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Abstract

Particle-In-Cell (PIC) codes are broadly applied to the kinetic simulation of plasmas, from laser-matter interaction to astrophysics.
Their heavy simulation cost can be mitigated by using the Single Instruction Multiple Data (SIMD) capibility, or vectorization, now
available on most architectures. This article details and discusses the vectorization strategy developed in the code Smilei which
takes advantage from an efficient, systematic, cell-based sorting of the particles. The PIC operators on particles (projection, push,
deposition) have been optimized to benefit from large SIMD vectors on both recent and older architectures. The efficiency of these
vectorized operations increases with the number of particles per cell (PPC), typically speeding up three-dimensional simulations by
a factor 2 with 256 PPC. Although this implementation shows acceleration from as few as 8 PPC, it can be slower than the scalar
version in domains containing fewer PPC as usually observed in vectorization attempts. This issue is overcome with an adaptive
algorithm which switches locally between scalar (for few PPC) and vectorized operators (otherwise). The newly implemented
methods are benchmarked on three different, large-scale simulations considering configurations frequently studied with PIC codes.

Keywords: Particle-In-Cell (PIC), Sorting, SIMD vectorization, Plasma physics

1. Introduction

Particle-in-Cell (PIC) codes are among the most popular
tools for the kinetic simulation of plasmas [1]. They consist in
following the continuous trajectories of charged particles mov-
ing through a spatial domain under the action of external and
self-induced electromagnetic (EM) fields. These fields are rep-
resented on a discrete grid that also holds the plasma charge
and current densities entirely defined by the particles’ phase-
space distribution. Because the speed of light is finite, the na-
ture of the physics described by EM PIC codes, the interac-
tions between particles and fields, is spatially local. This prop-
erty makes them a good candidate for massive parallelization
and several codes have indeed demonstrated virtually unlimited
weak scaling [2, 3, 4] provided load balance is maintained [5].
In contrast, the PIC algorithm is not well adapted for high per-
formances at the single node level for several reasons. First, in
most cases, PIC simulations are becoming increasingly mem-
ory bound as memory performance is not ramping up as fast
as the computation capabilities. Second, particles are free to
move anywhere in the domain and therefore trigger inefficient
random accesses to memory each time they interact with the
grid. This randomness also prevents the use of Single Instruc-
tion Multiple Data (SIMD) instructions which are very efficient
at speeding up memory-bound operations but are restricted to
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very regular memory access patterns. Finally, the wide vari-
ety of possible numerical configurations is difficult to optimize
with a single technique. PIC code optimization must therefore
rely on randomness mitigation for optimized memory usage in-
dependently of the simulation parameters.

A first approach to mitigate randomness in PIC codes is to
use the standard domain decomposition on domains so small
that they can fit in the cache of the system. This method is
commonly used in recent implementations and the small do-
mains are often referred to as patches[2] or tiles[6, 7] (from
now on the term patch is used as the generic denomination). It
exposes a very high level of parallelism and mitigates memory
access randomness since particles of each patch all access the
same grid region which is limited by the patch extension.

Another approach to further reduce randomness is particle
sorting. This consists in organizing the particles in memory ac-
cording to their location. This idea was introduced in PIC codes
in 1977 as part of a binary collision model [8], but only consid-
ered for optimization twenty years later on CPU [9, 10] and
on GPU a decade later [11, 12, 13]. Its purpose was to make
memory accesses less random while maximizing the cache ef-
ficiency. Since all computing systems have had multi-level
caches for decades, sorting is nowadays very common in PIC
codes, but it paradoxically implies a significant computation
overhead because of potentially heavy data movements. More-
over, when coupled to patching, sorting only has a minimal im-
pact on cache management efficiency. For those reasons, most
PIC codes do not keep particles sorted at all times or perform
only a coarse-grain sort[11]. Nevertheless, in addition to cache
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use improvement, particle sorting can also favor SIMD opera-
tions by structuring memory accesses into repeatable patterns.
This article focuses on the fact that, with the increasing impor-
tance of these operations in today’s hardware, the benefits of
sorting at all times can actually overcome its cost.

The benefits of frequent sort and its possible implementation
is discussed in [14, 15]. In these works, particles are stored
in many different cell-dependent arrays and moved in memory
when they change cell. This approach improves SIMD effi-
ciency on many-core architectures such as the Intel Xeon Phi
provided that the particles arrays have enough elements. A sim-
ilar approach has been extended in [16] where the authors use
additional strategies such as the division of a cell’s particle set
into chunks to improve cache coherence and reduce memory
transfers. They report acceleration when using a few hundreds
particles per cell.

The present work proposes a vectorized PIC algorithm based
on a new fine-grain particle sorting at all times. The algorithm
relies on a cycle sort and retains a single particle array per patch.
It is combined with an adaptive mode that selects at runtime and
locally (at the patch level) between the scalar and vectorized
algorithms depending on the local conditions in order to support
efficiently any number of particles per cell. This approach was
implemented in the code Smilei1 [2], and its impact on the code
performance is discussed throughout this paper.

The paper is structured as follows. Section 2 summarizes the
PIC algorithm and its implementation in Smilei. The perfor-
mance of the most important operators acting onto the particles
(namely the interpolator, pusher and projector), in their scalar
version, is analyzed in terms of their computational cost. The
following Sec. 3 details the fine-grain cycle sort algorithm and
its benefits. Section 4 then focuses on the vectorization of each
operator. For generality, emphasis is placed on the algorithm
rather than on the implementation itself. Section 5 analyzes and
compares the performance measurements between the scalar
and vectorized operators. We demonstrate that the vectorized
algorithms are more efficient only for a large enough number of
particles per cell. This motivated the development of an adap-
tive method to select locally and dynamically (at runtime) the
most efficient operators between scalar or vectorized depending
on local number of particles per cell in the patch. This adaptive
method is presented in Sec. 6. Section 7 presents the perfor-
mance gain that can typically be obtained by using the fully
vectorized and adaptive modes in large-scale three dimensional
(3D) simulations. Three configurations, two related to laser-
plasma interaction the third one to astrophysics, are presented.
In all three cases, the scalar, vectorized and adaptive modes are
used and their performances are compared. Finally, conclusions
are given in Sec. 8.

2. The PIC method

This first section briefly summarizes the basics of the PIC
method for collisionless plasma simulation. This presentation

1Smilei is an open-source project. Both the code and its documentation are
available online at http://www.maisondelasimulation.fr/smilei

introduces in particular the main operators that in Smilei act
onto the particles and which performance, in their scalar ver-
sion, will be presented at the end of the section. More detailed
descriptions of the PIC method can be found in [1, 17, 18], and
Smilei’s implementation is more specifically explained in [2].

