (13) and (14) for the case with α =
4 + 1/3. In this scenario, by adopting the same parameter values as in
Fig. 3(a), we obtain a systematically softer spectrum above the break
with respect to what was obtained with the power-law dependence
of pmax. Concerning the energy break, in the scenario described by
Cardillo et al. (2015) we derive pbr(α = 4) � 5.9 × 103 GeV c−1

and pbr(α = 4 + 1/3) � 1.3 × 103 GeV c−1. The results are reported
in Fig. 4(a), for the two aforementioned values of the acceleration

spectrum slope α.
The spectrum of protons located outside of the SNR includes only

non-confined particles. Considering a spherical corona between the
radii R1 and R2 (with Rsh ≤ R1 < R2), the average spectrum is given
by

J out
p (t, p) = 3

R3
2 − R3

1

∫ R2

R1

[
fesc(t, r, p) + fp,esc(t, r, p)

]
r2dr .

(32)

Such a spectrum is shown in Fig. 4(b) for two positions of R1 and R2,
where a Kolmogorov-like diffusion coefficient normalized to χ =
0.1 is assumed. A low-energy threshold is visible at p = pbr, while
the peak of the distribution is regulated by the amount of particles
with propagation length equal to the radial extension of the corona,
i.e. Rd(p) ≈ R2 − R1. The contribution from the precursor is well
visible at the highest energies, where the spectrum flattens like in
the case shown in Fig. 3. The different line styles refer to different
spatial integration regions: solid lines refers to a corona between
Rsh(TSNR) and 2Rsh(TSNR), while dashed lines are spectra calculated
for particles located between 2Rsh(TSNR) and 3Rsh(TSNR). It can be
noted that, towards the outer regions of the accelerator, the low-
energy cut-off of the spectrum is moved to highest energies since
only the most energetic particles can reach the farther regions. As
a consequence, also the spectrum normalization is affected, and it
decreases moving outwards. The peculiar bump-like shape of the
primary spectrum in the external regions of the shock implies that,
in the presence of a dense target of gas, the secondary radiation
resulting from hadronic collisions will show a similar feature. It
is thus timely to investigate the expected gamma-ray emission
connected with hadronic collisions of accelerated protons both
within the shock radius and outside of it, in order to understand
whether next-generation instruments could be able to detect the
VHE gamma-ray haloes possibly surrounding SNRs as generated
by escaping particles. In fact, an SNR population study might shed
light on how diffusion operates in these sources and even provide
information on how the escape process works, by constraining the
slope of the maximum momentum with time from a statistical point
of view.
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Figure 4. Left: Total proton spectrum inside an SNR, calculated by adopting the time evolution of the maximum momentum as in Cardillo et al. (2015): solid
lines refer to acceleration slope α = 4, while dashed ones refer to α = 4 + 1/3. The diffusion coefficient is normalized with χ = 0.1 for grey lines and χ =
1 for black lines. Right: Spectrum of non-confined protons located outside of the remnant shell at TSNR = 104 yr and for different values of the slope δ as
labelled. The particle spectrum is integrated inside a spherical corona extending either between Rsh(TSNR) and 2Rsh(TSNR) (solid lines) or between 2Rsh(TSNR)
and 3Rsh(TSNR) (dashed lines). The diffusion coefficient is normalized to χ = 0.1. The remaining parameters are given in Table 1 for both panels.

4 G A M M A R AY S F RO M H A D RO N I C
C O L L I S I O N S

In this Section, we will evaluate the gamma-ray flux resulting from
hadronic collisions occurring both inside and outside a middle-
aged SNR, by calculating (i) the volume integrated emission in
the remnant itself, (ii) the volume integrated emission in different
annular regions immediately outside the shock radius, and (iii) the
projected radial profile, which is an extremely relevant information
when dealing with extended objects. Note that the shock of a middle-
aged remnant is expected to expand outside of the wind termination
shock, but still inside the cavity of hot and rarified medium blown by
the stellar progenitor (Castor, McCray & Weaver 1975; Dwarkadas
2005). In such a region, the medium has a homogeneous density, as
we will consider in the following.

4.1 Volume integrated emission

We have shown in Section 3 that a characteristic energy break
appears in the spectrum of protons contained in the SNR interior
right at the maximum momentum that particles achieve through
the shock acceleration process at the SNR age. Analogously, the
spectrum of secondaries resulting from proton collisions with the
target gas (the so-called pp interaction) will reflect this feature. For
a remnant expanding into a homogeneous medium with number
density n0 = ρ0/mp, the density profile of the plasma nin, that is
expanding with the SNR evolving during the ST phase, can be well
approximated by the following polynomial expression

nin(t, r) = n0σ
[
a1X

α1 + a2X
α2 + a3X

α3
]

, (33)

where X = r/Rsh(t). The parameters in equation (33) have been
derived by fitting the radial density profile of the SNR interior as
presented in Sedov (1959), thus obtaining the following values:
a1 = 0.353, a2 = 0.204, a3 = 0.443, α1 = 4.536, α2 = 24.18, and
α3 = 12.29.

