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Deep Tone Mapping Operator for High Dynamic
Range Images

Aakanksha Rana*, Praveer Singh*, Giuseppe Valenzise, Frederic Dufaux, Nikos Komodakis, Aljosa Smolic

Abstract—A computationally fast tone mapping operator
(TMO) that can quickly adapt to a wide spectrum of high
dynamic range (HDR) content is quintessential for visualization
on varied low dynamic range (LDR) output devices such as movie
screens or standard displays. Existing TMOs can successfully
tone-map only a limited number of HDR content and require an
extensive parameter tuning to yield the best subjective-quality
tone-mapped output. In this paper, we address this problem by
proposing a fast, parameter-free and scene-adaptable deep tone
mapping operator (DeepTMO) that yields a high-resolution and
high-subjective quality tone mapped output. Based on conditional
generative adversarial network (cGAN), DeepTMO not only
learns to adapt to vast scenic-content (e.g., outdoor, indoor,
human, structures, etc.) but also tackles the HDR related scene-
specific challenges such as contrast and brightness, while preserv-
ing the fine-grained details. We explore 4 possible combinations
of Generator-Discriminator architectural designs to specifically
address some prominent issues in HDR related deep-learning
frameworks like blurring, tiling patterns and saturation artifacts.
By exploring different influences of scales, loss-functions and
normalization layers under a cGAN setting, we conclude with
adopting a multi-scale model for our task. To further leverage
on the large-scale availability of unlabeled HDR data, we train
our network by generating targets using an objective HDR quality
metric, namely Tone Mapping Image Quality Index (TMQI).
We demonstrate results both quantitatively and qualitatively,
and showcase that our DeepTMO generates high-resolution,
high-quality output images over a large spectrum of real-world
scenes. Finally, we evaluate the perceived quality of our results
by conducting a pair-wise subjective study which confirms the
versatility of our method.

Index Terms—High Dyanmic Range images, tone mapping,
generative adversarial networks.

I. INTRODUCTION

Tone mapping is a prerequisite in the high dynamic range
(HDR) imaging [1], [2], [3], [4] pipeline to print or render
HDR content for low dynamic range displays. With the un-
precedented demands of capturing/reproducing scenes in high-
resolution and superior quality, HDR technology is growing
rapidly [5], [6], [7]. Although HDR display systems have
advanced in the last few decades (for e.g., Sim2, Dolby Vision,
etc), they still necessitate some sort of tone mapping operation
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because of limited technical capabilities of the materials used
in these displays. Additionally, due to high manufacturing
costs, the absolute majority of screens still have limited
dynamic range and rely largely on Tone Mapping Operators
(TMOs) for desired top-quality presentation.

Several TMOs have been designed over the last two decades,
promising the most faithful representation of real-world lu-
minosity and color gamut for high-quality output. However,
in practice, such TMOs are limited to successfully tone map
only limited number of HDR images due to their parametric
sensitivity [8], [9]. For instance, a TMO capable of mapping
a bright daytime scene might not map a dark or evening
scene equally well. In fact, one needs to manually tweak in
an extensive parametric space for every new scene, in order
to achieve the best possible results while using any such
TMO. Thus, the entire process of finding the most desirable
high-resolution tone-mapped output is not only slow, tedious
and expensive, but is almost impractical when there is a
large variety of HDR content being generated from numerous
capturing devices.

This raises a natural question whether a more adaptive
tone mapping function can be formulated which can quickly
alter itself to wide variability in real-world HDR scenes
to reproduce the best subjective quality output without any
perceptual damage to its content on a high-resolution display.
With the recent success of deep learning [10] and wide scale
availability of HDR data, it is now possible to learn a model
with such complex functionalities for effective tone mapping
operation.

In this paper, we propose an end-to-end deep learning (DL)
based tone-mapping operator (DeepTMO) for converting any
given HDR scene into a tone-mapped LDR output which is
of high resolution [1024x2048] and superior subjective qual-
ity. Based upon a conditional generative adversarial network
(cGAN) [11], [12], the DeepTMO model directly inputs 32-
bit linear HDR content and reproduces a realistically looking
tone-mapped image, aiming to mimic the original HDR con-
tent under a limited range [0-255]. DeepTMO is trained to
cater a wide range of scenic-content for e.g., indoor/outdoor
scenes, scenes with structures, human faces, landscapes, dark
and noisy scenes, etc.

The motivation for generative adversarial networks (GAN)
in the DeepTMO design stems from their tremendous success
in several image-to-image translation studies [13]. Such mod-
els have shown to overcome the problem of spatially blurred-
out resulting images with a simple L1/L2 loss function.
Furthermore, instead of optimizing parameters for a given
TMO [14] for a particular scene [15], [2], our objective is to
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design a model which is adaptable to different scenes-types
(such as day/night, outdoor/indoor, etc.), thus encompassing all
their desired characteristics. Altogether, this is difficult for a
naive loss-function to satisfy. Moreover, designing such a cost
function is quite complex [16], and needs expert knowledge.
Therefore, we overcome this challenge by learning an ‘ad-
versarial loss’ that encapsulates all the desired features from
all ideal tone-mapped images by using the underlying training
data; thereby eradicating the need of manually handcrafting
such a loss function.

GANs are capable to generate better quality images com-
pared to the state-of-the-art models, however, there are still
some prominent issues such as tilling patterns, local blurring
and saturated artifacts (see Fig. 5 (a)). To handle these
problems in a high-resolution output image, we explore the
DeepTMO architectural design by comparing the single-scale
and multi-scale variants of both generator and discriminator.
We subsequently showcase how a multi-scale version of
the generator-discriminator architecture helps in predicting
artifact-free tone mapped images, which are both structurally
consistent with input HDR and simultaneously preserve fine-
grained information recovered from different scales.

The DeepTMO model is effectively a multi-scale architec-
ture having a 2-scale generator and a 2-scale discriminator,
both of which are conditioned on the linear HDR input. Both
generator and discriminator compete with each other. The
generator is trying to fool discriminator by producing high sub-
jective quality tone mapped images for the given input HDR,
while the discriminator trying to discriminate between real
and synthetically generated HDR-LDR image pairs. Our basic
discriminator architecture is similar to PatchGAN [17], [18]
which classifies patches over the entire image and averages
over all of them to yield the final image score. Similarly our
basic generator architecture comprises of an encoder-decoder
network where the input HDR is given first to an encoder
resulting in a compressed representation which is then passed
to the decoder yielding finally a tone mapped image.