2.1. The Maxwell-Vlasov model
The kinetic description of a collisionless (fully or partially

ionized) plasma relies on the Vlasov-Maxwell system of equa-
tions. In this description, the different species of particles con-
stituting the plasma are described by their respective distribu-
tion functions fs(t, x,p), where s denotes a given species con-
sisting of particles with charge qs and mass ms, and x and p
denote the position and momentum of a phase-space element.
The distribution fs satisfies Vlasov’s equation2:(

∂t +
p

msγ
· ∇ + FL · ∇p

)
fs = 0 , (1)

where γ =
√

1 + p2/(ms c)2, c is the speed of light in vacuum,
and

FL = qs (E + v × B) (2)

is the Lorentz force acting on a particle with velocity v =

p/(msγ).
This force follows from the existence, in the plasma, of col-

lective electric [E(t, x)] and magnetic [B(t, x)] fields satisfying
Maxwell’s equations:

∇ · B = 0 , (3a)
∇ · E = ρ/ε0 , (3b)
∇ × B = µ0 J + µ0ε0 ∂tE , (3c)
∇ × E = −∂tB , (3d)

where ε0 and µ0 are the vacuum permittivity and permeability,
respectively.

The Vlasov-Maxwell system of Eqs. (1) – (3) describes the
self-consistent dynamics of the plasma whose constituents are
subject to the Lorentz force, and in turn modify the collective
electric and magnetic fields through their charge and current
densities:

ρ(t, x) =
∑

s

qs

∫
d3p fs(t, x,p) , (4a)

J(t, x) =
∑

s

qs

∫
d3p v fs(t, x,p) . (4b)

In the electromagnetic code Smilei, velocities are normal-
ized to c. Charges and masses are normalized to e and me,
respectively, with −e the electron charge and me its mass. Mo-
menta and energies (and by extension temperatures) are then
expressed in units of mec and mec2, respectively. The normal-
ization for time and space is not decided a priori. Instead, all
the simulation results may be scaled by an arbitrary factor, cho-
sen here to be an angular frequency ω. Temporal and spatial

2SI units are used throughout this work.
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quantities are then expressed in units of ω−1 and c/ω, respec-
tively, while (number) densities are in units of ε0meω

2/e2. More
details are given in [2].

2.2. Data structures: Macro-particles and fields

The “Particle-In-Cell” method owes its name to the dis-
cretization of the distribution function fs as a sum of Ns “macro-
particles” (also referred to as “super-particles” or “quasi-
particles”):

fs(t, x,p) =

Ns∑
p=1

wp S
(
x − xp(t)

)
δ
(
p − pp(t)

)
, (5)

where wp is the pth macro-particle “weight”, xp is its position,
pp is its momentum. δ(p) is the Dirac distribution and S (x)
is the so-called shape-function of all macro-particles. These
macro-particles are advanced, knowing the electromagnetic
fields at their position, by solving their relativistic equations
of motion. For convenience, in the rest of this article macro-
particles will be referred to simply as “particles”.
Particle weights, momentum components and position compo-
nents are stored separately in contiguous arrays. These arrays
are elements of a structure of arrays called Particles. The
EM fields experienced by the particles (obtained at the parti-
cles’ positions after the interpolation step, see section 4.1) as
well as their Lorentz factors are stored in temporary contiguous
arrays.

Smilei uses the Finite Difference Time Domain (FDTD)
method [19] to solve Maxwell’s equations. The EM field
components, charge densities and current density components
are thus stored onto Cartesian staggered grids as illustrated in
Fig. 1. This Yee grid [20] is a very standard mesh layout used
in most FDTD approaches, as well as refined methods based
on this technique [21]. It involves two regularly-spaced grids:
primal and dual. Primal vertices are points where the charge
density ρ is evaluated; they delimit the primal cells. Dual ver-
tices are located at the center of the primal cells and form the
dual grid. Apart from the charge density, other quantities are
not evaluated at either of these vertices, but at midpoints high-
lighted in figure 1. As an example, the current component Jx is
dual in x, primal in y and primal in z.

2.3. The PIC time-loop iteration

The explicit PIC time loop operations consist in solving
successively Maxwell’s and Vlasov’s equations. Maxwell’s
equations are solved by performing an explicit FDTD solver.
Vlasov’s equation, solved by advancing particles in phase
space, requires three steps:

• Field interpolation (or field gathering): the freshly updated
electric and magnetic fields from the Maxwell solver, be-
ing known only at the grid vertices, are interpolated at each
particle’s position. The interpolation method accounts for
the fields of several neighboring cells according to a parti-
cle shape function.

z
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Primal grid

Dual grid

(i+1)Δx

iΔx

Bx

ρ
jΔy

(i+1/2)Δx

(j+1)Δy
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kΔz

(k+1/2)Δz
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By
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Figure 1: Representation of the staggered Yee grids. The location of all fields
and current densities follows from the common convention to define charge
densities at the cell vertices. The black cell is part of the primal grid which
vertices carry the charge density. The red cell is part of the dual grid which
vertices are located at the center of the primal cells. Primal and dual vertices
are respectively represented by blue and red circles.

• Particle push: the equation of motion is solved using the
interpolated fields. This typically relies on finite difference
leap-frog methods (e.g. schemes from Boris [22, 1], Vay
[23] or Higuera-Cary [24]) which advance the momenta at
the middle of the time step before computing the positions
at the next time step.

• Projection (or current deposition): once the particles have
been pushed, their contributions to the current need to be
projected back to the grids. As field interpolation, this
step uses the particle shape function. Note that, in Smilei,
current deposition relies on the charge-conserving method
developed by Esirkepov [25], and this projection method
will alway be considered throughout this work. The cur-
rent projected onto the grids is then used in the Maxwell
solver to compute the following time step.

2.4. The PIC time-loop performance

In plasma simulations, advancing the particles is usually
much more expensive than solving Maxwell’s equations. The
computational cost thus scales with the number of particles
which is, in most case, vastly larger than the number of ver-
tices. The computational cost also varies between operators.
In this Section, the performance of the scalar particle operators
(namely the interpolator, pusher and projector) is analyzed.

To do so, we consider the simple case of a thermal plasma.
An homogeneous, Maxwellian, hydrogen plasma fills the en-
tire simulation domain, with an initial proton temperature of 10
keV and electron temperature of 100 keV, and particles were
initially randomly distributed in space. The domain has pe-
riodic boundary conditions and the cell dimensions are ∆x =
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∆y = ∆z ' 0.22 c/ω, where ω denotes the electron plasma fre-
quency in this particular case. Simulations were run for 100
iterations with a time step ∆t = 0.95∆CFL = 0.12ω−1 where
c∆CFL =

(
∆−2

x + ∆−2
y + ∆−2

z

)−1/2
corresponds to the timestep at

the Courant-Friedrichs-Lewy (CFL) condition. The shape func-
tion for interpolation and projection is of order 2, i.e. over 3
vertices in each direction, and as stressed earlier Esirkepov’s
charge-conserving current projection scheme is used.