Convolving the differential energy spectrum of protons residing
in the remnant interior with the density profile of equation (33),
and considering the differential cross-section for pp collisions,
one derives the differential energy flux of secondary gamma rays

expected at different times. We parametrized the differential cross-
section following Kafexhiu et al. (2014), adopting the parameter
values they obtained from SYBILL 2.1. The resulting gamma-ray
flux is shown in Fig. 5, where an SNR located at a distance of d =
1 kpc is considered. The two panels show the integrated emission
from the SNR interior (Fig. 5a) and from a spherical corona around
it (Fig. 5b). The same parameter values as in Fig. 3(a) have been
used. The gamma-ray spectrum reflects the behaviour of the proton
distribution, namely the emission from the remnant interior shows
a break at an energy ∼0.1pbrc that depends on the value of δ, in
that also the break in the proton spectrum depends on it, as shown
in Table 2. Below the break the flux is dominated by confined
particles, while above it is due only to the non-confined particles.
The relative intensity of the two contributions, and hence the shape
of the transition, is primarily determined by the diffusion coefficient
Dout as can be seen in Fig. 6: the smaller the diffusion coefficient,
the larger the confinement time, implying that a larger amount of
particles will be still residing within the remnant at a fixed remnant
age. On the other hand, Dout does not affect the emission from the
confined particles, as expected from equation (19).

It is worth to discuss here few aspects of the model. In the
presence of massive gas clouds embedded in the shock environment,
the CR propagation might result affected (Celli et al. 2019) and
consequently a simple rescaling of the gamma-ray emission with the
gas density does not apply. On the other hand, the main conclusion
derived here, namely the presence of a break in the gamma-ray
spectrum due to escaping CR, is not affected by a possible time
dependence of CR acceleration efficiency (provided the dependence
is smooth), though quantitative results may change. In particular, the
slope of the gamma-ray spectrum beyond the break is expected to
become harder (softer) if ξCR is a decreasing (increasing) function
of time.

It is interesting to note that HE observations point towards the
presence of a break in the spectrum of middle-aged SNRs, like
W 44 and IC 443 (Ackermann et al. 2013), located respectively at
22 ± 8 and 279 ± 34 GeV. To this respect, the recent results by
Zeng, Xin & Liu (2019) are of special interest: using a spectral
fitting procedure, the authors inferred the presence of a break in the
gamma-ray spectrum of the majority of SNRs in a sample of ∼30

MNRAS 490, 4317–4333 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/3/4317/5588615 by guest on 28 June 2023



4326 S. Celli et al.

10-11

10-10

10-9

10-8

10-7

10-6

10-1 100 101 102 103 104 105 106

E
2 γ 
φ(

E
γ)

 (
G

eV
 c

m
-2

 s
-1

)

Eγ (GeV)

δ = 1
δ = 2

10-11

10-10

10-9

10-8

10-7

10-6

10-1 100 101 102 103 104 105 106

E
2 γ 
φ(

E
γ)

 (
G

eV
 c

m
-2

 s
-1

)

Eγ (GeV)

δ = 3
δ = 4

(a)

10-11

10-10

10-9

10-8

10-7

10-6

10-1 100 101 102 103 104 105 106

E
2 γ 
φ(

E
γ)

 (
G

eV
 c

m
-2

 s
-1

)

Eγ (GeV)

δ = 1
δ = 2

10-11

10-10

10-9

10-8

10-7

10-6

10-1 100 101 102 103 104 105 106

E
2 γ 
φ(

E
γ)

 (
G

eV
 c

m
-2

 s
-1

)

Eγ (GeV)

δ = 3
δ = 4

(b)

Figure 5. Gamma-ray flux from hadronic collisions in a middle-aged remnant SNR located at a distance of d = 1 kpc. The acceleration spectrum has been
fixed with slope α = 4 and the diffusion coefficient normalized to χ = 0.1. The maximum momentum temporal dependence has been parametrized according
to equation (8), for different values of δ, as labelled. The remaining parameters are given in Table 1 for both panels. Left: Emission by confined (dashed lines)
and non-confined particles (dotted lines) located inside the SNR, where solid lines refer to the sum of the two contributions. Right: Emission from escaped
particles located in an annulus extending from RSNR to 2RSNR outside of the SNR.
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Figure 6. Gamma-ray flux from hadronic collisions in a middle-aged SNR
located at a distance of d = 1 kpc. The acceleration spectrum has been fixed
with slope α = 4, while the maximum momentum temporal dependence
has been parametrized according to equation (8), with δ = 2 (green lines)
and δ = 3 (pink lines). Different normalizations of the diffusion coefficient
are explored, as labelled. The remaining parameters are given in Table 1 for
both panels.

objects. The energy break is observed to decrease with the remnant
age, ranging from ∼10 TeV for younger SNRs (age of ∼103 yr)
down to few GeV at ages of few 104 yr. This is compatible with
our assumption of a maximum energy which decreases in time and
assuming a slope δ roughly in between 2 and 3, which is needed to
reproduce the spectral break observed in the gamma-ray spectrum
at few tens of GeV for TSNR � 104 yr. Note that a more quantitative
constraint on the value of δ requires a detailed analysis of each
individual SNRs in the sample, accounting for a correct evaluation
of their evolutionary stage, the density and spatial distribution of
the circumstellar medium, the possible presence of IC emission,
as well as the presence of PWN associated with the remnants. In a
forthcoming paper, we will apply our model to few selected middle-
aged SNRs, in order to derive constraints on the time dependence
of particle escape as well as on the diffusion coefficient in the
circumstellar region.

