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ABSTRACT
Neutron stars are strongly magnetized rotating compact objects. Therefore, they also produce
huge electric fields accelerating particles to ultrarelativistic energies. The simplest magnetic
topology is a dipole traditionally located at the stellar centre. In this paper, we re-investigate the
consequences of an off-centred rotating magnetic dipole, showing accurate magnetic field line
geometries, the associated spin-down luminosity as well as the corresponding electromagnetic
kick and torque imprinted to the neutron star. Results are obtained by time-dependent numerical
simulations of Maxwell equations in vacuum using pseudo-spectral methods. We compare our
results to known analytical expressions available to lowest order in the parameter ε = d/R,
where d is the displacement of the dipole from the stellar centre and R the neutron star
radius. We found good agreement between our numerical computations and our analytical
approximations even for well off-centred dipoles having large displacements with a sizeable
fraction of the radius, i.e. ε � 1. An explanation for binary neutron star eccentricity distribution
functions is given with an emphasize on highly eccentric systems as an alternative scenario to
traditional binary formation.

Key words: magnetic fields – methods: numerical – binaries: general – stars: neutron –
pulsars: general – stars: rotation.

1 IN T RO D U C T I O N

Magnetic field and rotation play an important role in the life and
evolution of stars. This is especially true for magnetized compact
objects like white dwarfs and neutron stars. There the magnetic field
is often assumed to be dipolar, which corresponds to the lowest
order expansion of any magnetic field geometry not possessing
magnetic monopoles. Moreover, for spherical stars, the dipolar
magnetic moment is located exactly at the centre of the star.
The main reason for this assumption is simplicity. However, such
approximation is hardly supported by any physical explanation.
Actually the probability to find such a coincidence seems rather
weak. It is conceivable that currents in the stellar interior lead
to field structures not centred and also not strictly dipolar. For
strongly magnetized stars such as neutron stars, this asymmetry
in the topology could have observable consequences. Harrison &
Tademaru (1975) already mentioned the possibility to explain the
high kick velocity above 100 km s−1 induced by the electromagnetic
force imprinted to the newly born star. Some refinements were soon
brought by Tademaru (1976) who added polarization effects and
thus contributions from an additional electric field component.

In the case of a centred dipole, the torque applied on a neutron
star in vacuum always predicts an alignment as explained by
Davis & Goldstein (1970) and Goldreich (1970). This fact is also
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discussed by Philippov, Tchekhovskoy & Li (2014). Moreover,
this electromagnetic torque has been computed following several
expressions, either using the electromagnetic stress-energy tensor
or the Lorentz force acting inside and on the surface of the neutron
star. Both approaches agree on the regular electromagnetic torque
but not on the anomalous torque. A single analytical formula has
been found for this anomalous torque but the scaling factor depends
on the expression used to compute the torque, from the stress-
energy tensor or directly from the Lorentz force. Also the electric
field contribution, sometimes omitted, should be included, see for
instance Beskin & Zheltoukhov (2014) for a critical review of
these discrepancies. These complications did not prevent Good &
Ng (1985) from considering contributions from a quadrupole
component to the total torque.

Decentred dipoles furnish simple explanations for the obser-
vations of planetary magnetic fields. Indeed, Komesaroff (1976)
already recognized that a decentred dipole better fits the Pioneer
data about Jupiter than a centred dipole. It was used to explain the
asymmetries in the radio emission by minimizing the quadrupolar
term. Landstreet (1980) presented a review about magnetic fields in
non-degenerated stars and concluded that a decentred oblique dipole
can reasonably fit the magnetic topology. Hints for off-centred
dipoles or dipole plus quadrupole fields are given by Putney &
Jordan (1995) from polarization observations of white dwarfs. In
our Solar system, some interesting results have been found for the
outer planets. Indeed, inclination angles and displacements have
been constrained for instance for Uranus with an inclination of 60◦
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and an off-centring of d = 0.3 RU (Ness et al. 1986) and Neptune
with an inclination of 47◦ and an off-centring of d = 0.55 RN (Ness
et al. 1989) where RU and RN are Uranus and Neptune radius,
respectively. However, distinguishing an off-centred dipole from
a combination of multipoles seems difficult on the base only of
observations (Martin & Wickramasinghe 1984).