To train our model, we accumulate our dataset from freely
available HDR image sources. Ideally, the training dataset
should be created through a subjective evaluation considering
all possible tone mapping operators for all available HDR
scenes. However, conducting such a subjective evaluation is
highly cumbersome and unfeasible. Thus, it necessitates the
requirement of an objective quality assessment metric which
can quantify the tone mapping performance of each TMO for
any given scene. For our task, we select a well known metric
namely Tone Mapped Image Quality Index (TMQI). We first
rank 13 widely used TMOs using the TMQI metric for each
HDR input. We then select the topmost scoring tone-mapped
image as our target output.

In a nutshell, we
1) propose a fast, parameter-free DeepTMO, which can

generate high-resolution and foremost subjective quality
tone-mapped outputs for a large variety of linear HDR
scenes, including indoor, outdoor, person, structures, day
and night/noisy scenes.

2) explore 4 possible cGANs network settings: (a)
Single-scale-Generator (Single-G) and Single-scale-

Discriminator (Single-D), (b) Multi-scale-Generator
(Multi-G) and Single-D, (c) Single-G and Multi-scale-
Discriminator (Multi-D), (d) Multi-G and Multi-D, thus
discussing the influence of scales and finally proposing a
multi-scale generator-discriminator model for our prob-
lem.

3) detail the impact of different loss functions and nor-
malization layers while elaborating how each step helps
in improving the overall results by tackling different
artifacts.

4) provide quantitative and qualitative comparison of our
model with best tone mapped outputs over 105 images
and also validate our technique through a pair-wise
subjective study.

II. RELATED WORK

HDR imaging technology has been a subject of interest over
the past decades, inspiring to capture and reproduce a wide
range of colors and luminous intensities of the real world on
a digital canvas. Normally, the information stored in HDR
content is represented using a 32-bit floating point format.
But to cope with conventional displays, such scenes are often
tone-mapped to an LDR format with available TMOs. A great
variety of TMOs addressing different perceptual objectives
have been proposed in the past years. In the following, we
give a quick review of the tone mapping literature and then
would touch upon various deep learning techniques for HDR
imaging.

A. Tone Mapping Operators for HDR Content

TMOs have been widely explored in the literature, prin-
cipally based upon how they handle the contrast, color and
luminosity in a given HDR image [19]. However, they have
been classified into several categories under different sets of
criteria [6], [5]. Primarily, they have been grouped into global
and local approaches, relying on how these mapping functions
operate on an image. The global methods such as [20], [21],
[22] apply the same compression function to all the pixels of
an image. For the local techniques such as [23], [24], [25], a
tone-mapped pixel depends on the values of its neighboring
pixels. Even though global approaches are faster to compute,
their resulting LDR outputs do not maintain adequate contrast
in the images; thus the scene appears somewhat washed out.
The local tone mapping functions, conversely, do not face
these issues and are generally capable enough of handling
contrast ratios, meanwhile preserving local details. However,
these operators result in some prominent ‘halo’ effects around
the high frequency edges, thereby giving unnatural artifacts in
the scenes. Another category of TMOs [26], [27], [28] includes
designs which are inspired from the human visual system, can
models the attributes such as adaptation with time, and can
discriminate at high contrast stimuli and gradient sensitivities.
Nonetheless, all these existing TMOs have been designed to
target independently, multiple different objectives [6], [9], such
as simulating human visual properties, honest reproduction of
scenes, best subjective preference or even for computer vision
applications [29]. However, in our work, we mainly focus
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towards designing a TMO aiming for “best subjective quality
output”.

Several small scale perceptual studies have been performed
using varied criteria such as with reference or without ref-
erence [30], [8], [31] to compare these classical and newly
developed TMOs for different perceptual objectives. Even
though these subjective studies are ideal to analyze TMO’s
performance, the process is bounded to use a limited number
of content and TMOs due to practical considerations. As an
alternate solution, objective metrics such as [31], [32] have
been proposed to automate the evaluation. TMQI is a state-of-
the-art objective metric and has been widely used for several
TMO optimization studies [2], [15]. It assesses the quality of
images on 1) structural fidelity which is a multi scale analysis
of the signals, and 2) naturalness, which is derived using the
natural image statistics. Both these crucial properties of human
perception are combined to define a subjective quality score.

a) Learning-based methods: Parametric sensitivity of
hand-crafted TMOs is a well-known phenomenon which im-
pacts the subjective quality of the resulting output. As a result,
this emphasizes ‘scene-dependence’ of such tone mapping
designs i.e., for a given subjective quality task, TMOs have
to be fine tuned for each individual scene type. To this end,
some optimization based tone mapping frameworks [2], [15]
have been designed where the parameters of a specific TMO
are optimized for a given image. However, the parameter fine-
tuning process for each scene separately is time consuming
and limits its real-time applicability. Additionally, it somehow
questions the ‘automatic’ nature of tone mapping [9] for their
applicability on a wide variety of real-world scenes.

B. CNNs for HDR Scenes
Recently, CNNs have been utilized extensively for multiple

HDR imaging tasks such as reconstructing HDR using a
single-exposure LDR [33], [34], [35], [36], predicting and
merging various high and low exposure images for HDR
reconstruction [37] or yielding HDR outputs from dynamic
LDR inputs [38]. CNNs have also been modeled to learn
an input-output mapping as done for de-mosaicking and de-
noising by [39] or learning an efficient bilateral grid for image
enhancement [40]. [41] have recently proposed a deep bilateral
tone mapper, but it works only for 16-bit linear images and
not for conventional 32-bit HDR images. A recent work [42]
addresses the end-to-end tone mapping problem where the
model is trained for a given scene. This is somewhat similar
approach to parameter-tuning where the model is calibrated
for only one given scene at a time. Therefore, the problem
of designing a fast, parameter-free, end-to-end TMO which
can effectively tone map wide variety of real-world high-
resolution content for high quality display in real time, still
holds relevance.

As observed in the past CNN studies, the quality of resulting
output depends heavily on the choice of the loss function.
Formulating a loss function that constrains the CNN to yield
sharp, top quality tone-mapped LDR from their corresponding
linear-valued HDR is complex and an ill posed problem. Our
work doesn’t encounter such issues as we utilize a GAN based
architecture.

C. Generative Adversarial Networks

GANs [11] have attended lots of attention owing to their
capability of modeling the underlying target distribution by
forcing the predicted outputs to be as indistinguishable from
the target images as possible. While doing this, it implicitly
learns an appropriate loss function, thus eliminating the re-
quirement of hand crafting one by an expert. This property
has enabled them to be utilized for wide variety of image
processing tasks such as super-resolution [18], photo-realistic
style-transfer [43] and semantic image in-painting [44]. For
our task, we employ GAN under a conditional setting, com-
monly referred as cGAN [12], where the generated output
is conditioned on the input image. Recently, cGAN based
frameworks have been designed for the inverse problem of
generating HDR images from single LDR images [45], [46].