The gamma-ray spectrum emitted from a coronal region outside
the SNR between Rsh and 2Rsh is shown in Fig. 5(b), corresponding
to the proton spectrum shown in Fig. 4(b). The photon emission

peaks at Epeak � 0.1p̂c, where p̂ is the momentum of particles
that at t = TSNR have reached the external boundary of the
corona and, hence, have completely filled this region. Epeak ranges
from ∼100 GeV up to tens of TeV for the chosen values of the
parameters.

It is worth stressing that a distinctive signature of the escape
scenario, as presented in this work, is that the break energy of the
spectrum from the SNR interior is tightly connected to the peak
energy of the spectrum from the outside regions. Next-generation
gamma-ray instruments, as CTA, would possibly investigate such
connection in middle-aged SNRs. None the less, a correct evaluation
of the instrument performances requires to account for the spatial
extent of the region under investigation: e.g. a remnant with age
TSNR = 104 yr at a distance d = 1 kpc would cover an angular
area of radius ∼0.8 deg, resulting into an even more extended
halo of escaping particles. Because the large amount of background
coincident with such large angular search window tends to degrade
the instrument sensitivity level (Ambrogi, Celli & Aharonian 2018),
it is likely that only bright Galactic emitters will show gamma-ray
fluxes large enough to explore both the contribution from inside the
shock radius and that from the closer outer regions.

4.2 The gamma-ray radial profile

The volume-integrated emission is not always the best quantity to
compare with the observations if the object under exam is spatially
extended. In this case, precious information can be derived from
the remnant morphology, especially from the radial profile of the
emissivity. In order to compare the observed radial profiles with
the model predictions, one has to project the radial emission along
the line of sight l. Under the assumption of spherical symmetry, the
spatial dependence of the gamma-ray emissivity at energy Eγ can
be summarized uniquely through its radial dependence, S(Eγ , t, r).
As a consequence, the projected emission expected at a distance ρ

from the remnant centre, namely the surface brightness Sp(Eγ , t, ρ),
can simply computed by integrating the radial emission along the
line of sight, as

Sp(Eγ , t, ρ) = 2
∫ √

R2
max−ρ2

0
S(Eγ , t, r =

√
ρ2 + l2)dl, (34)
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Figure 7. Radial profile of the (a) 1 TeV and (b) 10 TeV gamma-ray surface brightness projected along the line of sight according to equation (34) with
Rmax = 2Rsh(t). Hadronic collisions are considered in a middle-aged SNR located at a distance of d = 1 kpc. The acceleration spectrum has been fixed with
slope α = 4, while the diffusion coefficient is normalized to χ = 0.1. The maximum momentum temporal dependence has been parametrized according to
equation (8), with slope δ as labelled. The remaining parameters are given in Table 1 for both panels. The vertical black line represents the shock position.
Arbitrary units are adopted for the surface brightness.

where Rmax defines the radial extension of the region considered
in the projection. Fig. 7 provides an example of the expected
gamma-ray surface brightness profile arising from pp interactions at
different photon energies, namely at Eγ = 1 TeV and Eγ = 10 TeV,
and for different slopes δ. Here, the instrumental performances are
also accounted for, in that a Gaussian smearing of the angular
resolution is applied to the profile model of equation (34). A
point spread function with values of σ (Eγ = 1 TeV) = 0.051◦ and
σ (Eγ = 10 TeV) = 0.037◦ is adopted in the following, as these
represent the performances that next generation of imaging atmo-
spheric Cherenkov telescopes, as CTA,2 are expected to achieve. A
drop of the surface brightness is visible beyond the shock position,
as expected in the case of shell-like SNRs. However, the jump
strongly depends on the value of δ, in that it appears that the larger
is δ the smaller is the jump: this is connected with the fact that a faster
decrease in the maximum momentum temporal dependence implies
that even low-energy particles have escaped the shock and populate
the region beyond the remnant shell. Moreover, the drop appears to
shrink with increasing photon energy, as parent particles are able
to reach larger distances. As the emission profile drop ranges from
about one to two orders of magnitude, it appears likely that the next-
generation instruments will achieve the sensitivity level necessary
for detecting such an emission from outside of the shell of bright
emitters.

5 TH E C R S P E C T RU M I N J E C T E D I N TO T H E
G A L A X Y

In the last years, the escape problem has received much attention by
several authors (Caprioli, Amato & Blasi 2010; Ohira et al. 2010;
Drury 2011; Malkov et al. 2013; Schure & Bell 2014; Cardillo et al.
2015). However, because this process depends on several subtleties
of the acceleration process, there is not yet a consensus about what
is the most realistic approach to model it. Ohira et al. (2010) found
that the spectrum of runaway particles during the Sedov stage
can be both softer and harder than that at the acceleration site,
depending on the assumptions for the injection process as well

2https://www.cta-observatory.org/science/cta-performance/

as the spectrum of accelerated particles. In particular, under the
condition that the CR acceleration efficiency is constant in time,
they found that a particle spectrum that is accelerated at the source
flatter than E−2 will result in an E−2 escape spectrum, whereas
a steeper acceleration spectrum will result in an escape spectrum
with equal steepening. This result was also obtained by Schure &
Bell (2014), who clearly formulated it by using a more physically
motivated framework which links the escaping process to the level of
magnetic field amplification, under the same assumption that a fixed
fraction of energy is transferred to CRs. Later Cardillo et al. (2015)
confirmed the result, and discussed its implications in the context
of maximum energy achievable in both Type Ia and Type II SNe.
A different assumption was considered by Brose et al. (2019), who
used a time-dependent code to compute the accelerated spectrum
assuming a constant fraction of particle injected into the accelerator.
In such a case they obtained a spectrum of escaping particles steeper
than p−4 (in the hypothesis that the diffusion coefficient at the shock
is self-generated). In this Section, we will calculate the total particle
spectrum released by a single SNR evolving during the ST phase,
according to the modelling developed in Section 2.