Deviation from a pure and centred rotating dipole is also an
attractive assumption to get more insight into neutron star and pulsar
physics. Indeed, a simple prescription for a distorted dipolar field
was proposed by Harding & Muslimov (2011) to enhance the pair
production rate above polar caps. Non-dipolar fields have also been
suggested to explain the anomalous braking index of pulsars as
discussed by Barsukov & Tsygan (2010). With the wealth of new
and very accurate multiwavelength observations of pulsed emission
in pulsars including polarization, time is ripe to go further than
the almost exclusively used centred dipole to sharpen our view on
pulsar magnetospheres. An off-centred rotating dipole anchored in
a perfectly conducting sphere with finite radius leads very naturally
to multipolar components to any order with weighting coefficients
solely related to the geometry of the dipole. We use this assumption
as a starting point for the justification of multipolar components.

In this paper, we compute accurate numerical solutions for the
electromagnetic field in vacuum outside an off-centred rotating
dipole, valid for any displacement d such that ε = d/R < 1, where d
is the distance from the centre of the neutron star and R its radius.
In Section 2, we recall the basic model of an off-centred rotating
dipole. Then some examples of field lines are presented in Section 3.
Next, in Section 4, we compute the spin-down luminosity expected
from such a system and compare it with previous works. The same
comparison is done for the associated electromagnetic kick which is
estimated in Section 5 and the electromagnetic torque in Section 6.
Implications for binaries containing neutron stars are highlighted in
Section 7. Conclusions are drawn in Section 8.

2 ROTATIN G O FF-CENTRED DIPOLE

We remind the geometrical set-up for an off-centred dipole, follow-
ing the notations introduced by Pétri (2016). The neutron star is a
perfectly conducting sphere of radius R in solid body rotation at an
angular rate �. Its magnetic moment μ is located inside this sphere
at a point M such that at any time t its position vector is decomposed
into

d = d (sin δ cos(� t) ex + sin δ sin(� t) ey + cos δ ez) (1)

where d is the distance from the stellar centre and δ the colatitude
and (ex, ey, ez) is a Cartesian orthonormal basis (Fig. 1). The
relevant displacement is given by the normalized parameter ε =
d/R < 1. Entrainment by the star is included in the phase term
� t . Meanwhile, the magnetic moment μ points toward a direction
depicted by the angles (α, β) and given by the unit vector μ = μ m
such that

m = sin α cos(β + � t) ex + sin α sin(β + � t) ey + cos α ez. (2)

All important parameters are summarized in Fig. 1.
Inside the star, the magnetic field is given by a static dipole such

that

B = B R3

‖r − d‖3

[
3 μ · (r − d)

‖r − d‖2
(r − d) − μ

]
(3)

where B is the surface magnetic field at the equator and r the position
vector.

Figure 1. Geometry of an off-centred dipole showing the angles {α, β, δ}
and the distance d. The plot corresponds to time t assuming that μ lies in
the (xOz) plane at t = 0.

Starting from this static solution, we perform time-dependent
numerical simulations solving Maxwell equations in vacuum. We
use the pseudo-spectral code developed and discussed in detail in
Pétri (2014), applying it to flat spacetime. Boundary conditions at
the stellar surface are given by the continuity of the radial component
of the magnetic field Br and the tangential component of the electric
field where E′ = 0 in the corotating frame inside the star. At large
distances, we enforce outgoing wave boundary conditions.

We run several sets of simulations to scan a full range of
geometries, varying the angles α, β, and δ and the displacement d.
We next summarize our results by first showing some magnetic
field line structures, then compute the spin-down luminosities and
eventually the associated electromagnetic kick and torque.

3 FI ELD LI NES

As a first result of a rotating off-centred dipole, we plot magnetic
field lines in the equatorial plane for a perpendicular rotator with
α = δ = 90◦ for several values of the displacement d and angle β.
For small displacements d � R, the topology is very similar to the
centred dipole given by Deutsch solution. In all cases, a two-armed
spiral develops, rotating at a constant speed equal to the rotation
period of the star �.

An example of field lines is shown for β = 0◦ and ε = 0.3 in Fig. 2
in red solid line and compared to the centred dipole given by Deutsch
solution in blue dashed line. At large distances, in the wave zone,
we observed a shift in phase for the position of the two-armed spiral
with respect to the centred case. This shift is proportional to R/rL,
therefore too weak to be detectable for realistic pulsar parameters.
Again, an off-centred dipole can only reasonably be detected when
examining electromagnetic activity and radiation occurring close to
the surface.