The simulations are performed on a single node of the Sky-
lake super-computer Irene Joliot-Curie in France (see Ap-
pendix A). The domain is divided into 8×8×6 patches. The run
has 2 MPI processes with 24 openMP threads each so that each
core has 8 patches to handle. Each patch contains 8×8×8 cells,
which is sufficiently small to have the field data in L2 cache.
The load is balanced during the entire simulation as the plasma
remains uniform. This study neglects the cost of communica-
tions between nodes, focusing instead on the particle operators
(interpolator, pusher, projector) and the Maxwell solver. As a
consequence, the type of particles and their velocities have little
impact on the results.

In the following, we present a parametric study of the scalar
operators’ performance as a function the number of particles
per cell (from 1 to 256). Throughout this work, the performance
of various operators will be measured by the computation time
per particle per iteration. In order to facilitate the comparison
between architectures, this computation time is considered at
the node level. More precisely, it is computed as:

τpart =
Twall−clock

Npart × Nt
× NNodes (6)

where Twall−clock is the wall-clock time spent in the considered
operators, Npart is the total number of particles in the simulation,
Nt the number of timesteps over which the simulation is run and
NNodes is the number of nodes used for the simulation. In Sec. 7,
we will also present a time-resolved version of this measure that
is obtained by summing not over the total number of timesteps,
but a reduced number of them and doing so several time during
the simulation.

The computation times obtained per particle and per iteration
for each operator are shown in Fig. 2. They appear to depend
weakly on the number of particles per cell, gaining ∼19% at
the higher end. With little vectorization and neglecting cache
issues, the scalar operators should not depend on the number of
particles per cell but on the total number of particles to be com-
puted per patch. This is approximately verified. The small gain
is partly due to the scalar operators having vectorized sequences
(the code is always compiled with the vectorization flags) even
if the most intensive loops are not optimized. Cache memory
effects could also impact the particle computation time but this
analysis requires a deep instrumentation of the code. The pro-
jection appears to be the most time-consuming operator (∼65%
of the whole particle pushing time in average), followed by the
interpolator (∼30% contribution). The pusher represents ∼5%
(or less) of the particle pushing time, although slightly increas-
ing with the number of particles contrary to the other operators.
Note that the sum of all contributions is not exactly 100% be-
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Figure 2: Computational cost [see Eq. 6] of each particle operator for the scalar
version of the code, as a function of the number of particles per cell. Simula-
tions run on a single Skylake node.

cause the particle processing includes additional small compu-
tation such as the exchange preprocessing. The time spent in
the Maxwell solver is independent of the number of particles
per cell and remains constant for all cases. In relative terms,
it represents 12% of the particle computation time for 1 parti-
cle per cell, and becomes rapidly negligible above, as particles
consume more and more time.

The objective of the vectorization method described in this
paper is to reduce the cost of the three particle operators which
are further detailed in sections 4.1 to 4.3.

3. Particle sorting

This section describes the algorithm used to sort particles in
Smilei which is a fine-grain and frequent sorting.

3.1. Sorting definition and purpose

A sorting technique in a PIC code is defined by: (i) the
“grain” of the sorting, or resolution, often expressed as an ele-
mentary volume (i.e. sub-cells, single cell or multiple cells), (ii)
the ordering of the set of grains, and (iii) the frequency of the
sorting (usually a fixed periodicity expressed in number of time
steps). The objective is that, after sorting, all particles within
the same “grain” are stored contiguously in memory.

The vectorization strategy in Smilei requires particles shar-
ing the same primal indices to be contiguous in memory. This
is slightly different from a standard cell-based sorting and is
in fact equivalent to a dual-cell-based sorting, as illustrated in
figure 3 for a two-dimensional situation.

Many authors suggest single-cell sortings are also a good
practice to maximize cache efficiency. Since it is usually not
executed at every time step, the ordering of the sorted cells mat-
ters. Indeed, cache use is optimized by the ordering if, as par-
ticles move, they only travel to cells close in memory to the
cell they originate from. It has been shown that ordering them
along elaborate structures such as Z curves provides the best
performances[26]. However, the present situation is different:
the objective is to guarantee that SIMD operations can be exe-
cuted at every time step. Therefore the sorting, in Smilei, must
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Figure 3: 2D dual-cell-based particle sorting in Smilei. The left panel represents the sorted particles before movements, and the unsorted ones afterwards. The right
panel illustrates the ordered particles after sorting. Each panel outlines both primal and dual grid. Particles are sorted according to the nearest primal vertex (i.e.
located in the same dual cell), the number next to each particle being its position in memory. After sorting, particles sharing the same primal vertex are contiguous
in memory.

be done at every time step as well. This high frequency ensures
an optimized cache use, independently of the cell ordering. As
a consequence, a cell ordering that benefits best from the vec-
torized operators is chosen (see section 4.3): the C++ natural
row-major order which matches that of all field data.

3.2. Counting sort

Sorting at every time step is a potentially costly operation
which, without proper care, could overweight the benefits of
having a well sorted array of particles. The most expensive op-
eration of the whole sorting process is particle copying because
a single particle copy in memory involves a significant amount
of data movement. Consequently, an efficient sorting algorithm
should aim at minimizing the number of particle copies. In
that regard, the counting sort has been a standard choice be-
cause it involves exactly one copy per particle. The whole point
of this algorithm is to determine, before any data movement,
where each particle is supposed to be moved. Pseudo code of
the counting sort is given in algorithm 1 where the expression
range(N) refers to an array of integer ranging from 0 to N − 1.

This algorithm is standard in PIC codes where the sorting is
executed at low frequency. Between two sortings, each particle
has time to travel several cells away from its original cell. The
algorithm must therefore be efficient at treating a completely
disordered plasma and the counting sort is perfectly adapted to
this. A noteworthy drawback is that it is an “out-of-place” sort-
ing and therefore requires another full array of particles dou-
bling the memory occupation of the particles.

3.3. Cycle sort
In the case of a high frequency sorting, there is little particle

movement between two sortings and the particles remains rela-
tively well ordered at all times. But the counting sort is oblivi-
ous to particles order and still copies all particles once whether
they changed cell or not during the last iteration. In that regard,
it is not well adapted to high frequency sorting. In order to
minimize the number of particle copies in the context of a high
frequency sorting it is more efficient to use a sorting algorithm
which copies only particles that effectively changed cell during
the last iteration. This can be achieved with the cycle sort given
in Appendix B. As a secondary benefit, this algorithm is an
“in-place” sort and as such, uses only half the memory required
by the counting sort.