One distinctive feature of cGAN frameworks is that they
learn a structured loss where each output pixel is conditionally
dependent on one or more neighboring pixels in the input im-
age. Thus, this effectively constrains the network by penalizing
any possible structural difference between input and output
This property is quite useful for our task of tone-mapping
where we only want to compress the dynamic range of an HDR
image, keeping the structure of the output similar to the input
HDR. For this specific reason, cGANs have been quite popular
for image-to-image translation tasks, where one representation
of a scene is automatically converted into another, given
enough training pairs [13] or without them under unsupervised
settings [47], [48], [49]. However, a major limitation of using
cGANs is that it is quite hard to generate high resolution
images due to training instability and optimization issues. The
generated images are either blurry or contain noisy artifacts
such as shown in Fig. 5 (a). In [50], motivated from perceptual
loss [43], the authors derive a direct regression loss to generate
high-resolution 2048 × 1024 images, but their method fails
to preserve fine-details and textures. In [51], authors have
recently shown significant improvement on the quality of high-
resolution generated outputs through a multi-scale generator-
discriminator design. A similar work for converting HDR
to LDR using GANs [52] has also appeared recently where
authors oversimplifies the tone-mapping problem by testing
only on small 256x256 image crops. Essentially, such an
approach may not substantially capture the full luminance
range present in HDR images, and thereby overlooks the
basic goal of TMO by working on full dynamic range scenes.
We, however, showcase our findings using their adopted ar-
chitectures from [13] on 1024 × 2048 HDR images in the
supplementary material.

In summary, we motivate the DeepTMO design with these
given findings, and discuss the impact of scales for both
generator and discriminator, while showcasing their ability to
generate high-resolution tone-mapped outputs.

III. ALGORITHM

A. Problem Formulation

We propose a fast DeepTMO model with the prime ob-
jective of producing high-resolution and high-quality tone-
mapped images for vast variety of real-world HDR images.
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Ideally, our model should automatically adapt for each scene
without any external parameter tuning. To this end, we pro-
pose to imbibe different desired tone mapping characteristics
depending upon scene type, content, brightness, contrast etc.,
to yield high perceptual quality output. In the following
paragraphs, we will briefly discuss the formulation of our
DeepTMO model.

a) Linear Domain Input: For our models, we directly
work on linear values. We performed the scaling to [0,1]
with very high-precision (32-bit float precision), thereby, not
impacting the overall output brightness. This way, we could
simply automate the entire pipeline by making the network
learn itself from the unaltered high-dynamic information of
the scene. Additionally, we also experimented with log-scaling
the input HDR before performing the tone mapping operation,
specifically to test for halo-effects in high-exposure regions
such as the sun in Fig.15. Note that we did some experimental
studies with different input normalization techniques. More
details can be found in supplementary material.

b) Color Reproduction: Classical TMOs firstly perform
the dynamic range compression in the luminance channel only
and then, the colors are reproduced in the post-processing
stage. This partially accounts to ease the computational com-
plexity of the tone-mapping operation. We follow a similar
paradigm, employing the common methodology for color
reproduction [22] given as Cout = Cin

Lin
· Lout, where Cout

and Lout are output color and luminance images while Cin is
the input HDR color image.

(a) L1-loss (b) Deep-TMO (Single-Scale)

Fig. 1: Comparison between CNN (encoder-decoder) with L1-loss
and DeepTMO (single-scale). Inlets in row 2 show that DeepTMO
yields sharp and high resolution output, whereas the CNN results in
blurred outputs.

c) Motivation for GANs: To achieve the desired TMO,
one solution is to use a simple L1 or perceptual (Lprp) loss
function [43] with an encoder-decoder architecture as utilized
in the past by various inverse-TMOs for generating HDR
scenes from single-exposure [33] or multi-exposure [37] LDR
images. However, such naive loss functions suffer from either
overall spatial blurring (evident in L1 loss in Fig. 1) or over-
compression of contrast (evident in Lprp loss in Fig. 2).
This is mainly because a CNN architecture learns a mapping
from all possible dynamic range values available in the wide

(a) Lprp-loss (b) Deep-TMO (Single-Scale)

Fig. 2: Comparison between CNN (encoder-decoder) with Lprp-loss
(perceptual) and DeepTMO (single-scale).

variability of training-set scenes to a range [0,255]. Thus, the
trained model effectively predicts a fairly mean luminance
value for most of the pixels in output images to minimize
the overall loss function. Another simple idea could be to
use TMQI directly as loss function. However, due to the
mathematical design of TMQI’s naturalness component and
characteristic discontinuity, TMQI cannot be directly used a
loss function for back-propagation in a DL framework. In fact,
the alternate methodology proposed by authors in [2], which
optimizes a given TMO using TMQI, is also impossible to be
imbibed into an end-to-end DL pipeline, as it treats both SSIM
and naturalness separately using two different optimization
strategies.

Given the goal of our TMO, designing an effective cost
function manually for catering to wide variability of tone-
mapping characteristics under different scenic-content is quite
a complex task. An alternate solution could be to learn such
a loss function. The use of GAN is an apt choice here, as
it learns an adversarial loss function by itself (the loss being
the discriminator network), that encapsulates all the desired
features for an ideal TMO encoded in the underlying training
data, thereby eradicating the need of manually designing a
loss function. An added advantage of GAN is that it facilitate
to obtain perceptually superior tone-mapped solutions residing
in the subspace of natural images as compared to reproducing
closer to mean valued or blurred outputs in case of ordinary
L1 / Lprp loss functions.

Aiming an artifact-free high-resolution tone-mapped output,
we begin investigating the choice of architecture from single-
scale to its multi-scale variant for both generator and discrim-
inator in the following sections.

Fig. 3: DeepTMO Training Pipeline.

B. DeepTMO (Single-Scale)

Fig. 3 depicts an overview of our training algorithm. For
our DeepTMO model, we basically employ a cGAN frame-
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work [12] which implicitly learns a mapping from an observed
HDR image x to a tone mapped LDR image y, given as:
G : x −→ y. The architecture is composed of two fundamental
building blocks namely a discriminator (D) and a generator
(G).

The input to G consists of an H×W ×C size HDR image
normalized between [0, 1]. We consider C = 1 i.e., only the
luminance channel is given as an input. Its output is a tone-
mapped image (top row of fake pair in Fig. 3) of same size
as the input. D on the other hand, takes luminance channels
of HDR and tone mapped LDR images as input pairs, and
predicts whether they are real tone-mapped images or fake. It
is trained in a supervised fashion, by employing a training
dataset of input HDR and their corresponding target tone-
mapped images (real-pair in Fig. 3). We detail the complete
methodology to build our target dataset in Section IV. An
additional advantage of conditioning on an HDR input is
that it empowers D to have some pre-information to make
better reasoning for distinguishing between a real or fake tone
mapped images, thus accelerating its training.