Since we assumed that for t > tesc particles are completely
decoupled from the SNR evolution, the total density of CR with
momentum p injected into the Galaxy by an individual SNR is
given by the integral of all particles contained inside the radius of
the SNR at the time of escape, i.e.

finj(p) = 4π

∫ Resc(p)

0
r2fconf (tesc(p), r, p) dr . (35)

In this expression, we omitted the contribution due to particles
located in the precursor ahead of the shock. In fact, this contribution
can be neglected if one assumes that the diffusion coefficient inside
the precursor is much smaller than Resc(p)ush(tesc) at all times t <

tesc(p).
The confined density function fconf was given in equation (19),

where the spatial dependence was hidden in t
′
(t, r), given by

equation (18). Using also equation (2), the following relation is
derived

t ′(tesc, r)

tesc
=

[
r

Resc(p)

]5σ/2

(36)
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so that the confined function at the escape time can be expressed
as

fconf(tesc, r, p) = f0(tesc, p) Rα(σ−1)−3
esc

	(p)

	(pmax,0(t ′))
. (37)

Introducing this expression into equation (35), one obtains

finj(p) = 4πf0(tesc(p), p)R3
esc(p)

∫ 1

0
yα(σ−1)−1 	(t)

	(t ′)
dy , (38)

where we recall that 	(t) is a shortcut for 	(pmax , 0(t)). As explained
in Section 2.2, the acceleration spectrum produced at every time
is assumed to scale as a fixed fraction of the ram pressure (see
equation 6), namely f0(p) ∝ u2

esc(p)p−α/	(p), where uesc(p) =
ush(tesc(p)). Therefore

finj(p) ∝ u2
esc(p)R3

esc(p)

	(p)
p−αI(p) , (39)

I(p) being the integral in equation (38). Under the assumption that
tesc(p) ∝ p−1/δ (see equation ) and that the remnant is undergoing
the ST phase, then Resc(p) ∝ p−2/5δ and uesc(p) ∝ p3/5δ . Hence,
the momentum dependence enclosed in the term u2

esc(p) perfectly
balances that of R3

esc(p), and the spectrum injected in the Galaxy is
simply given by

finj(p) ∝ I(p)

	(p)
p−α . (40)

Neglecting the dependence on particle momentum provided by
I(p)/	(p), one would derive that the spectrum injected in the
Galaxy coincides with the acceleration spectrum. But, the inclusion
of these additional terms makes the solution more involved. The
integral I(p) reduces to a pure number in both the relativistic
and the non-relativistic limit, but it has a tiny dependence on p
for transrelativistic energies. 	(p), on the contrary, reads in the
relativistic limit (p � mpc) as ∝ p4−α

min for α > 4 and ∝ p4 − α for
α < 4. In the non-relativistic limit, however, 	(p) ∝ p5−α

min α > 5
and ∝ p5 − α for α < 5, respectively. Given these limits, we derive
that the injected spectrum is, for p � mpc,

finj(p) ∝
{

p−α α > 4
p−4 α < 4 ,

(41)

while for particles with p � mpc it rather holds

finj(p) ∝
{

p−α α > 5
p−5 α < 5 .

(42)

In summary, for particles with p � mpc, we find a result analogous
to what already found by Ohira et al. (2010), Schure & Bell (2014),
and Cardillo et al. (2015), namely: (i) if the acceleration spectrum
is steeper than p−4, the spectrum injected in the Galaxy will show
the same steepness, thus coinciding with the acceleration spectrum;
(ii) if the acceleration spectrum is flatter than p−4, the spectrum
injected in the Galaxy will be a p−4 power law, regardless of the
acceleration spectrum. This behaviour is shown in Fig. 8 where
we compare p−α/	(p) versus p−αI(p)/	(p). The inclusion of the
function I(p) does not modify the asymptotic behaviour of finj,
as it only shifts the transition towards smaller energies. Note that,
similarly to the implications derived for the gamma-ray spectrum
of an individual SNR, the time dependence of ξCR might modify
the final spectrum released in the Galaxy: if ξCR decrease (increase)
with time, then the injected spectrum results harder (softer).

At this point it is worth stressing that the result obtained in equa-
tion (41) for relativistic energies coincides with past calculations
by Schure & Bell (2013), Schure & Bell (2014), and Cardillo et al.

Figure 8. Spectrum injected into the Galaxy for three different cases of
acceleration spectrum f0(p) ∝ p−α with α = 4.3, 4.0, and 3.5 (solid lines
from top to bottom). The corresponding dashed lines show the approximate
solution given by p−α /	(p) for the same values of α. The maximum
momentum temporal dependence has been parametrized according to
equation (8), with slope δ = 3.