The purpose of this algorithm is to find a succession of circu-
lar permutations, or cycles, leading to a full sorted array while
copying only particles which have effectively moved to a differ-
ent cell. Unlike the counting sort, the total number of copies is
variable and depends on the particles movement and the lengths
of the cycles found. For a given cycle, the number of copies per
particle is given by Nc = (L + 1)/L where L is the length of the
cycle. This accounts for the necessary additional copy of one
particle in a temporary variable. The total number of particle
copies can be approximated by Nc × Nm where Nm is the total
number of particles moving to a different cell. In the worst case
scenario, all cycles have the minimum length 2, Nc = 1.5 and
the number of copies is 1.5 × Nm. As long as Nm < 2Npart/3,
where Npart is the total number of particles, the total number of
copies is still lower than when using a counting sort. In gen-
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Algorithm 1: Counting Sort.
Data:
Particles: array of unsorted particles.
CellKeys: array of the cell indices of the particles.
Count: array counting the occurrence of each cell key.
First index: index of the first unsorted particle of each
cell.
N part: number of particles.
Ncell: number of cells.
Result: PartS orted: array of sorted particles
begin

// Count is evaluated.

for ipart ∈ range(N part) do
Count[CellKeys[ipart]] += 1

end
First index[0]←− 0
// Accumulate Count.
for icell← 1 to Ncell − 1 do

First index[icell]←−
First index[icell − 1] + Count[icell − 1]

end
// Copy particles into the sorted array

for ipart ∈ range(N part) do
PartS orted[First index[CellKeys[ipart]]]←−
Particles[ipart]
First index[CellKeys[ipart]] += 1

end
return PartS orted

end

eral, few particles change cells between sortings when the sort
is done frequently hence the advantage of the cycle sort over
the counting sort. This is further discussed in section 3.6.

3.4. Optimized cycle sort

The cycle sort minimizes the number copies at the cost of a
theoretical complexity of O

(
N2

part

)
: for each particle at index

cycleS tart, the algorithm has to compute its future index in the
array by traveling through all particles located after cycleS tart.
This part of the algorithm can be significantly accelerated in
the case of many duplicates. This is usually the case in PIC
codes because there are many more particles than cells and
for that reason, many particles share the same CellKeys. A
useful optimization consists in building the Count array in the
same manner as in the counting sort. This array is then used
to keep track of the index where, in each cell, the next particle
can be inserted. It reduces the complexity of the algorithm to
O

(
Npart + Ncell

)
so effectively to O

(
Npart

)
since Npart � Ncell

in most simulations. The optimized cycle sort is given in algo-
rithm 2.

3.5. Sorting in a parallel environment

PIC codes are usually executed in a parallel environment.
This poses two issues for the cycle sort algorithm. First, par-
ticles are constantly exchanged with neighboring domains. The
size of each particle array changes and gaps appear in the mid-
dle of the array preventing a standard cycle sort. A simple way
of dealing with this issue is the following. All particles enter-
ing in a given patch are stored in a buffer; they have their own
CellKeys, and contribute to the Count array. All CellKeys of
exiting particles are set to −1. The cycle sort algorithm is then
executed through the particle array. First cycles start with the
entering particles and end when they hit a CellKeys of −1. The
particles of these cycles are simply copied to their destinations,
eventually overwriting the exiting particles. This process is re-
peated for all entering particles. At this point, all gaps are filled
and all entering particles are placed. If unsorted particles re-
main, the optimized cycle sort, from the previous section, is
applied. Figure 4 sketches the whole process and illustrates the
differences with the counting sort.

The second issue is related to load balancing. Most advanced
PIC codes deploy elaborate techniques in order to balance the
computational load between the different compute units. Since
most of the computational load is proportional to the number
of particles, the effort mainly consists in balancing the number
of particles per compute unit. The counting sort cost is propor-
tional to the number of particles as well and is not problematic
as long as particles are balanced. However, the cost of a cycle
sort depends heavily on the local disorder of the particle array
(see sections 3.3 and 3.6). It is likely to cause load imbalance
between quiet and agitated areas of the plasma. The disorder is
difficult to estimate and taking it into account in a load balanc-
ing procedure is complicated. Instead, a good task scheduler
can smooth this imbalance while being easier to achieve. In
Smilei, this is the role of the OpenMP dynamic scheduler and
the patch-based domain decomposition [2].

6



Algorithm 2: Optimized Cycling Sort.
Data:
Particles: array of unsorted particles.
CellKeys: array of the cell indices of the particles.
Count: array counting the occurrence of each cell key.
First index: index of the first unsorted particle of each
cell.
Last index: index of the last particle of each cell.
Cycle: array of particle indices of the current cycle.
N part: number of particles.
Ncell: number of cells.
Result: Particles: array of sorted particles
begin

// Count is initialized.

for ipart ∈ range(N part) do
Count[CellKeys[ipart]] += 1

end
First index[0]←− 0
// Accumulate Count.
for icell← 1 to Ncell − 1 do

First index[icell]←−
First index[icell − 1] + Count[icell − 1]
Last index[icell − 1]←− First index[icell]

end
Last index[Ncell − 1]←−
Last index[Ncell − 2] + Count[Ncell − 1]
// Loop on each cell

for icell ∈ range(Ncell) do
for cycleS tart ← First index[icell] to
Last index[icell] do

if CellKeys[cycleS tart] == icell then
// Particle already well placed

continue
end
cell dest ←− CellKeys[cycleS tart]
ip dest ←− First index[cell dest]
Cycle.resize(0)
Cycle.push back(cycleS tart)
// Build a cycle

while ip dest != cycleS tart do
// Do not swap twins

while CellKeys[ip dest] == cell dest do
ip dest += 1

end
First index[cell dest]←− ip dest + 1
Cycle.push back(ip dest)
cell dest ←− CellKeys[ip dest]
ip dest ←− First index[cell dest]

end
// Proceed to the swap

Ptemp←− Particles[Cycle.back()]
for i← Cycle.size() − 1 to 1 do

Particles[Cycle[i]]←−
Particles[Cycle[i − 1]]

end
Particles[Cycle[0]]←− Ptemp

end
end
return Particles

end

Unsorted particles

Incoming particles

Sorted particles
(new array)

Count = x6 x5

Unsorted and 
sorted particles

(same array)

x5
Deleted particles: 

x2

a) Counting sort

b) Cycle sort

cell_keys = icell icell+1 icell+2

∈ icell

Contiguous memory order

∈ icell+1

-1

cycle 1

Incoming particles

cycle 2

∈ icell+2 memory copy Cycle start

Figure 4: Comparison between counting sort and optimized cycle sort starting
from an identical unsorted array of particles. Particles are colored as a function
of their cell keys. Lost particles are given a cell key of -1. Particles coming
from other patches are represented in a separate buffer. In panel a) the counting
sort directly copies particles in a new array. Only copies required for the first
cell are represented for readability. In panel b) the cycle sort performs particles
permutations. Fewer copies are needed and they are all represented.