Another example is shown for β = 90◦ and ε = 0.3 in Fig. 3 in
red solid line and compared to the centred dipole given by Deutsch
solution in blue dashed line. Here again a two-armed spiral forms,
reminiscent of the centred dipole. However, in this second case,
at large distance, well outside the light-cylinder, both structure are
very similar, only the dipolar part propagates significantly into the
wave zone. It is hard to detect an off-centred dipole by inspecting
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Rotating off-centred dipoles 4163

Figure 2. Magnetic field lines for an off-centred dipole with α = 90◦, β =
0◦, δ = 90◦, and ε = 0.3 (red solid line) compared to Deutsch solution ε =
0 (blue dashed line).

Figure 3. Magnetic field lines for an off-centred dipole with α = 90◦, β =
90◦, δ = 90◦, and ε = 0.3 (red solid line) compared to Deutsch solution ε =
0 (blue dashed line).

the large-scale field structure because the typical two-armed spiral
structures overlap. The asymmetry is only clearly visible close to
the neutron star surface.

Next we diagnose quantitatively the effect of an off-centring
by computing relevant physical parameters that are the spin-down
luminosity, the electromagnetic kick and its associated torque.

4 SPIN-DOWN LUMINOSITIES

The spin-down luminosity is an important characteristic of any
rotating magnetic multipole. It determines the secular evolution of
the rotational period. In Pétri (2016), we showed that a finite-size
off-centred dipole looses angular momentum mainly through its
m = 1 (dipole and quadrupole) and m = 2 (quadrupole) modes such

Figure 4. Variation of the spin-down luminosity depending on the displace-
ment ε and on obliquity α. It is independent of β therefore only shown for
β = 0◦.

that each contribution splits into

Lm=1 = Ldip

[(
1 − a2

)
sin2 α + 24

25
a2 ε2 cos2 α

]
(4a)

Lm=2 = 48

5
Ldip a2 ε2 sin2 α . (4b)

where a = R/rL and the centred perpendicular dipole spin-down is

Ldip = 8π

3 μ0 c3
�4 B2 R6. (5)

For brevity, we only showed expressions (4) valid for δ = 90◦,
although it is possible to give (lengthy) expressions for any angle δ.
Note that the quadrupolar contribution to the spin-down is of the
same order of magnitude as the perturbation in the dipole spin-
down. Both terms scale as a2 ε2 but show a different dependence
with respect to the inclination angle α, the m = 1 mode adds a cos 2α

contribution whereas the m = 2 mode adds a sin 2α contribution.
However, both corrections are independent of the angle β.

We compare these analytical approximations to the results of
our numerical simulations where we also found that the spin-down
does not depend on the angle β as expected from equation (4).
We performed a set of runs with relevant geometric parameters by
varying the set (α, β, δ, ε) and choosing different rotation periods
symbolized by the adimensionalized parameter a. For a = 0.2,
we summarize the simulation outputs for α = {0◦, 30◦, 60◦, 90◦}
in Fig. 4. The luminosity computed from the simulation L(ε) is
compared to the exact vacuum centred dipole Lexact = Ldip sin2 α.
The corresponding analytical expectations are shown by solid colour
curves. The agreement is good, the ε2 dependence is clearly re-
trieved and follows the formula given in equation (4) even for a large
off-centred distance with ε = 0.5. For such a high displacement,
the quadrupolar expansion is not sufficient to recover the field line
topology close to the star but it suffices to compute accurately
the spin-down luminosity because higher order contributions to
the spin-down luminosities scale at least as a3 ε3. Therefore our
approximate expression detailed in equation (4) remains valid even
for large displacements ε � 1 as long as the spin-down is concerned.

5 ELECTROMAG NETI C KI CK

In Pétri (2016), we gave approximate expressions for the elec-
tromagnetic kick felt by the neutron star when radiating as an
off-centred dipole. The dipolar m = 1 and quadrupolar m = 2
contributions are given respectively by

Fm=1 = 6

5

Ldip

c
a ε cos α sin α sin β (6a)
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Figure 5. Electromagnetic force induced by a rotating off-centred dipole
for different displacements ε and different angles β for α = 30◦.

Figure 6. Electromagnetic force induced by a rotating off-centred dipole
for different displacements ε and different angles β for α = 60◦.