(2015), obtained under the same assumption that a fixed fraction of
the shock energy is transferred to CRs. However, the definition of
escaping particles adopted here is different from what has been
assumed in the cited works. In fact, in Schure & Bell (2013),
Schure & Bell (2014), and Cardillo et al. (2015), the escaping
spectrum at time t is modelled as a δ-function in energy which
carries a fixed fraction of the kinetic energy that the shock has at
the same moment t, namely Eesc ∝ ρ0u

2
sh(t). On the contrary, in

the model presented here, the escaping flux at each fixed time t
includes particles that have been accelerated in the past when the
shock speed was faster than ush(t), and have also suffered adiabatic
losses. In other words, the energy carried by the particles escaping
at time t is not a fixed fraction of ρ0u

2
sh(t). The definition used by

Schure & Bell (2013), Schure & Bell (2014), and Cardillo et al.
(2015) is probably more suitable to describe the escape process
during the initial phase of the remnant life. None the less, the
results obtained in the relativistic regime are consistent with each
other.

The result for non-relativistic energies, as expressed in equa-
tion (42), predicts a spectral steepening for p � mpc if α < 5. This
result is at odd with the observed CR spectrum (Cummings et al.
2016), where a hardening is rather observed. The disagreement
is not surprising, in that two strong assumptions were set, which
likely are not realized in reality: (i) the shock keeps accelerating
particles always maintaining the same efficiency and (ii) the remnant
evolution proceeds all the way through the ST stage.

A consistent description of the particle spectrum injected in the
Galaxy requires to account for the moment when the shock stops
accelerating particles. Such a condition could be fulfilled when the
SNR transits towards the snowplough phase or even before it, e.g. if
the shock impacts on a neutral cloud where the ion-neutral friction
destroys the magnetic turbulence, making it impossible for particles
to keep diffusing around the shock.

In any case, the end of the acceleration could produce some kind
of signature in the injected spectrum. We recall that the observed
CR spectrum is a straight power law in momentum down to ∼ few
GeV, where a hardening is observed, but it is usually attributed
to Galactic propagation effects, rather than processes occurring at
the accelerator. Another interesting feature has been identified in
the Voyager 1 data (Cummings et al. 2016), where a hardening
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Figure 9. Spectrum injected into the Galaxy for δ = 3 and α = 4.3, 4.0,
and 3.5 (from top to bottom) with an increasing maximum energy during the
free expansion phase. Dashed lines show the result when the acceleration is
stopped at t = 50tSed and particles still inside the SNR are instantaneously
released.

of the spectrum is observed at E � 200 MeV. Such a hardening
cannot be explained only through ionization losses in the ISM,
but it is rather the slope of the injection spectrum that has to be
range from p−4.3 to ∼p−3.75, respectively, for protons and Helium
(with heavier elements showing a harder trend) (Tatischeff &
Gabici 2018).

Given the complex phenomenology of observations, it is worth
investigating more in details the effect of the end of the acceleration
mechanism on the particle spectrum injected in the Galaxy. To
this purpose, we will calculate the spectrum produced by an SNR
assuming that the acceleration suddenly stops at the beginning of the
snowplow phase, which is reached at a time tsp when the temperature
of the shocked gas drops below 106 K. For the parameter values
assumed in Table 1, this condition is realized when ush � 200 km s−1,
corresponding to an age of tsp = 47 kyr. The resulting finj is shown
in Fig. 9 and compared with the case of endless acceleration (solid
lines). Three possible values of α are assumed, while δ is fixed
to 3. When the acceleration stops, all those particles still located
inside the SNR (namely with p < pmax , 0(tsp) � 40 GeV c−1) are
instantaneously released into the ISM without suffering further
adiabatic losses. As a consequence, the spectrum below 40 GeV c−1

is ∝ p−α and, interestingly, if α < 4 a break appears right at this
energy, while for α > 4 the final spectrum does not show any feature.
The case α = 4 is somewhat border line, because the slope at high
energies is slightly steeper than 4 (i.e. ∼4.1) and a small spectral
break is still visible.

In summary, the spectrum injected into the Galaxy is a featureless
power law under two conditions: (i) the acceleration spectrum has
to be steeper than p−4 and (ii) the acceleration should stop when
the maximum energy is still in the relativistic domain. The latter
condition also translates into an upper bound for δ which, for the
parameter values adopted here, has to be � 4.

A final comment concerns the cut-off present in the spectra
shown in Fig. 9. Such a cut-off is not due to the shock acceleration
process, which we assumed to produce a straight power law up to
its maximum momentum, but is rather due to the increase of the
maximum energy for times smaller than tSed (see equation 8). In
Fig. 8, on the contrary, the cut-off is absent because we assumed
that the relation pmax , 0 ∝ t−δ holds even for t ≤ tSed to better show
the asymptotical behaviour of the spectra.

6 D I SCUSSI ON AND C ONCLUSI ONS

The deviation observed in the HE and VHE gamma-ray spectra
of SNRs, particularly in middle-aged ones, with respect to the
simple spectral shape predicted by the DSA theory, might possibly
be connected to the particle escape from the shock region. The
escape process of particles accelerated at SNR shocks remains one
of the less understood pieces of the shock acceleration theory. As a
consequence, this aspect is often neglected, though it represents a
fundamental part of the process, needed to explain the CR spectrum
observed at Earth. In this paper, we presented a phenomenological
model for the description of particle escape from an SNR shock
aimed at evaluating the effects produced by the escape process
on the spectrum of particles contained in the remnant and those
located immediately outside of the shock region. In particular, when
particles are not confined any more by the shock, they start to freely
diffuse in the CSM, eventually escaping the accelerator. Within
the assumption that the particle diffusion in the region outside of
the remnants is suppressed with respect to the average Galactic
diffusion, the escape process is not instantaneous and a relevant
fraction of HE particles can still be located inside the SNR or close to
it even once they are not confined anymore by the shock turbulence,
producing diffuse gamma-ray haloes around the remnant. Note that
a one-dimensional anisotropic diffusion model could mimic the
effect of a suppression of the diffusion coefficient (see e.g. Nava &
Gabici 2013) and perhaps the spectral break discussed in this paper
could result even without requiring a strong suppression of the
external diffusion.