Next, we discuss the architectures for single-scale generator
(Single-G) and single-scale discriminator (Single-D) which
are our adaptations from past studies [43], [47] which show
impressive results for style transfer and super-resolution tasks
on LDR images. Further on, in the subsequent sections, we
will reason as to why opting for their multi-scale versions
aids in further refining the results.

a) Generator Architecture (Single-G): The Single-G ar-
chitecture is an encoder-decoder architecture as shown in
Fig. 4a. Overall, it consists of a sequence of 3 components: the
convolution front end G(Front), a set of residual blocks G(Res)

and the deconvolution back end G(Back). G(Front) consists
of 4 different convolution layers which perform a subsequent
down-sampling operation on their respective inputs. G(Res)

is composed of 9 different residual blocks each having 2
convolution layers, while G(Back) consists of 4 convolution
layers each of which up-samples its input by a factor of 2.
During the down-sampling, G(Front) compresses the input
HDR, thus keeping the most relevant information. G(Res) than
applies multiple residual corrections to convert the compressed
representation of input HDR to one that of its target LDR
counterpart.

Finally, G(Back) yields a full size LDR output from this
compressed representation through the up-sampling operation.

b) Discriminator Architecture (Single-D): The Single-
D architecture resembles a 70 × 70 PatchGAN [13], [17],
[18] model, which aims to predict whether each 70 × 70
overlapping image patch is real or fake, as shown in Fig. 4b.
The main motivation of choosing a PatchGAN discriminator
over a full-image size discriminator is that it contains much
less parameters allowing it to be easily used for any-size
images in a fully convolutional manner. This is pertinent for
our problem setting where we involve very high resolution
images. An added advantage of a PatchGAN discriminator
is that while working on patches, it also models the high-
frequency information by simply restricting its focus upon the
structure in local image regions. The Single-D is run across
the entire image, and all the responses over various patches

are averaged out to yield the final prediction for the image.
Note that the input to D is a concatenation of the HDR and
its corresponding LDR image.

Although the Single-G and Single-D architecture yields
high-quality reconstructions at a global level, yet it results
in noisy artifacts over some specific areas such as bright light
sources as shown in Fig. 5a. In a way, it necessitates modifying
both single-scale versions of G and D to cater not only to
coarser information, but at the same time, paying attention
to finer level details, thus resulting in a much more refined
tone-mapped output.

C. DeepTMO (Multi-Scale)

While generating high resolution tone-mapped images, it
is quite evident now that we need to pay attention towards
low-level minute details as well as high-level semantic infor-
mation. To this end, motivated from [51], we alter the existing
DeepTMO (single-scale) model, gradually incorporating step-
by-step a multi-scale discriminator (Multi-D) and a multi-
scale generator (Multi-G) in the algorithmic pipeline. Different
from [51], our adaptation (a) utilizes a 2-scaled discriminator,
(b) incorporates a different normalization layer in the begin-
ning given by (x−xmin)

(xmax−xmin)
, scaling pixels between [0,1] with

a high 32-bit floating point precision, (c) inputs specifically a
single luminance channel input with 32-bit pixel-depth linear
HDR values.

In the following, we detail the multi-scale versions of G and
D. We showcase the impact through step-wise substitution of
the Single-D with its Multi-D variant, and then the Single-G
as well with its Multi-G counterpart.

a) Multi-D: Correctly classifying a high-resolution tone-
mapped output as real or fake is quite challenging for Single-
D. Even though an additional loss term effectively removes
noisy artifacts at a global scale in the image (illustrated later
in Section III-D), we still witness repetitive patterns in specific
localized regions while using Single-D (for e.g., seen around
high illumination sources like inside/outside the ring of table
lamp in Fig. 5a and on the ring of the lamp in Fig 5c).
One easy way to tackle this problem is by focusing the
discriminator’s attention to a larger receptive field which is
possible either through a deeper network or larger convolution
kernels. However, it would in-turn demand a higher memory-
bandwidth, which is already a constraint for training high-
resolution HDR images. Thus, we basically retain the same
network architecture for the discriminator as used previously,
but rather apply it on two different scales of input i.e., the
original and the 2× down-sampled version, calling the two
discriminators Do and Dd respectively.

Both Do and Dd are trained together to discriminate be-
tween real and synthetically generated images. Dd, by working
on a coarser scale, focuses on a larger area of interest in
patches throughout the image. This feature subsequently aids
G to generate more globally consistent patch-level details
in the image. Do on the other hand, operating at a much
finer scale than Dd, aids in highlighting more precise finer
nuances in patches, thus enforcing G to pay attention towards
very minute details too at the time of generation. Thus, by
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(a) Generator (Single Scale). (b) Discriminator (Single Scale). (c) Residual Blocks

Fig. 4: DeepTMO (single-scale) generator and discriminator architecture. The generator in (a) is an encoder-decoder architecture. Residual
blocks in (c) consist of two sequential convolution layers applied to the input, producing a residual correction. Discriminator in (b) consists
of a patchGAN [13], [17], [18] architecture which is applied patch wise on the concatenated the input HDR and tone mapped LDR pairs.
More details in Supplementary.

(a) Single-D & Single-G (b) Multi-D & Single-G

(c) Single-D & Multi-G (d) Multi-D & Multi-G

Fig. 5: Impact of Multi-scale Discriminator and Generator.

introducing a Multi-D, the noisy patterns observed in Single-
D, are suppressed to a large extent (for e.g., as seen in
Fig. 5a and Fig. 5b). However, we still witness minor traces
of these artifacts due to Single-G’s very own limitations, thus
compelling us to switch to Multi-G. Contrary to Single-G,
Multi-G reproduces outputs taking notice of both coarser and
finer scales. Thus, the resultant output, having information
over both scales, yields a more globally consistent and locally
refined artifact-free image (for e.g., as seen in Fig. 5b and
Fig. 5d.

b) Multi-G: Fig. 6 illustrates the design of Multi-
G. It mainly comprises of two sub-architectures, a global
down-sampled network Gd and a global original network
Go. The architecture for Gd is similar to Single-G with
the components, convolutional front-end, set of residual
blocks and convolutional back-end being represented as:
G

(Front)
d , G

(Res)
d , G

(Back)
d , respectively. Go is also similarly

Fig. 6: DeepTMO multi-scale generator architecture. While the finer
generator Go has the original image as its input, the input to Gd is
a 2× down-sampled version.

composed of three components given by: G(Front)
o , G(Res)

o

and G(Back)
o .