Figure 7. Electromagnetic force induced by a rotating off-centred dipole
for different displacements ε and different angles β for α = 30◦ showing
the sin β dependence.

Fm=2 = 256

105

Ldip

c
a3 ε3 cos α sin α sin β. (6b)

These formulae are again only valid for δ = 90◦. The quadrupolar
term remains negligible and a factor a2 ε2 weaker than the dipolar
term. It can be dropped from the estimate without introducing
much error in the estimate of the electromagnetic force. Indeed, we
computed this force from our set of runs presented in the previous
section. A compilation of the results is shown for α = 30◦ in Fig. 5
and for α = 60◦ in Fig. 6. The linear scaling with respect to ε

is retrieved to good accuracy as seen from the colour solid lines
representing the analytical expectations. Actually, both plots are
very similar because they only differ by the expression cos α sin α

which are numerically identical if α = 30◦ or 60◦.
Next we show the dependence on the angle β for α = 30◦ in

Fig. 7 and for α = 60◦ in Fig. 8. The accuracy with only the dipolar

Figure 8. Electromagnetic force induced by a rotating off-centred dipole
for different displacements ε and different angles β for α = 60◦ showing
the sin β dependence.

term is already remarkable, pointing out the sin β dependence. Only
the β = 0◦ geometry is not well reproduced. Again, both kicks are
hardly distinguishable because of the cos α sin α dependence and
the particular value of α chosen.

We finish this theoretical study by the electromagnetic torque
calculation.

6 EL E C T RO M AG N E T I C TO R QU E

Following Beskin & Zheltoukhov (2014), we compute the electro-
magnetic torque exerted on the neutron star surface according to the
Laplace force given by

K = R3

“
[σs n ∧ E + (B · n) i s] d� (7)

where n is the unit normal to the surface, σs = ε0 [E] · n represents
the surface charge density, and μ0 i s = n ∧ [B] the surface current
density. The notation [F] means the jump of the vector field F across
the layer. Because of the perfect conductor assumption inside the
star, there is no volume contribution to the torque as by definition
ρ E + j ∧ B = 0 where (E, B) is the electromagnetic field, ρ the
charge density, and j the current density inside the star. ε0 and μ0

are the vacuum permittivity and permeability.
Expressions for the torque are lengthy for a decentred dipole.

We only give the approximation for δ = 90◦. In this special case,
the components of the electric and magnetic torques, respectively
denoted by KE and KB, are given to lowest order in a = R/rL

by a decomposition onto the orthonormal basis (ex, ey, ez) with
components

KE
x = Ldip sin 2α

105000a �
(350a3(a2(162ε2 + 5) + 162ε2) cos β

− 3(a4(3744ε2 + 875) + a2(1750 − 21870ε2)

+ 100(81ε2 + 140)) sin β) (8a)

KE
y = Ldip sin 2α

105000a �
(3(a4(3552ε2 + 875) − 70a2(468ε2 − 25)

+ 200(27ε2 + 70)) cos β + 350a3(a2(243ε2 + 5)

+ 243ε2) sin β) (8b)
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Figure 9. KE
x component of the electric torque induced by a rotating off-

centred dipole for different displacements ε and angles β for α = 60◦.

Figure 10. KE
y component of the electric torque induced by a rotating

off-centred dipole for different displacements ε and angles β for α = 60◦.

KB
x = Ldip sin 2α

70000a �
(1400a(a2(93ε2 − 25) + 25) cos β

+ (3a4(75228ε2 − 11375) − 1470a2(66ε2 − 25)

− 100(324ε2 + 245)) sin β) (8c)

KB
y = −Ldip sin 2α

70000a�
((a4(222056ε2 − 34125)

+ a2(36750 − 83280ε2) − 100(216ε2 + 245)) cos β

− 700a(a2(207ε2 − 50) + 50) sin β) (8d)

KB
z = Ldip

50 �
((a2(216ε2 − 25) + 25) cos 2α

+ a2(25 − 264ε2) − 25) (8e)

The electric torque along the z-axis always vanishes KE
z = 0.

We compare these analytical expressions (8) to the torque found
by integration of equation (7) directly from the simulations. The
results are shown individually for the electric torque KE

x along the
x-axis in Fig. 9, the electric torque KE

y along the y-axis in Fig. 10, the
magnetic torque KB

x along the x-axis in Fig. 11, the magnetic torque
KB

y along the y-axis in Fig. 12 and magnetic torque KB
z along the z-

axis in Fig. 13. To a good accuracy, the simulation results agree with
the analytical approximations even for high displacements ε ≈ 0.5.