3.6. Sorting performance

The performance of the optimized cycle sort is illustrated
on figure 5. This figure shows the time required to sort par-
ticles in the case of a 3D thermal plasma as a function of T̃ ,
the temperature normalized to mec2. The grid resolution is
dx = dy = dz = 0.1 c/ωp, where ωp is the plasma frequency,
and the time step is taken as 95% of the corresponding CFL
condition. All runs are performed with 64 PPC on an Intel Sky-
lake architecture. As explained in section 3.3, the cycle sort
performance depends strongly on local disorder which is con-
trolled here by the temperature. Disorder after a single time
step is measured as the proportion of particles which changed
cell during last time step. This can be evaluated as ds, the aver-
age distance covered by a particle during a time step divided by
the typical cell size dx.

For non relativistic plasmas, the following simple relation is
found:

ds =
Vthdt

dx
'

√
2T̃
3

(7)

Vth is the most probable velocity and the exact CFL is assumed:
dx/dt =

√
3. For low temperature plasmas, in which particles

do not change cell often, the cycle sort is reduced to the con-
struction of the Count array and very few particle copies are
needed. It is therefore very efficient. As the temperature in-
creases, more and more particle copies are needed and the cost
of the cycle sort increases. Note that disorder is detrimental
to the counting sort as well because particle copies are not as
streamlined as in a quiet, colder plasma. As a consequence,
cycle sort remains more efficient than counting sort even for
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Figure 5: Comparison of counting and cycle sorts performances for a thermal
plasma as a function of temperature. The vertical axis measures the time spent
- per particle - in the sorting procedure. Resolutions in time and space are
constant. It is observed that cycle sort performs extremely well for moderate
plasma temperatures and remains comparable to counting sort for higher tem-
peratures.

moderately relativistic plasmas for which T̃ = 1, ds ' 0.8 and
a large proportion of particles change cell at each time step.

In ultra relativistic plasmas (Maxwell-Jüttner distribution)
with extremely high temperature (T̃ � 1), most of the parti-
cles travel close to the speed of light and change cell after each
push. In these maximum disorder conditions, the counting sort
shows slightly better performances than cycle sort. The count-
ing sort is superior to the cycle sort by approximately 10% for
these parameters. It represents a gain of around 1% only in
the total simulation time for extreme parameters which are not
commonly used hence the choice of relying only on the cycle
sort in Smilei.

4. Vectorization of the PIC operators

In most PIC simulations, an important fraction of the com-
putation time is spent in the three main operators which are in-
terpolation, pusher and projection. This section describes the
workflow of these 3 functions, how they are vectorized and
why they benefit from the dual-cell fine-grain sorting. Note
that the vectorization effort in Smilei focuses only on the algo-
rithm and data structures and not on the implementation itself.
This means that no specific intrinsics were introduced in the
code. The only additions to the C++ code are #pragma omp

simd directives on critical loops and aligned(64) attributes
to critical arrays. Vectorization in Smilei therefore relies only
on auto-vectorization.

4.1. Interpolation

In the interpolation operation, also referred to as “field gath-
ering”, the EM field defined on the grid must be evaluated at
each particle’s position. This operation on a single particle can
be broken down into the three following sub-steps.

1. Extract the field data from the global field arrays in the
neighborhood of the particle (the stencil).

Primal grid in x, y 
or z

Dual grid in x, y 
or z

particleparticle

4 points interpolation stencil

m-2 m-1 m m+1 m+2

m-2.5 m-1.5 m-0.5 m+0.5 m+1.5 m+2.5

1 1 1 0 Interpolation mask

0 1 1 1 Interpolation mask

(i.e. m is i,j or k)

Figure 6: Illustration, in one dimension, of the primal and dual grid vertices
accessed during the interpolation process with a second order shape function.
Vertical dotted lines mark the boundary of the dual cells. Green and orange par-
ticles are in the same dual cell; they share the same primal index and therefore
access the same 3 primal vertices. However, their dual indices differ by one
which extends the number of dual vertices accessed to 4.

2. Compute the interpolation coefficients affecting each field
data point, depending on the particle position relative to
that of its cell.

3. Multiply fields by coefficients and sum all terms.

The extracted portion of the field data depends on the posi-
tion of the particle. If particles are not well sorted, step 1 is a
random access in a potentially large array. In addition to sig-
nificant cache misses, this also prevents SIMD operations. It
has even been reported that, for some architectures, the compli-
cated pattern of interpolation behaved better when specifically
instructing the compiler not to use SIMD operations [7]. In
Smilei, as explained in section 3, particles are sorted in dual
cells so that groups of particles sharing the same primal indices
are contiguous in memory. These groups are treated succes-
sively and each of them is vectorized efficiently as follows.

The first benefit of sorting is that, for step 1, it completely
removes particle dependency since all particles of the group re-
quire the same data. Access to the global memory is thus min-
imized and it improves cache use. Primal components of the
fields are common to all particles of the group since they share
the same primal indices. Dual components extend to only one
additional vertex as illustrated on figure 6. In these conditions,
steps 2 and 3 can be easily vectorized. They operate on the full
stencil with the exception of one point depending on their ini-
tial position. This is effectively dealt with via the use of a mask
(see figure 6).

Sorting also guarantees that the local data involved in steps
2 and 3 are contiguous and can therefore be easily vectorized.
The local positions (relative to that of the cell) are stored for
reuse later whereas the interpolation coefficients are loaded into
a temporary buffer. Particles groups are treated by sub-groups
of 32 in order to limit the total size of these temporary buffers
and fit them into the cache while retaining a reasonable vector
length. The optimal size of these sub-groups depends on the
architecture and may change in the future. Finally, the interpo-
lated EM fields are returned and stored for each particle of the
currently treated patch for later use in the pusher.
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4.2. Pusher

The pusher is the operation that benefits the most from vec-
torization with minimal adjustments, provided that the data
structure for particle properties is appropriate. Its algorithm re-
mains almost unchanged thanks to the optimized cycle sort. It
is performed on all particles of the patch regardless of the cell
they occupy.

Algorithm 3: Particle pusher.
Data:
particles: array of sorted particles
Result: particles: array of pushed and unsorted particles
begin

// Vectorized loop on particles

for particle ∈ particles do
. Update the momentum of particle
. Update the position of particle

end
return particles

end

The CellKeys array, containing the dual cell index of each
particle, is updated after the pusher. When a particle crosses the
patch boundary, CellKeys is set to −1 as a tag for the boundary
condition treatment (see section 3.5).

4.3. Projection

In the projection operation, also referred to as “current de-
position”, the current density carried by each particle must be
evaluated at the coordinates of the surrounding vertices and
added to the current density global arrays. Nowadays, one
standard approach is the charge-conserving Esirkepov projec-
tion algorithm [25]. The direct algorithm is not vectorizable in
its naive form since two particles located in the same cell could
project their charge or current contributions to the same vertices
leading to memory races. Nonetheless, efficiently vectorized al-
gorithms have been implemented to get around this limitation
[6]. Esirkepov’s method is even more challenging to vectorize
because the computation not only depends on the particle’s po-
sitions but also on their displacements. Sorting suppresses all
randomness in positions but not in displacements. This section
explains how Smilei benefits from sorting during the projection
phase and how it deals with the displacements randomness.