As illustrated in Fig. 6, at the time of inference, while the
input to Go is a high resolution HDR image (2048×1024), Gd

receives a 2× down sampled version of the same input. Go

effectively makes tone-mapped predictions, paying attention
to local fine-grained details (due to its limited receptive field
on a high resolution HDR input). At the same time, it also
inputs from Gd, a coarser prediction (as its receptive field has
a much broader view). Thus, the final generated output from
G

(Back)
o encompasses local low-level information and global

structured details together in the same tone-mapped output.
Hence, what we finally obtain is a much more structurally
preserved and minutely refined output which is free from local
noisy-artifacts, as seen in Fig. 5d.

To summarize, we showcase 4 different cGAN designs
where the:

1) Single-D & Single-G architecture encounters noisy pat-
terns due to not paying attention to finer-level details.

2) Multi-D & Single-G architecture is able to suppress
patterns to some extent as observed in the previous case.
This is mainly due to limited generalization capabilities
of Single-G.

3) Single-D & Multi-G architecture removes patterns
throughout the image, however some very localized
regions still face artifacts due to the limited capacity
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of Single-D.
4) Multi-D & Multi-G architecture finally yields superior

quality artifact-free images.

D. Tone Mapping Objective Function
The ultimate goal of G is to convert high resolution HDR

inputs to tone mapped LDR images, while D aims to dis-
tinguish real tone-mapped images from the ones synthesized
by G. We train both the G and D architectures in a fully
supervised setting. For training, we give a set of pairs of
corresponding images {(xi, yi)}, where xi is the luminance
channel of the HDR input image while yi is the luminance
channel output of the corresponding tone-mapped LDR image.
Next, we elaborate upon the objective function to train our
DeepTMO (both single-scale and multi-scale).

The basic principle behind cGAN [12] is to model the
conditional distribution of real tone-mapped images given an
input HDR via the following objective:

LcGAN (G,D) = Ex,y[logD(x, y)]+Ex[log(1−D(x,G(x)))],
(1)

where G and D compete with each other; G trying to
minimize this objective against its adversary D, which tries
to maximize it, i.e. G∗ = argminG maxD LcGAN (G,D).

Since the Multi-D architecture consists of Do and Dd, our
objective for the same is:

G∗ = argmin
G

max
Do,Dd

∑
s=o,d

LcGAN (G,Ds) (2)

We append to the existing cGAN loss, an additional regu-
larization term in the form of a feature matching (FM) loss
LFM (G,Ds) (similar to perceptual loss [53], [54]), given by:

LFM (G,Ds) = E(x,y)

M∑
i=1

1

Ui
[||D(i)

s (x, y)−Di
s(x,G(x))||1],

(3)
where Di

s is the ith layer feature extractor of Ds (from input
to the ith layer of Ds), M is the total number of layers and
Ui denotes the number of elements in each layer. In short, we
extract features from each individual D layer and match these
intermediate representations over real and generated images.
Additionally, we append a perceptual loss Lprp as used in [43],
which constitutes of features computed from each individual
layer of a pre-trained 19-layer VGG network [55] given by:
LLprp

(G) =
∑N

i=1
1
Vi
[||F (i)(y)− F (i)(G(x))||1]

where F (i) denotes the ith layer with Vi elements of the
VGG network. The VGG network had been pre-trained for
large scale image classification task over the Imagenet dataset
[56]. Henceforth, our final objective function for a DeepTMO
can be written as:

G∗ = argmin
G

max
Do,Dd

∑
s=o,d

LcGAN (G,Ds)+

β
∑
s=o,d

LFM (G,Ds) + γLLprp
(G)

(4)

β and γ controls the importance of LFM and LLprp with
respect to LcGAN and both are set to 10. We illustrate the
impact of both these terms in the following paragraph.

(a) without VGG and FM Loss (b) without VGG loss

(c) without FM Loss (d) with VGG and FM loss

Fig. 7: DeepTMO (single-scale) with/without FM and VGG Loss.

a) Impact of Feature Matching and Perceptual Loss
term: Both LFM and LLprp

loss terms act as guidance to
the adversarial loss function preserving overall natural image
statistics and training without both these terms results in in-
ferior quality throughout the image. The VGG-term primarily
checks for global noisy repetitive patterns in the image and
helps in suppressing them. While being applied on the full
generated image, the VGG network captures both low-level
image characteristics (e.g., fine edges, blobs, colors etc,) and
the high level semantic information through its beginning-level
and later-stage network layers, respectively. Based upon these
features, VGG effectively detects the corresponding artifacts as
a shortcoming in the overall perceptual quality of the generated
scene and hence guides to rectify them; thereby yielding a
more natural image. For e.g., the removal of noisy can be
visualized by looking simultaneously at Fig. 7b and 7d. The
FM loss term on the other hand, caters to more localized
quality details like keeping a watch on illumination conditions
in each sub-region. For e.g., it effectively tones-down over-
exposed regions of windows in the building as can be seen
in Fig. 7c and 7d. This is ideally done by utilizing various
feature layers of D, which are trained by focusing upon 70×70
localized image patches. Together both (VGG and FM) loss
terms help in yielding a high quality overall contrast and local
finer-details preserved output image (as seen in Fig. 7d).

E. Network Insight

Every component in the network plays an indispensable role
in the overall tone-mapping. Starting from the convolutional
front ends G(Front)

d and G(Front)
o , both of which are applied

directly on the linear HDR input, compress its tone and
transform it to an encoded representation in an HDR space.
While the convolutional layers play a critical role in down-
sampling the spatial resolution by deriving meaningful feature
layers using its learnt filters, the Instance Norm and activation
functions (following each conv-layer) help in compressing the
dynamic range of each pixel intensity. Next, the residual layers
G

(Res)
d and G(Res)

o can be understood as functions that map the
current encoded information in HDR space to one in the LDR
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space. This is essentially accomplished by adding a residual
information to the current compressed form of HDR input.
Finally, the G(Back)

d and G(Back)
o are applied to this encoded

representation in the LDR space in order to transform it into a
rich and visually pleasing LDR output. While the transposed
convolution pay special attention to spatial upsampling, the
activation functions maintains a compressed tone which is
perceptually ‘the most’ appealing for a given scene.

TABLE I: Abbreviations

Symbols Meaning
Go, Gd Generator Original, Downsampled scale
Do, Dd Discriminator Original, Downsampled scale
LcGAN Adversarial Loss
LFM Feature Matching Loss
Lprp Perceptual Loss
L1 L1 Absolute Loss

H,W,C Height, Width and Channel
β, γ control parameters

IV. BUILDING THE HDR DATASET

In order to design a deep CNN based TMO, it is essential
to obtain a large-scale dataset with a wide diversity of real-
world scenes that are captured using a variety of cameras. To
this end, we gather the available HDR datasets. For training
the network, a total of 698 images are collected from various
different sources, listed in the supplementary material. From
the HDR video dataset sources, we select the frames manually
so that no two chosen HDR images are similar. All these
HDR images have been captured from diverse sources which
is beneficial for our objective i.e., learning a TMO catering a
wide variety of real-world scenes.