After this rather theoretical investigation of the off-centred rotat-
ing dipole, showing the induced spin-down luminosity perturbation,
the kick and additional torque imparted to the star, we finish this

Figure 11. KB
x component of the magnetic torque induced by a rotating

off-centred dipole for different displacements ε and angles β for α = 60◦.

Figure 12. KB
y component of the magnetic torque induced by a rotating

off-centred dipole for different displacements ε and angles β for α = 60◦.

Figure 13. KB
z component of the magnetic torque induced by a rotating off-

centred dipole for different displacements ε and angles α. This component
is independent of β.

paper by a last section about possible consequences for neutron
stars in binary systems.

7 IMPAC T O N BI NARY N EUTRON STAR
SYSTEMS

Several hundreds of neutron star binary systems are known to date.
The usual channels to form such binaries are well described in
several papers like Phinney et al. (1992) or Postnov & Yungelson
(2014). Moreover, Tauris et al. (2017) give an excellent review
about the more specific double neutron star systems, pointing
out their characteristics, formation, and evolution. Neutron star
binaries are expected to relax to almost circular orbits with very low
eccentricities e ≈ 0 due to mass transfer and tidal circularization.
Large eccentricities e � 0.3 can however be produced by a supernova
explosion in double neutron stars when a significant fraction of
the binary mass is lost. Here surprisingly, some double neutron
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stars show low eccentricities requiring alternative binary evolution
scenarios. In this last section, we show how the electromagnetic kick
produced by an off-centred magnetic dipole can modify the orbital
eccentricity, sometimes generating moderate to large eccentricities
in neutron star binaries.

Let us assume that both stars, labelled with subscripts 1 and 2 are
subject to an electromagnetic kick respectively denoted by F1 and
F2. The equations of motion in the inertial observer frame for this
problem are given by

r̈1 = G m2
r
r3

+ F1

m1
(9a)

r̈2 = −G m1
r
r3

+ F2

m2
(9b)

where r = r2 − r1 and r i is the position of star i and dots meaning
time derivation. The barycentre, defined by

R = m1 r1 + m2 r2

m1 + m2
(10)

feels a net force according to Newton’s second law

R̈ = F1 + F2

m1 + m2
. (11)

It therefore accelerates at a constant rate. In order to remove
this uniform acceleration not relevant for the orbital parameters
evolution, we express the motion in the barycentre frame by
introducing two new position vectors

ρ1 = r1 − R (12a)

ρ2 = r2 − R. (12b)

These vectors satisfy the equations of motion

ρ̈1 = G m2
r
r3

+ 1

m1 + m2

(
m2

m1
F1 − F2

)
(13a)

ρ̈2 = −G m1
r
r3

+ 1

m1 + m2

(
m1

m2
F2 − F1

)
. (13b)

The equivalent one-body problem then reads

r̈ = −G (m1 + m2)
r
r3

+ F2

m2
− F1

m1
. (14)

This two-body problem in gravitation, subject to an additional
acceleration expressed by

A = F2

m2
− F1

m1
(15)

arising from an external body, an external pressure or produced by
the stars themselves, is known as the Stark or accelerated Kepler
problem (Namouni & Guzzo 2007). Moreover, if this force is
constant in direction and time, interestingly enough, the problem
is fully integrable as shown in depth by Lantoine & Russell
(2011). They give a complete set of analytical solutions involving
parabolic coordinates and elliptic functions for elliptic, parabolic,
and hyperbolic trajectories. In the present work, we focus only on
bound orbits for a constant in direction acceleration A. Important
but simple results for eccentricity excitation have been reported by
Namouni (2005) for extrasolar planets and for jets by Namouni &
Guzzo (2007). In all these cases, the accelerating field is derived
from the gradient of a scalar function. Therefore, the time evolutions

of the orbital parameters are known to satisfy Lagrange planetary
equations. A detailed derivation of the formalism and practical
results can be found in Beutler, Mervart & Verdun (2005). Next, we
discuss a straightforward application to binaries in circular orbit for
which simple analytical expressions have been derived.