In Esirkepov’s projection method, the current densities along
each dimension of the grid are computed from the charge flux
through the cell borders. By definition, fluxes are computed
from the particle present and former positions, respectively xt

and xt−∆t. The simpler direct projection algorithm only uses the
present particle position xt, but does not conserve charge.

In both methods, the operation on a single particle can be
broken down into the two following sub-steps:

• Step 1 - Compute the projection contributions of the par-
ticle depending on its relative position in its local cell and
its displacement.

• Step 2 - Add these contributions to the global array of cur-
rent density according to the particle global position.

The Esirkepov projection, operating with a shape function of
either 2nd or 4th order, has been vectorized by exploiting the
properties of the sorted particles. Algorithm 4 presents con-
cisely the method at 2nd order. This algorithm is repeated for
each current component Jx, Jy, Jz.

In order to take advantage of the sorting, the first loops (1
and 2 in Algorithm 4) iterate on the cells. The particularity of
Smilei’s projection is the gathering of the cells in clusters of 4
cells in the z direction (of index k). Note that the number of
cells per cluster actually depends on the order of the projection
and the size of 4 cells is only valid for order 2. The advantages
of this decomposition is clarified in the following description.

The first part of the algorithm corresponds to step 1. Parti-
cles in the same dual cell (sharing the same primal indices) are
clustered into vectors of 8 particles to minimize the local buffer
size while retaining enough data for an efficient vectorization.
The loop on these vectors is denoted loop 3 in Algorithm 4. As
illustrated in Fig. 7a, computing the coefficients requires up to
4 vertices for each particle in each direction but potentially 5
vertices if all particles of the same cell are considered. This is
due to the Esirkepov scheme which applies a shift depending
on the particle displacement. Since each particle only uses 4
vertices among 5, it has one useless value at one vertex. For
the vectorization, the shape factor coefficients and the flux in-
termediate coefficients are computed and stored in separate and
adequate buffers for each direction. These buffers are carefully
allocated (aligned and contiguous in the particle direction) so
that the computation of these coefficients is vectorized in the
particle loop 4 in Algorithm 4. Each buffer has by default a size
of 8 (vector particles) × 5 (vertices).

The computation of step 2 can be divided into 2 sub-steps.
During sub-step 2.1 (loop 5 in Algorithm 4), the current con-
tributions, calculated using previously computed coefficients,
are stored on a small local grid, called Jlocal in Algorithm 4, in
order to avoid concurrent memory access and enable vectoriza-
tion. Jlocal is treated like eight small, separate current grids so
that the current of the 8 particles of each vector can be stored in-
dependently without concurrency. In 3D, the grid size required
to satisfy the projection of the particles in the 4-cell cluster is
5×5×8 cells as schematically shown in 7b. Therefore, the local
buffer Jlocal is composed of 5 × 5 × 8 × 8 elements (12.5 kB).
The fast (contiguous) axis is the particle index.

Sub-step 2.2 (loop 6 in Algorithm 4) reduces the local grid
Jlocal into the main one J. Vectorization is applied on the di-
rection z, contiguous for J. The 4-cell cluster enables to have
8 elements in this direction. For each vertex, the 8 particles’
contributions to Jlocal are summed in a temporary buffer as de-
scribed in Fig. 7c. This buffer is then added to the main grid
J. The 4-cell cluster further contributes to optimize this step by
pooling 4 reductions.

The particle vectors size and the number of cells in a clus-
ter may be adjusted to optimize the vectorization efficiency. A
large vector size requires more memory that will not necessary
be used entirely if there are not enough particles per cell. The

9



Algorithm 4: Particle projection for order 2.
Data:
clusters: List of clusters of 4 cells
vectors: List of vectors of 8 particles contained in a given
cell cluster
Jlocal: local buffer to gather the current contribution from
the cluster particles
Result: J: current grids
begin

. For each current component Jx, Jy and Jz:
// Loop 1 - on 4-cell clusters

for cluster ∈ clusters do
// Loop 2 - on the cluster cells

for cell ∈ cluster do
// Loop 3 - on particle vectors

for vector ∈ vectors do
// Loop 4 - Vectorized loop on

the vector particles

for particle ∈ vector do
. Compute each particle coefficients
and distances to the vertices
. Compute each particle charge weight

end
// Loop 5 - Vectorized loop on

the vector particles

for particle ∈ vector do
. Compute the current contributions
and store in Jlocal

end
end

end
// Loops 6 - on vertex indexes

for i ∈ range(5) do
for j ∈ range(5) do

// Vectorized loop in the z
contiguous direction

for k ∈ range(8) do
// Unrolled loop on the

particle vector size

for ipart ∈ range(8) do
. Reduction of Jlocal in the main
current array J

end
end

end
end

end
end
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Dual grid in x, y or z

particleparticle
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Figure 7: a) Primal vertices accessed during the projection process with a sec-
ond order shape factor. b) Schematic of the multi-cell approach that uses a
larger temporary current projection buffer in the z direction and helps reduc-
ing the number of projections in the patch grids. c) Drawing of the Jlocal local
buffer reduction process into the main array J.
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buffer memory size needs to be low enough to fit in L2 cache.
Larger cell clusters may help minimizing the number of reduc-
tions but requires more memory.

When the number of particles per cell is not a multiple of the
vector size (8 for AVX512, 4 for AVX2), the remaining particles
are treated in a smaller vector. When the number of cells in z
is not a multiple of the cluster size (4), the remaining cells are
treated sequentially (i.e. one reduction per cell).

5. Vectorization performances

The vectorized operators implemented in Smilei are designed
to be efficient when a systematic sorting algorithm is used, as
described above. Their performance is first evaluated using the
3D homogeneous Maxwellian benchmark from section 2.4, as a
function of the number of particles per cell (PPC) ranging from
1 to 256. This study is focused on the particle operators (in-
terpolator, pusher, projector, sorting) and discards the computa-
tional costs of the Maxwell solver and of the communications
between processes. The patch size is kept constant at 8 × 8 × 8
cells.

The test runs have been performed on 4 clusters equipped
with different Intel architectures typically used for Smilei:
Haswell, Broadwell, Knights Landing (KNL) and Skylake. The
clusters’ properties and the code compilation parameters are de-
scribed in Appendix A. Each run has been performed on a sin-
gle node. Since the number of cores varies from an architecture
to another, the runs were conducted so that the load per core
(i.e. OpenMP thread) is constant. In other words, the number
of patches per core is the same for all architectures. The number
of patches per core also remains the same for all cores through-
out the whole simulation since the imbalance in this configu-
ration is never high enough to trigger patch exchanges. The
total number of patches for each architecture is determined so
that each core has 8 patches to handle. There is 1 MPI process
per NUMA domain (NUMA stands for non-uniform memory
access) which means a single process per socket on Haswell,
Broadwell and Skylake nodes that all have 2 sockets per node.
A KNL node, configured in quadrant cache mode, has only 1
socket, and among the 68 available cores, 64 are used for the
simulations and 4 for the system. The total number of patches
is of 8 × 4 × 3 on Haswell (24 cores), 8 × 8 × 4 on Broadwell
(32 cores), 8 × 8 × 8 on KNL (64 cores), 8 × 8 × 6 on Skylake
(48 cores).