The escape process has at least two important consequences on
the gamma-ray emission: (i) the spectrum from the SNR interior
observed at a fixed time presents a steepening above the maximum
energy of particles accelerated at that time and (ii) the spectrum
emitted from the halo around the remnant shows a low-energy cut-
off at the energy corresponding to that of the escaping particles
at the remnant age. While the second aspect could be tested with
future gamma-ray telescopes (for instance CTA), the former could
have already been detected.

In fact, several SNRs show a spectral break in the gamma-
ray spectrum. This founding has been summarized in a recent
paper by Zeng et al. (2019), who showed that the majority of
SNRs in a sample of ∼30 objects presents evidence for a spectral
break. Interestingly, the energy break decreases with increasing age,
ranging from ∼10 TeV for younger SNRs (age of ∼103 yr) down to
few GeV at ages of few 104 yr. This result is in agreement with our
interpretation of the energy break as due to the escape process where
the maximum energy decreases like Emax ∝ t−δ with δ between 2
and 3. Note, however, that the result found by Zeng et al. (2019)
should be taken as indicative, in that in order to derive a more
reliable constraint a careful analysis object-by-object is needed to
account for the correct evolutionary stage as well as a possible role
of leptonic contribution. To this extent, in a forthcoming paper we
will apply our model to some selected cases of middle-aged SNRs,
in order to derive constraints on both the particle escape process and
the diffusion coefficient in the circumstellar region of each specific
remnant.

Finally, the total CR spectrum injected into the Galaxy by an
individual SNR, evolving in the ST phase, has been computed. For
an acceleration spectrum ∝ p−α , under the assumption that a fixed
fraction of the shock kinetic energy is converted into accelerated
particles at every time, the spectrum injected into the Galaxy by a
single SNR turns out to be: (i) at p � mpc, finj(p) ∝ p−4 if α <

4 or finj(p) ∝ p−α if α > 4, and (ii) at p � mpc, finj(p) ∝ p−5 if
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α < 5 and finj(p) ∝ p−α if α > 5. This result is independent on
the temporal behaviour of the maximum energy at the shock, but
it relies on the assumption that the acceleration never stops and
that the SNR always evolves in the ST phase. Furthermore, we also
showed that the final injected spectrum can be a straight power law
in momentum if the acceleration stops before the remnant enters the
snowplough phase and if the slope is α > 4. If these two conditions
are not fulfilled, in general a spectral change at lower energy is
expected.
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APPENDI X A : THEORETI CAL ESTI MATE O F δ

The temporal dependence of the maximum momentum as described
in equation (8) can be estimated from a simple theoretical argument
which is often used to estimate the maximum energy in the test-
particle DSA, namely by equating the acceleration time with the
age of the remnant TSNR = tacc(p). Using tacc(p) = D(p)/u2

sh for
the acceleration time and writing the diffusion coefficient in terms
of the magnetic turbulence, D = DBF−1, where DB = pc/(3B0) is
the Bohm diffusion coefficient (B0 being the regular background
magnetic field) and F is the turbulent magnetic energy density per
unit logarithmic bandwidth of waves (normalized to the background
magnetic energy density), we can write

pmax,0(t) ∝ F (t) u2
sh(t) t . (A1)

If there is no magnetic field amplification, the diffusion is deter-
mined by the pre-existing magnetic turbulence which is stationary.
As a consequence the time dependence is only determined by the
shock speed which evolves ∝ t−3/5 in the ST phase, resulting
in pmax , 0(t) ∝ t−1/5. Such a result represents a minimum value
for δ, that applies when neither amplification nor damping of
magnetic turbulence are taking place. Conversely, if the turbulence
is amplified, a steeper time dependence is expected. In the case
of resonant streaming instability, for instance, F ∝ PCR ∝ u2

sh,
hence pmax , 0(t) ∝ t−7/5. A similar result holds even in the case
of non-resonant instability, which, according to Bell et al. (2013),
gives F ∝ u2

sh. Note, however, that in previous works (Bell 2004)
it is argued that tension in the field lines limits amplification
when ∇ × B ∼ μ0 jCR, which results in a saturated turbulence with
F ∝ u3

sh, leading to δ = 2 from equation (A1). In addition, if any
magnetic damping mechanism is effective in the shock region, like
MHD cascade or ion-neutral friction, an even larger value of δ is
foreseen.
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APPEN D IX B: A NA LY TICAL SOLUTION O F
DIFFUSIVE TR ANSPORT EQUATION
W I T H O U T A DV E C T I O N

If the diffusion coefficient is constant in space, equation (22) can
be reduced to a one-dimensional Cartesian problem for the function
g = r fesc, namely

∂g(t, r, p)

∂t
= D(p)

∂2g(t, r, p)

∂r2
, (B1)

with the boundary condition g(t, r = 0, p) = 0 and the initial con-
dition g(t = 0, r, p) = r fconf(tesc(p), r, p) ≡ rfconf,0(r, p). In the
following we drop the dependence on p. Now we can use the Laplace
transform, G(s, r) = ∫ ∞

0 e−stg(t, r)dt , to rewrite equation (B1) as
an ordinary second-order differential equation, i.e.