To further strengthen the training, we applied several data
augmentation techniques such as random cropping and flip-
ping, which are discussed briefly in section V-2. We considered
105 images from the [57] for testing purposes.

A. Target Tone Mapped Images

Selecting a ‘target’ tone mapped image for a given HDR
scene is a crucial step in training the DeepTMO. Although
several subjective studies [19] built on different hypotheses
have attempted to answer this question, yet they have been
conducted only for very small databases of sizes upto 15-
20 scenes. Such subjectively evaluated databases are limited
in number and cannot be effectively used as training dataset
for our DeepTMO model. Additionally, these databases have
been evaluated under varying evaluation setups i.e., by using
different sets of TMOs and reference or no-reference settings.
Hence, similar to [52], we resorted to a widely used objective-
metric known as TMQI [31] to ensure a fixed target selection
criterion for our problem.

As discussed in Section 2, literature of TMOs is quite
extensive and practically difficult to span. Therefore, to find
the target tone mapped image for each training HDR scene, we
selected 13 classical TMOs: [20], [24], [58], [26], [23], [21],
[22], [59], [28], [25], [27] and gamma and log mappings [19].
The selection of these tone mappings is inspired from the sub-
jective evaluation studies [8], [31], [2], [30] which highlight

the distinctive characteristics of mapping functions, which we
aim to inculcate into the learning of our DeepTMO model.

For each HDR scene, we initially rank the obtained tone-
mapped outputs from all the 13 TMOs using the TMQI metric.
Then, the best scoring tone mapped output is selected as the
‘target’ for the corresponding HDR scene. Since tuning the
parameters of 13 considered TMOs is a daunting task for a
large set of training images, we used their default parameter
settings throughout this paper. Though we acknowledge that
fine-tuning TMO parameters can further boost overall perfor-
mance, the process however, is almost impractical considering
the large amount of training images and the vast parameter-
space of the TMOs.

V. TRAINING AND IMPLEMENTATION DETAILS

DeepTMO training paradigm is inspired by the conven-
tional GANs approach, where alternate stochastic gradient
descent (SGD) steps are taken for D followed by the G.
We specifically utilize Least Square GANs (LSGANs), which
have proven to yield [60] a much more stable learning process
compared to regular GANs. For the multi-scale architecture,
we first train Gd separately, and then fine tune both Gd and Go

(after freezing the weights of Gd for the first 20 epochs). For
both D and G, all the weights corresponding to convolution
layers are initialized using zero mean Gaussian noise with a
standard deviation of 0.02, while the biases are set to 0.

(a) With Instance Norm (b) With Batch Norm

Fig. 8: Batch Normalization vs. Instance Normalization.

1) Instance Vs. Batch Norm: We use instance normaliza-
tion [61], which is equivalent to applying batch normaliza-
tion [62] using a batch size equal to 1.

The efficacy of the instance-norm is showcased in Fig. 8,
where applying the plain batch-norm yields non-uniformity in
luminance compression. While the instance normalization is
trained to learn mean and standard deviation over a single-
scene for the purpose of normalizing, the batch-norm learns
over a full batch of input images. Thus, its mean and standard
deviation is computed spatially for each pixel from a much
wider range of high dynamic luminance values over the entire
batch leading to uneven normalization.

Absence of batch-norm/instance-norm prevents the G/D to
train properly and results in poor generation quality, thus
necessitating the need for a normalization layer. All the
instance normalization layers are initialized using Gaussian
noise with mean 1 and 0.02 standard deviation.

2) Implementation: All training experiments are performed
using the Pytorch [63] deep learning library with mini-batch
SGD, where the batch size is set to 4. For multi-scale, we use
batch-size 1 due to limited GPU memory. We utilize an ADAM
solver [64] with initial learning rate fixed at 2× 10−4 for the



9

first 100 epochs and then, allowed to decay to 0.0 linearly, until
the final epoch. Momentum term β1 is fixed at 0.5 for all the
epochs. Hyper-parameters have been set to their default values
and arent manipulated much due to GANs training complexity.
We also employ random jitters by first resizing the original
image to 700 × 1100, and then randomly cropping to size
512×512. For multi-scale, we resize to 1400×2200 and crop
to size 1024×1024. All our networks are trained from scratch.

For all the other handcrafted TMOs, we used the MATLAB-
based HDR Toolbox [19] and Luminance HDR software 1.
For each TMO, we enabled the default parametric setting as
suggested by the respective authors. Training is done using
a 12 Gb NVIDIA Titan-X GPU on a Intel Xeon e7 core i7
machine for 1000 epochs and takes a week.

VI. RESULTS AND EVALUATION

In this section, we present the potential of our DeepTMO
on a wide range of HDR scenes, containing both indoor
and outdoor, human and structures, as well as day and night
views. We compare our results with the best subjective outputs
obtained from wide range of tone mapping methods [21],
[27], [26], [22], [25], [24], [58], [59] on 105 images of test
dataset [57], both qualitatively and quantitatively. In addition,
we briefly discuss the specific characteristics of the proposed
model, including their adaptation to content or sharpness in
displaying high-resolution tone mapped outputs. Finally, we
present a subjective evaluation study to access the perceived
quality of the output. The size for each input image is kept
fixed at 1024× 2048.

Note that test scenes are different from the training set and
are not seen by our model while training. Full size images
and some additional results can be found in the supplementary
material for better visual quality.

A. Comparison with the Best Quality Tone-Mapped Images

We begin the comparison of our DeepTMO model against
the best quality tone mapped test images to assess the overall
capability to reproduce high-quality images over a wide variety
of scenes. To obtain the target test image, we follow a similar
paradigm as provided in Section IV-A.

In Fig. 9, we demonstrate qualitative comparisons of our
model with the two top scoring TMOs obtained using TMQI
ranking, which includes methods like Mantiuk [27], Rein-
hard [59], Fattal [28], Durand [26], Drago [21], Pattnaik [24]
TMO, over 7 explempary real-world scenes representing in-
door/outdoor, with humans and structures, in day/night con-
ditions. These sample scenes depict the exemplary mapping
of linear HDR content using DeepTMO, where it successfully
caters a wide variety of scenes as well as competes with the
respective best quality outputs in terms of overall contrast
preservation and visual appeal. In scene-1, a scene with
human in indoor condition, we observe that our DeepTMO
competes closely to the target output while preserving details
in under/over exposed areas such as human face, areas under
the table or outside the window. Another indoor scene-2,

1http://qtpfsgui.sourceforge.net/

having shiny surfaces (indoor) and saturated outside regions
(windows) demonstrate the effectiveness of our model by
preserving details in these regions, yielding a high-quality
output. Similar observations can be made in outdoor scenes
with structures i.e., in scene-3 and 4, where we notice that
our DeepTMO model effectively tone-maps sharp frequency
regions in overly exposed areas such as the dome of the
building, the clouds in the sky or the cow’s body. Landscape
scene-5 has similar observations in the rising sun and dark
forest regions. Although multi-scale DeepTMO design pays
attention to the global and minute sub-regional information,
the preservation of illumination and details in dull and overly
bright regions is also due to the presence of the FM-loss term,
which in turn utilizes features from different D layers. Since D
is focused on localized image-patches, the FM-term implicitly
understands how to compress or enhance luminance in specific
regions.