The first series of tests considers an interpolation shape func-
tion of order 2 and compares the computation times to advance
a particle (interpolation, pusher, projection) per iteration. The
results for both scalar and vectorized versions are shown in Fig.
8. Contrary to the scalar mode, the vectorized operators effi-
ciency depends strongly on the number of PPC. It shows im-
proved efficiency, compared to the scalar mode, above a certain
number of PPC denoted “inversion point“ in Fig. 8.

The lower performances of the vectorized operators at low
PPC can be easily understood. First, their complexity is higher
than their scalar counter-parts. As explained in sec. 4, the in-
terpolation and projection masks increase the arithmetic inten-
sity of the operations on a single particle. Moreover, there are
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Figure 8: Particle computational cost as a function of the number of PPC. Vec-
torized operators are compared to their scalar versions on various cluster archi-
tectures. Note that the Skylake compilations accepts both AVX512 and AVX2
instruction sets.

two additional loops, one over the cells and one sub-loop over
groups of particles. They are ineffective if cells are practically
empty of particles. And finally, SIMD instructions operate at
a lower clock frequency than scalar ones [27]. For low num-
bers of PPC, these overheads are not compensated by the more
efficient SIMD operations because the vector registers are not
entirely filled and do not provide enough gain.

The location of the inversion point depends on the architec-
ture: 10 PPC for Haswell and Broadwell, 12 for KNL, and
10 for Skylake, considering the most advanced instruction set
for each processor type. Since Skylake can handle both the
AVX512 and the AVX2 instruction sets, the results from the
two compilations are presented in Fig. 8a for comparison. The
compilation in AVX2 does not affect the run performance below
the inversion point when the scalar mode dominates. However,
the AVX512 mode appears up to 30% more efficient than AVX2
above 10 PPC.

In vectorized mode, the computation time decreases with the
number of PPC and stabilizes after 100 PPC around a final value
that depends on the architecture. On Haswell, the efficiency
gains a factor of 1.9 at 512 PPC compared to the scalar mode.
On Broadwell, the same value is reached at 256 PPC. On KNL,
a factor of 2.8 is obtained at 512 PPC (the highest for all con-
sidered architectures), but this fills the entire high-bandwidth
memory (16 Gb), preventing tests above. On Skylake, a max-
imum gain of 2.1 is reached at 256 PPC with AVX512, while
reaching 1.7 at 1024 PPC with AVX2.

Neglecting memory and cache effects, an ideal vectorization
should give an almost constant computation time per particle
when the vector registers are filled. The theoretical maximum
gain from vectorization is equal to the vector register size (8
in double precision on the most recent architectures, KNL and
Skylake, when compiled with the AVX512 instruction set, and 4
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Figure 9: Computational cost of the four particle operators as a function of
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in double precision with the AVX2 instruction set for Haswell
and Broadwell). As demonstrated above, Smilei’s vectorized
algorithms are not perfect due to the nature of the operators (in-
terpolation and projection) that induces the presence of semi-
vectorized or scalar sequences. This is highlighted in Fig. 9
showing the computational cost of each operator from the same
test case, simulated on Skylake only. With AVX512 vector-
ization, the projector remains the most time-consuming opera-
tor, even though it features the highest gain compared to scalar
mode: ×3.5 at 256 PPC (and ×2.5 with AVX2). Its cost de-
creases from 66% of the total particle time at 1 PPC to 37% at
256 PPC. The interpolator is most efficient above 32 PPC with
AVX512 vectorization reaching a speed factor of 2 compared
to the scalar mode, and 1.5 compared to AVX2. The pusher
remains negligible: it represents 1 to 12% of the total particle
time, depending on the number of PPC. As it is automatically
vectorized with the compilation flag -03, there is little speed
gain. However, it benefits from the decomposition of particle
data into blocks, thus showing higher efficiency above 128 PPC.

The cost of the sorting operation per particle does not de-
pend much on the number of PPC (although, in relative terms,
it varies from 1 to 18% of the total particle cost). This step does
not benefit from vectorization (mainly data transfer) and there
is therefore no difference between AVX2 and AVX512. Never-
theless, its cost remains low compared to the speed gain from
the interpolator and the projector optimizations which guaran-
tees an overall improvement.

As shown in section 3.6, sorting performance strongly de-
pends on the temperature. But even at T̃ ' 200, the sorting
takes 7 % longer than the interpolator. At this temperature, the
thermal velocity (most probable velocity) is close to c and more
than half of the particles change cell every time step. These are
extreme conditions for EM PIC codes but yet, the cost of the
sorting is still compensated by the vectorization speed-up.

The same parametric study has been conducted with a 4th-
order interpolation shape function. The global trends are similar
to those at order 2: in scalar mode, times do not depend signifi-
cantly on the number of PPC, while they decrease in vectorized
mode. The inversion point is located at 10 PPC for Haswell
and Broadwell, 4 for KNL and 6 for Skylake. At 256 PPC,
the vectorized particle operators (AVX512) are respectively 1.4
faster on Haswell, 1.7 on Broadwell , 5 on KNL and 2.8 on
Skylake , compared to the scalar version. The most recent archi-
tectures benefit the most from vectorization, in particular with
KNL which may prove even faster with more PPC.

6. Adaptive Vectorization Mode

According to section 5, the scalar operators are significantly
more efficient when the number of PPC is under the inversion
point, which depends on the architecture. However, in both
laser-matter interaction or astrophysical cases, the number of
PPC may be vastly different from one domain to another, and
this number may evolve significantly during a simulation. Con-
sequently, the vectorized (or scalar) operators may not be ad-
equate in all spatial regions, or for all times. This section ex-
plains how this issue can be addressed by using an adaptive
vectorization mode.

6.1. Principle
The adaptive vectorization is capable of switching locally be-

tween the scalar and vectorized operators during the simulation,
choosing the most efficient one in the region of interest. Ev-
ery given number of time steps, for each patch, and for each
species, the most efficient operator is determined from the num-
ber of PPC. This provides an automated, fine-grain adjustment
in both space and time. It also contributes to the dynamic load
balancing since patches with more PPC will be treated more ef-
ficiently. This mode is now referred to as “adaptive”. Note that,
two different adaptive modes exist in Smilei:

• Adaptive mode 1: the sorting methods of the scalar and
vectorized operators are different, respectively the stan-
dard coarse-grain sort and the cycle sort described in sec-
tion 3. Switching modes thus requires sorting particles
again.