Indeed, let us describe the time dependence of the eccentricity e(t)
when starting from a circular orbits with e(t = 0) = 0. It varies
periodically following a sinusoidal law expressed as

e(t) =
∣∣∣∣sin i0 sin

(
3 A

2 �a
t

)∣∣∣∣ (16)

where a is the semimajor axis, A = ‖A‖ is the acceleration
produced by the neutron stars themselves due to the electromag-
netic kick Fi, i0 is the inclination angle between the acceleration
vector A, and the orbital angular momentum vector and � =√

G (m1 + m2)/a3 is the Keplerian frequency. The typical time-
scale of eccentricity excitation is then

Te = π�a

3 A
= π

3 A

√
G (m1 + m2)

a
. (17)

Note the factor 2 difference with respect to the sin argument because
of the absolute sign, dividing the period by the same factor 2. This
order of magnitude is easily reproduced by noting that generating a
significant eccentricity requires the accelerating field A to produce
orbital velocities of the order of the Keplerian velocity v = �a,
thus equating ATe = v which agrees with equation (17) within a
factor unity. This time-scale holds if the excitation A is constant in
time. However, the acceleration A depends on the electromagnetic
kick F which itself depends linearly on the spin-down luminosity L
because F ∝ L/c, see previous sections. For a magnetic dipole
rotating in vacuum, a braking index of n = 3 (which still hold
to good accuracy for an off-centred dipole) leads to a decreasing
luminosity according to

L(t) = L0

(1 + t/τc)2
(18)

where τc = P/2Ṗ is the characteristic electromagnetic spin-down
time-scale, the characteristic age of the pulsar. The eccentricity then
follows from

e(t) =
∣∣∣∣sin i0 sin

(
3

2 �a

∫ t

0
A(t) dt

)∣∣∣∣ . (19)

From the spin-down decrease in equation (18), we easily integrate
the action of the acceleration acting on a characteristic time-scale τ c

to find∫ τc

0
A(t) dt = A(t = 0) τc

2
. (20)

After a time equal to the characteristic age, the acceleration
becomes negligible. Thus, the estimate given for a constant in time
acceleration is a good guess if time t is replaced by τ c/2. The actual
binary eccentricity is therefore

e(τc) =
∣∣∣∣sin i0 sin

(
3 Aτc

4 �a

)∣∣∣∣ . (21)

Equation (16) shows that the maximal eccentricity achieved after
a full excitation period Te is sin i0. This time-scale must be
compared to other typical time-scales like the true age of the binary
and the electromagnetic spin-down time-scale. It can be shown
that the eccentricity depends only on P and Porb but not on Ṗ .
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Figure 14. Observed (red) and expected (blue) relation between spin
period P and eccentricity e for neutron stars binaries.

Straightforward calculations give

e(τc) =
∣∣∣∣∣sin i0 sin

(
9π5/3

5 × 21/3
ε

I P −2 P
1/3
orb

m1 c
√

G (m1 + m2)

)∣∣∣∣∣ (22)

m1 being the mass of the pulsar and m2 the mass of its companion.
For low eccentricities, this expression reduces to

e(τc) ≈ 9π5/3

5 × 21/3
ε | cos α sin α sin β sin i0| I P −2 P

1/3
orb

m1 c
√

G (m1 + m2)

(23a)

≈ 7.5 × 10−6 ε | cos α sin α sin β sin i0 |
(

P

1 s

)−2

×
(

Porb

1 d

)1/3

(23b)

showing the dependence

e ∝ ε cos α sin α sin β P −2 P
1/3
orb . (24)

The eccentricity in equation (21) can be compared with obser-
vations through the ATNF(Australia Telescope National Facility)
Pulsar Catalogue (http://www.atnf.csiro.au/research/pulsar/psrcat/)
of Manchester et al. (2005). For concreteness, we set the inclination
angle to i0 = 90◦, representing the most favourable geometry to
efficiently excite the eccentric orbit. For the accelerating electro-
magnetic kick, we set an average of ε cos α sin α sin β = 0.01 and
the total mass of the binary to m1 + m2 = 2.5 M�. The neutron star
radius is 12 km and its moment of inertia is I = 1038 kg m2.