∂2G(s, r)

∂r2
= s

D
G(s, r) − rfconf,0(r)

D
, (B2)

with the boundary conditions G(s, 0) = G(s,∞) = 0. Because of
the boundary conditions, the solution of the associate homogeneous
equation is identically zero while the particular solution can be
found using standard techniques, by solving

G(s, r) = e−ωr

∫ r

0
dr ′e2ωr ′

∫ ∞

r ′
dr ′′ r

′′fconf,0(r ′′)
D

e−ωr ′′
, (B3)

where ω = √
s/D. The radial dependence of the confined density

function is provided in equation (19), as it is enclosed in t
′
(t,

r). Three different situations have been explored in Section 2.5,
namely

(i) α = 4, σ = 4⇒fconf, 0(r) = const (see equation 19):

G(s, r) = fconf,0

s

[
Me(M−r)ω − 1 + ωR

2ω

(
e(2M−R−r)ω − e−(R+r)ω

)]
,

(B4)

where R ≡ Resc(p) and M = min (r, R). Performing the inverse
Laplace transform of the latter expression, we finally get

fesc(t, r) = g(t, r) r−1

= fconf,0

r

{
M

(
Erfc

[
r − M

Rd

]
− 1

)

+ Rd

2
√

π

(
e
−

(
r+R
Rd

)2

− e
−

(
r+R−2M

Rd

)2)

+ (r + R)

2
Erf

[
r + R

Rd

]
− (r + R − 2M)

2

× Erf

[
r + R − 2M

Rd

]
+ R

2
Erfc

[
r + R

Rd

]

− R

2
Erfc

[
r + R − 2M

Rd

]}
. (B5)

With a little algebra, the above solution can be simplified giving the
expression in equation (25), valid for both r < R and r > R.

(ii) α = 4 + 1/3, σ = 4⇒fconf, 0(r) ∝ r (see equation 19):

G(s, r)

k(tesc)
= 1

ω3D
e−ωr

[
− 2

ω
+ eωM

(
2

ω
+ ωM2

)

+ e2ωM

(
− 1

ω
− ω

2
R2 − R

)]
, (B6)

and the inverse Laplace transform yields

rfesc(t, r)

k(tesc)
= 2M2 − 2Mr + Rd√

π

⎡
⎣re

− r2

R2
d + (M − r)e

− (M−r)2

R2
d

⎤
⎦

+ Rd√
π

(r − 2M + R)e
− (r−2M+R)2

R2
d

[
1

2
− R

|r − 2M + R|
]

+ (r2 + R2
d

2
)Erf

[
r

Rd

]
+ Rd

2
√

π
(R − r)e

− (r+R)2

R2
d

+ (2M2 − 2Mr + r2 + R2
d

2
)Erf

[
M − r

Rd

]

+ 1

2
(r2 + R2

d

2
)Erfc

[
r + R

Rd

]
− 1

2(r − 2M + R)

×
(

4M2 + r2 + 2rR + R2 − 4M(r + R) + R2
d

2

)

×
(

|2M − r − R| − (2M − r − R)Erf

[
2M − r − R

Rd

])

+RErfc

[ |r − 2M + R|
Rd

](
1 − R

2

1

|r − 2M + R|
)

× (r − 2M + R), (B7)

which can be also formulated as in equation (26).
(iii) for the precursor fconf, 0(r) ∝ δ(r − Rsh) (see equation 29):

G(s, r) = f0(p, tesc)
Dp(p)

D(p)

R

ush(tesc)

1

2ω
e−ω(r+R)(e2ωM − 1) , (B8)

and finally its inverse Laplace transform reads as

fesc(t, r) = f0(p, tesc)√
π

R

Rd

Dp(p)

ush(tesc)r
(B9)

×
[
exp−( r+R−2M

Rd
)2 − exp−( r+R

Rd
)2
]

,

which is identical to the expression reported in equation (30).

APPENDI X C : SELF-GENERATED
T U R BU L E N C E

At this point it is worth discussing in more details the value of the
diffusion coefficient expected to be operating outside of the sources.
The assumption that the diffusion coefficient in the region around an
SNR should be the same as the average Galactic one, as derived from
direct measurement of secondary/primary CR ratios (Maurin et al.
2014), does not have a strong justification. Indeed, the latter one
mainly measures the diffusion as it occurs in the Galactic magnetic
halo whose transport properties can be remarkably different from
the regions around SNRs. On the other hand, it is easy to imagine
mechanisms able to enhance the magnetic turbulence around an
SNR, especially when it originates from a CC explosion. First of all,
the circumstellar environment can be modified by the pressurized
bubble produced by the progenitor wind. In addition, many CC-
SNRs explode in OB associations, where frequent SN explosions,
as well as winds from massive stars, can easily enhance the local
magnetic turbulence in a region of tens of parsecs, resulting in a
suppressed diffusion coefficient.