More interestingly, we observe that DeepTMO suppresses
noisy disturbances (i.e., above the Waffle House store) in
dark scene-6, which appears more pronounced in the two best
performing tone-mapped images. This can be reasoned owing
to the addition of VGG and FM-loss terms which guides the
network to handle the noisy repetitive patterns and dark sensor-
noise while preserving the natural scene statistics. Further-
more, we showcase a night time high-contrast scene-7, where
our DeepTMO competes closely with the two best quality
outputs while preserving the overall contrast ratio. However,
we do observe the images obtained with our method have more
saturated colors which we discuss later in Section VII-A.

Though in most cases our DeepTMO competes well with
target images, in some cases we observe that it even outper-
forms them with respect to TMQI scores. Fig. 10 compares
two exemplary HDR scenes from the test dataset that are
mapped using the DeepTMO and their corresponding target
TMOs in day and evening time-settings. In the first row,
DeepTMO successfully preserves the fine details in the sky
along with the waterfall and the mountains in the background.
For a darker evening scene in second row, DeepTMO com-
pensates the lighting and preserves the overall contrast of
the generated scene. Even though we observe a halo ring
around sun using our method (which we analyze later in
Section VII-A), our TMQI score is considerably higher mainly
because the TMQI metric is color-blind.

One possible explanation of such outcomes is the ability of
the generator to learn the manifold of all available best tone
mapping operators and subsequently developing a superior
tone mapping functionality (from this manifold), which yields
optimal output depending upon the scene. In other words, this
manifold learning can be observed as a loose formulation built
over the ideal characteristics (both global and local) desired for
tone-mapping of different scene-types present in the training-
set. In fact, learning such a complex mapping functionality is
non-trivial by using a global TMQI metric score alone. This
further confirms the goal of our training strategy.

a) Quantitative Analysis: To further demonstrate the
high-quality mapping capability of DeepTMO models on all
the 105 real world scenes, in Fig. 11, we show a distribution
plot of the number of scenes against the TMQI Scores. For
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Fig. 9: Comparison between our DeepTMO outputs and outputs from top-2 ranked tone-mapped scenes on TMQI metrics for a variety of
real-world scenes including indoor, scenes with structures, landscape, dark/noisy scenes. In brackets we show corresponding TMQI scores.
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Fig. 10: Comparison between DeepTMO and targets, highlighting
the zoom-ins with the corresponding HDR-linear input.

completeness, we also provide scores achieved by target tone-
mapped outputs. The curves clearly show that the generated
tone mapped images for DeepTMO compete closely with the
best available tone mapped images on the objective metrics
with DeepTMO fairing the best amongst all.

We provide quantitative analysis in Table II, to showcase
the performance of our proposed model with the existing
approaches. For each method, the TMQI scores are averaged
over 105 scenes of the test dataset. The final results show
that our proposed tone mapping model adapts for the variety
of scenes and hence, achieves highest score. Please note that
standard TMOs were applied with default parameter settings
and hence results may improve for them by parameter opti-
mization. Still performance of our fully automatic approach is
highly competitive.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50
DeepTMO
TargetTMOs

Fig. 11: Quantitative performance comparison of best performing
DeepTMO with the target TMOs.

b) Computation Time: Inference is performed on test-
images of size 1024 × 2048 and takes on an average 0.0187
sec. for single-scale and 0.0209 sec. for multi-scale designs,

TABLE II: Quantitative Results. Mean TMQI scores on the test-set
of 105 images.

TMOs TMQI
Tumblin [23] TMO 0.69 ±0.06

Chiu [25] TMO 0.70 ±0.05
Ashikh [58] TMO 0.70 ±0.06
Ward [20] TMO 0.71 ±0.07
Log [19] TMO 0.72 ±0.09

Gamma [19] TMO 0.76 ±0.07
Pattnaik [24] TMO 0.78 ±0.04
Schlick [22] TMO 0.79 ±0.09
Durand [26] TMO 0.81 ±0.10
Fattal [28] TMO 0.81 ±0.07
Drago [21] TMO 0.81 ±0.06

Reinhard [59] TMO 0.84 ±0.07
Mantiuk [27] TMO 0.84 ±0.06

DeepTMO (Single G - Single G) 0.79 ±0.06
DeepTMO (Single G - Multi D) 0.81 ±0.05
DeepTMO (Multi G - Single D) 0.80 ±0.07
DeepTMO (Multi G - Multi D) 0.88 ±0.06
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Fig. 12: Subjective Test Results. Preference probability of our
DeepTMO over best performing target TMOs for 15 scenes repre-
senting 5 different scene categories.

as shown in Figure 13.

B. Quality Evaluation

We performed a subjective pairwise comparison to validate
the perceived quality of our tone-mapped images. 20 people
participated in this subjective study, with age range of 23-38
years, normal or corrected-to-normal vision.

1) Test Environment and Setup: The tests were carried
out in a room reserved for professional subjective tests with
ambient lighting conditions. A Dell UltraSharp 24 Monitor
(DELL U2415) was used for displaying images with screen
resolution 1920 × 1200 at 59 hz. The desktop background
window was set at 128 gray value.

Each stimuli included a pair of tone mapped images for a
given scene, where each pair always consisted of an image
produced by DeepTMO and the other one obtained using the
best-performing tone mapping functions based on the TMQI
rankings. To cater a wide variety of content, we selected
15 scenes from 105 test-set images, representing 5 different
categories (3 scenes per category) namely, i) Humans, ii)
Dark/Noisy, iii) Indoor, iv) Structures, and v) Landscapes.

2) Procedures: We conducted a pair-wise subjective ex-
periment where the observer was asked to choose an image
by showing a pair of images side-by-side. The option same
was not included to force users to choose one of the stimuli.
Each participant was asked to select an image which is more
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Fig. 13: Computation time in seconds.

realistic and appealing to him/her. Participants were provided
with unlimited time to make their decision and record their
choice. The experiment was divided into a training and test
session, where training involved each participant being briefed
to familiarize with the subjective quality evaluation task.
Each observer compared a pair of image twice, having each
tone-mapped image displayed on both sides (e.g., DeepTMO
vs. first-best tone mapped and first-best tone mapped vs.
DeepTMO).