Fig. 14 shows the period–eccentricity relation (P, e) for the neu-
tron star binaries contained in the ATNF catalogue in red, compared
to the model predictions in blue. Pulsars with period less than P
< 0.1 s are reasonably well reproduced with largest eccentricities
e � 0.1, but longer period pulsar eccentricities predictions are orders
of magnitude lower than those observed. There are obviously other
means to achieve very large eccentricities e � 1 like for instance a
supernova explosion leading to a substantial mass loss in the system.
All possible perturbations of orbital parameters must be combined to
extract realistic binary geometries. However, this is out of the scope
of this work that only emphasizes the non-negligible role of the
electromagnetic kick. Fig. 15 compares the observed and predicted
orbital period–eccentricity relation (Porb, e). Observed eccentricities
for orbital periods less than Porb < 100 d are well reproduced, but
longer orbital period eccentricities here also are orders of magnitude

Figure 15. Observed (red) and expected (blue) relation between orbital
period Porb and eccentricity e for neutron stars binaries.

Figure 16. Comparison of the observed (red) and expected (blue) popula-
tion of eccentricities e for neutron stars binaries with ε cos α sin α sin β =
0.01.

lower than observed. Obviously again, the formation and evolution
of the binary system must account for those large eccentricities e.
Finally, the eccentricity distribution function is plotted in Fig. 16,
showing the range of eccentricities achieved by the electromagnetic
kick in blue, starting from a perfect circular orbit and compared
to observations in red. The peak arises at e ≈ 10−5-10−4 with
minimum value of emin ≈ 10−12 and maximum value of emax ≈ 10−1.
The distribution function is well reproduced in the range [10−7,
10−2]. The deficit in high eccentricities for large spin periods and
large orbital periods is clearly identified. Amplifying the excitation
acceleration A will produce eccentricities closer to 1. Indeed, when
A is increased by a factor 10, i.e. ε cos α sin α sin β = 0.1, the
eccentricity distribution function shown in Fig. 17 is shifted one
order of magnitude to larger e with emax � 0.1. Precise values
of the acceleration A are geometry dependent and only barely
constrained. Nevertheless, already small off-centred dipoles with
ε cos α sin α sin β � 1 can accounted for the majority of low
eccentricity neutron star binaries.

A complete scenario of binary neutron star formation and
evolution must account for not only the dramatic birth event but
also for secular change in the orbits due to continuous perturbations
induced by the stars themselves. We hope that the present study
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Figure 17. Comparison of the observed (red) and expected (blue) popula-
tion of eccentricities e for neutron stars binaries with ε cos α sin α sin β =
0.1.

will help to better understand the formation of binary neutron star
systems.

8 C O N C L U S I O N S

We performed accurate time-dependent numerical simulations of an
off-centred rotating dipole in vacuum, including contributions from
high-order multipoles, going beyond the quadrupole expansion as
done in previous analytical works. As a diagnostic, we showed
magnetic field line structures, spin-down luminosities, induced
electromagnetic forces, and torques. We demonstrated that the
analytical approximations taking into account only perturbations
up to the magnetic quadrupole are reliable for quickly computing
with satisfactory accuracy the geometric dependence of the spin-
down luminosity, the electromagnetic kick, and torque according to
the orientation and location of the magnetic dipole with respect to
the centre of the star.

Other models able to produce naturally multipolar components
are those incriminating an inhomogeneous magnetization inside the
star. It is well known that a uniformly magnetized sphere produces
in vacuum a perfectly centred dipole. If the homogeneity is broken,
multipolar components will easily arise in vacuum outside this
sphere. Therefore, such models offer an interesting alternative to the
off-centred dipole, avoiding a singular magnetic field at the location
of the magnetic moment, replacing it by a smooth magnetization
distribution over the whole stellar volume.

Electromagnetic kicks and torques are important for understand-
ing the secular evolution of isolated neutron stars, their proper
motion and precession, but also for binary neutron stars. Indeed,
when in a binary neutron star system, the electromagnetic force
permanently perturbs the Keplerian orbit and could explain the
origin of high eccentricities in several of those binaries as shown in
the previous section. The distribution of low eccentricities is well

reproduced by an electromagnetic kick acting on the typical spin-
down time-scale. The electromagnetic torque leads to precession of
an isolated pulsar that could be observed in the secular evolution of
radio pulse profiles and maybe at higher energies like X-rays and
gamma-rays. Such investigations however require knowledge about
the radiation mechanisms and is left for future work.

An important extension to the present work is the inclusion of
pair plasma within the magnetosphere, screening the electric field
component parallel to the magnetic field in the force-free regime.
Such models will be computed with our pseudo-spectral Maxwell
solver in an upcoming paper.
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