Beyond those mechanisms, also instabilities produced by run-
away CRs can amplify the magnetic turbulence, suppressing the
diffusion coefficient by orders of magnitudes. In particular, the
role of resonant instability produced by escaping particles has
been studied by several authors (Ptuskin, Zirakashvili & Plesser
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Table C1. Escape times for particles of different momentum from an SNR
evolving according to the benchmark values in Table 1. The parametrization
of escape time adopted here follows equation (9), with δ = 3.

p (GeV c−1) tesc (yr)

10 7.4 × 104

102 3.4 × 104

103 1.6 × 104

104 7.4 × 103

105 3.4 × 103

2008; Yan, Lazarian & Schlickeiser 2012; Malkov et al. 2013;
Evoli, Linden & Morlino 2018; Nava et al. 2019), showing that
a suppression by one to two orders of magnitude is possibly
achieved in the energy range below ∼1 TeV, inside a region up
to tens of parsecs from the SNR. Nevertheless, in the case that
a large fraction of neutral Hydrogen is populating the CSM, the
amplification effect can be reduced by the ion-neutral friction
(Kulsrud & Pearce 1969) resulting in a much smaller level of
turbulence as shown by Nava et al. (2016) and D’Angelo et al.
(2018). A close comparison between those results and our findings
is not obvious, mainly because, their recipes for particle escape is
different from ours. Moreover, our model is spherically symmetric,
while they both assume a diffusion along a one-dimensional flux
tube. Nevertheless, we can use the spatial CR gradient obtained with
a given assumption on Dout to estimate a posteriori the level of self-
generated turbulence due to streaming instability. Such a procedure
is very similar to the one already used by Yan et al. (2012). Even if
such a calculation is not a self-consistent one, it can show whether or
not the streaming instability can be responsible for the reduction of
Dout. It is worth stressing that one should account for the duration
of the wave amplification process: on a general ground, one can
expect that a suppression of the diffusion coefficient with respect to
the average Galactic value is achieved within few escape times, but
later on, when the CR density diminishes, also the amplification of
the magnetic turbulence fades. In order to facilitate the comparison
among the remnant age and the escape time of particles at different
energy, we report in Table C1 the expected escape time, com-

puted according to equation (9) and benchmark values reported in
Table 1.

In order to estimate the level of self-generated turbulence, we
need to compare the amplification rate by resonant streaming
instability with the damping rate of Alfvén waves. The ampli-
fication rate of waves with wavenumber k in resonance with
particles of Larmor radius rL as due to streaming instability is
(Skilling 1971)

�CR(k) = 16π2

3

vA

B2
0F (k)

[
p4v(p)

∂f

∂r

]
p=pres

, (C1)

where B0 is the intensity of the background magnetic field and
vA = B0/

√
4πnimi is the Alfvén speed (mi and ni being, respec-

tively, the mass and density of the ions in the CSM). Here, F (k)
is the normalized energy density of magnetic turbulence per unit
logarithmic wavenumber k, calculated at the resonant wavenumber
kres = 1/rL(pres). An useful way to write F (k) is by using the Bohm
diffusion coefficient, F (k) = DB/D̂, where D̂ is the self-generated
diffusion coefficient.

Concerning the damping mechanisms in a completely ionized
plasma, several processes might affect the propagation of magnetic
waves, as turbulent cascading, wave–particle interactions (e.g. non-
linear Landau damping; Kulsrud 1978) and wave–wave interactions
(e.g. the interaction among self-generated waves and background
turbulent perturbations; Farmer & Goldreich 2004; Lazarian 2016).
For the sake of simplicity, we will limit the following analysis to
the cascade damping, namely the Kolmogorov-type energy cascade
towards large wavenumbers. As a consequence, the resulting tur-
bulence should be considered as a rough estimate of that actually
developing in the plasma. Within the cascade process, the damping
of Alfv´enic waves occurs non-linearly (NLD) at a rate (Ptuskin &
Zirakashvili 2003)

�NLD(k) = (2ck)−3/2 kvA

√
F (k) , (C2)

where ck = 3.6 is called Kolmogorov constant. Now, by equating
�CR with �NLD one gets

F (k) = DB

D̂
= 2ck

[
16

3

π2

B2
0

(
p4v(p)

∂fesc

∂r

)
p=pres

rL

]2/3

. (C3)

Figure C1. Left: spatial dependence of self-generated diffusion coefficient D̂(p, r) divided by Dout(p) for χ = 0.1 (thin lines) and χ = 0.01 (thick lines),
calculated by setting an acceleration spectrum with slope α = 4 for the benchmark parameter values reported in Table 1. The parametrization of escape time
adopted here follows equation (9), with δ = 3. The three sets of lines correspond to three different particle energies: 5 (solid), 10 (dashed), and 100 TeV
(dot–dashed). Right: corresponding excitation time for the streaming instability in unit of SNR age (104 yr) and for the same energy values as the left-hand
panel.
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Assuming the same benchmark values for the parameters as in
Table 1 with a background magnetic field B0 � 3μG and α = 4,
we calculated the ratio Dout/D̂ for χ = 0.1 and χ = 0.01. Results
are shown in the left-hand panel of Fig. C1. As visible, in both cases,
the level of self-generated turbulence is such that D̂ � Dout for pc �
100 TeV in a region of few times the size of the SNR. On the other
hand, the time-scale to excite the instability, reported in the right-
hand panel of the same Figure, is smaller, or comparable, to the SNR

age only for energy lower than ∼10 TeV. As a consequence, below
such energy the resonant streaming instability is able to reduce the
diffusion coefficient, but only in a spatial region close to the SNR
radius.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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