3) Results: In order to quantify the results of pairwise sub-
jective tests, we scaled the winning frequencies of the model to
the continuous quality-scores using the widely known Bradley-
Terry (BT) model in [65]. The scaling is performed using the
statistical analysis proposed in [66] to determine whether the
perceived visual quality difference of the compared models
is statistically significant. The preference probability for our
method Pref − Prob(DeepTMO) is mathematically given as:

Pref − Prob(DeepTMO) =
wDeepTMO

N
+

t

2 ·N
(5)

where wDeepTMO is the winning frequency of our proposed
model, t is the tie frequency and N is the total number of
participants. The statistical model relies on the hypothesis that
each compared TMO in the pairwise test shares equal prob-
ability of occurrence i.e., 0.5 and hence, follows a Binomial
distribution. Based on the initial hypothesis, a Binomial test
was performed on the collected data and the critical thresholds
were obtained by plotting the cumulative distribution function
of the Binomial distribution. By setting 95% as the level of
significance, if we receive 13 (B(13, 20, 0.5) = 0.9423) or
more votes for our proposed method, we consider our tone-
mapped image to be significantly favored in terms of subjective
quality. Similarly, by setting 5% as the significance level, if
we receive 6 (B(6, 20, 0.5) = 0.0577) or less votes for our
proposed method, we consider our tone-mapped image to be
least favored in terms of subjective quality.

The results of the pair-wise subjective quality experiment
are shown in Fig. 12. The two lines (blue and red) mark
probabilities of high (13/20 = .65) and low (6/20 = .30)
favor-abilities respectively. Looking at the results, we observe
that DeepTMO images have been significantly preferred over
best TMQI rated tone mapped images for most of the scenes,
for different possible categories. In general, we observed
that subjects preferred our tone-mapped LDR scenes which
preserve the contrast well. Based on some informal post-
experiment interviews, we found that best TMQI rated target
images, preserving fine details were least realistic and more
like paintings to observers. A small set of images used in
subjective tests is shown in Fig. 9.

(a) (b) (c) (d)

Fig. 14: Top TMQI scoring TMOs showing not-so-visually desirable
outputs. (a) DeepTMO output, (b), (c) and (d) are 3 top ranking TMO
output.

(a) (b) (c) (d)

Fig. 15: Halo effect. (a) DeepTMO output, (b) DeepTMO trained
with log-scaled values, (c) and (d) 2 top ranking TMO outputs.

VII. CONCLUSION, LIMITATIONS AND FUTURE WORK

Designing a fast, automated tone-mapping operator that can
reproduce best subjective quality outputs from a wide range
of linear-valued HDR scenes is a daunting task. Existing
TMOs address some specific characteristics, such as overall
contrast ratio, local fine-details or perceptual brightness of the
scene. However, the entire process of yielding high-quality
tone-mapped output remains a time-consuming and expensive
task, as it requires an extensive parameter tuning to produce
a desirable output for a given scene.

To this end, we present an end-to-end parameter-free
DeepTMO. Tailored in a cGAN framework, our model is
trained to output realistically looking tone-mapped images,
that duly encompass all the various distinctive properties of
the available TMOs. We provide an extensive comparison
among various architectural design choices, loss functions
and normalization methods, thus highlighting the role that
each component plays in the final reproduced outputs. Our
DeepTMO successfully overcomes the frequently addressed
blurry or tiling effects in recent HDR related works [9], [37],
a problem of significant interest for several high-resolution
learning-based graphical rendering applications as highlighted
in [9]. By simply learning an HDR-to-LDR cost function
under a multi-scale GANs framework, DeepTMO successfully
preserves desired output characteristics such as underlying
contrast, lighting and minute details present in the input
HDR at the finest scale. Lastly, we validate the versatility of
our methodology through detailed quantitative and qualitative
comparisons with existing TMOs.

(a) DeepTMO (b) s=0.5 (c) s=0.3

Fig. 16: Color Correction. (a) DeepTMO, (b) and (c) are the color
corrected DeepTMO controlled by parameter s from [67].
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A. Limitations and Future Work

a) Target Selection: Though DeepTMO successfully
demonstrates versatility in addressing wide variety of scenes,
its expressive power is limited by the amount of available
training data and quality of its corresponding ‘target’. As noted
in Section I, due to unavailability of subjectively annotated
‘best tone mapped images’ for HDR scenes, we resort to an
objective TMQI metric to build the corresponding target LDR.
However, the metric itself is not as perfect as the human visual
system. We illustrate this point in Fig. 14. The images ranked
lower by TMQI metric in column 3 and 4 are somehow more
interesting than their best-ranked counterpart in column 2.
Such samples can eventually restrict the generation power of
our model.

Another specific case includes ‘Halo’ artifacts or rings
around high illumination regions such as the sun shown in
Fig. 15, where DeepTMO (column 1) is compared with the
top TMQI scoring outputs in column 3 and column 4. This
is mainly due to the inadequate amount of training data
consisting of such samples, and the presence of their overly
saturated ‘target’ counterparts. As a result, D has very little
information about effectively tone-mapping such regions, and
thus is unable to guide G to effectively eradicate such effects
at generation time. To handle such artifacts, we additionally
experimented using a log-scale input (column 2) where we
observe that even log-scale values do no rectify such effects,
thus necessitating the need of adequate training samples.

An alternative future work to address this problem, can be
to weakly rely on these ‘noisy’ tone-mapped ground truths
images by utilizing a weakly supervised learning paradigm
[68]. We can also learn HDR-to-LDR mapping in a completely
unsupervised fashion without giving any input-output pairs
[47]. This would allow the network to decide by itself which is
the best possible tone-mapped output simply by independently
modeling the underlying distribution of input HDR and output
tone mapped images.

b) Color Correction: Color is an important aspect while
rendering high quality subjective tone-mapped outputs. Our
proposed method has been trained for efficient luminance
compression in HDR scenes and uses the classical color
ratios to produce the resulting tone-mapped outputs. Although
it provides best subjective quality outputs in most cases,
it sometimes can result into overly saturated colors which
might look unnatural and perceptually unpleasant. One simple
solution could be to simply plug-in existing color correction
methods [67] to obtain the desired output. An example is
shown in Fig. 16, where color correction has been carried
out using the method as proposed in [67], which is given by
Cout = ((Cin

Lin
−1) ·s+1) ·Lout, where s is the color saturation

control. Alternately, another interesting solution could be to
learn a model to directly map the content from HDR color-
space to an LDR colored tone mapped output.
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