• Adaptive mode 2: the cycle sort method is used with both
operators. The scalar operators have been adapted to fit
the new sorted structure.

A naive criterion to determine which operators should be ap-
plied locally consists on using a threshold on the average num-
ber of particles per cell. Another simple method, implemented
at first, consists on counting the number of cells with particles
below and above the inversion point. Then, the ratio of the two
is computed. A threshold on this ratio determines the most suit-
able operators. With a statistical study, an adequate threshold
could be found although the criterion was still proposing the
wrong operators when the particle distribution was broad. This
criterion appears nonetheless computationally cheap and satis-
fying in many cases.
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6.2. Mode selection

A more complex empirical criterion has been developed. It
is computed from the parametric studies presented in 5. Fig. 8
summarizes their results and indicates, for a given species in a
given patch, the approximate time to compute the particle op-
erators using both the scalar and the vectorized operators. The
computation times have been normalized to that of the scalar
operator for a single particle and 2nd-order shape functions.
The outcomes from different architectures appear sufficiently
similar to consider an average between their results, as shown
in the same figure. A linear regression of the average between
all the scalar results writes

S (N) = −1.17 × 10−2 log (N) + 9.47 × 10−1 (8)

where S is the computation time per particle normalized to that
with 1 PPC, and N is the number of PPC. For the average be-
tween vectorized results, a fourth-order polynomial regression
writes

V(N) = −4.27 × 10−3 log (N)4 (9)
+3.69 × 10−2 log (N)3

+4.07 × 10−2 log (N)2

−1.07 log (N)

+2.88

These functions are implemented in the code to determine ap-
proximately the normalized single-particle cost. Assuming ev-
ery particle takes the same amount of time, the total time to
advance a species in a given patch can then be simply evaluated
with a sum on all cells within the patch as

Ts,v =
∑

c ∈ patch cells

N(c) × F(N(c)) (10)

where F is either S or V . Comparing Ts and Tv determines
which of the scalar or vectorized operators should be locally
selected. This operation is repeated every given number of time
steps to adapt to the evolving plasma distribution. Note that
similar approximations may be computed for specific proces-
sors instead of using a general rule. In Smilei, other typical pro-
cessors have been included, requiring an additional compilation
flag.

6.3. Reconfiguration overhead
The process of computing the faster mode and changing op-

erators accordingly is called reconfiguration. It is performed for
each species and in each patch and follows the steps below:

1. Evaluation and comparison of the computational cost in
scalar and vectorized modes [Eq. (10)].

2. If the current mode is not the faster: particle operators are
changed and particles are sorted accordingly if necessary.

The reconfiguration process comes with an overhead. The
evaluation and comparison processes 1) is performed each time
a reconfiguration is called, whether the mode must change or
not. Its complexity depends solely on the number of cells in
the patch and therefore has a constant computational cost. For
a single time step of the thermalized homogeneous plasma case
on Intel Skylake, it takes 20% of the particle computational time
for 1 PPC. As this cost is constant, it drops to a relative cost of
5% for 8 PPC and 1% for 16 PPC.

Operator redirection in step 2) takes a negligible fraction of
time thanks to C++ inheritance and dynamic casting . The sort-
ing, however, does not. Sorting a completely unordered patch,
as happens when switching from scalar to vector mode, can
be costly. Fortunately, this cost is only paid in case of mode
switching which is generally not frequent. In adaptive mode 2,
this cost is never paid because particles are kept sorted in all
patches at all times independently of their actual mode. Finally,
it is observed that running a reconfiguration at every time step is
not necessary. Running it every 10 time steps makes the cost of
the whole process negligible for any PPC and preserves a good
dynamic adaptation for all the tests we performed. It should
be noted that the reconfiguration process is up to 3 times more
expensive on Intel KNL processors.

To confirm that the adaptive mode results in the lowest parti-
cle computation time of both scalar and vectorized modes, Fig.
11 shows the measured times in the same Maxwellian plasma
cases. In this particular configuration, the plasma remains uni-
form in the whole domain during the simulation, but the com-
putation times vary depending on the (initial) number of PPC.
As expected, the inversion point between scalar and vectorized
modes is located between 10 and 12 PPC. The adaptive mode 1
is slightly more efficient than mode 2 below 12 PPC because of
the slightly more expensive sorting method. As expected, both
modes provide the same performances above 12 PPC.

Fig. 12 shows the normalized times for a 4th order shape fac-
tor. Contrary to the 2nd order case, the difference between all
architectures is more important and the use of a general fitting
function is less reliable. Nevertheless, averages for all architec-
tures and polynomial regressions are shown in the same figure
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Figure 11: Particle computation times as a function of the number of PPC in
the adaptive modes 1 and 2, for various architectures and second order shape
function.

as they provide a sufficient estimate of the vectorization speed
gain.

7. Simulation performance benchmarks

In this section, the advantages of the adaptive mode will be
presented considering three different simulation setups. The
first two are related to laser-plasma interaction at ultra-high in-
tensity, the last one to astrophysics. All three setups have been
chosen as typical of current interests from the plasma simu-
lation community, and realistic parameters have been chosen
for each setup. In all cases, the second order interpolation and
(Esirkepov) projection was used. All simulations have run on
the Skylake partition of the Irene Joliot-Curie supercomputer.

7.1. Laser Wakefield Acceleration

Laser wakefield acceleration (LWFA) consists in accelerat-
ing electrons in the wake of a laser propagating through a low
density (transparent) plasma. A plasma wave is generated in
the wake of the laser pulse as a result of the collective response
of the electrons to the electromagnetic field associated to the
laser pulse[28, 29, 30]. At large laser intensities, nonlinear ef-
fects may lead to a succession of electron-depleted cavities sep-
arated by steep and dense electron shells, instead of a smooth
sinusoidal wave. In some specific cases, the cavities look like
bubbles, empty of electrons, and one then speaks of the bub-
ble regime of acceleration[31]. At the back side of the bubble
(the front side being the one closest to the laser pulse), some
electrons can be injected in the first half of the bubble and then
accelerated forward due to the existence of a strong negative
longitudinal electric field, eventually reaching speed close to
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Figure 12: a) Normalized time per particle spent for all particle operators in the
scalar and vectorized modes with various architectures, and 4th-order interpo-
lation shape functions. b) Averages of the curves in panel a), and polynomial
regressions.

that of light. This method is used in the laboratory to accel-
erate electrons up to energies at the multi-GeV level over very
short distances of a few mm to a few cm. A strong effort is
made to improve the control and quality of the produced elec-
tron beams. It depends on various plasma and laser parameters
and this effort strongly relies on massive 3D PIC simulation.

In this Section, we study the impact of the vectorization strat-
egy on LWFA. To do so, three series (considering 4, 8 and 16
PPC, respectively) of three simulations (considering the scalar,
vectorized and adaptive modes) are presented. In these simula-
tions, a laser pulse with wavelength λ (corresponding to an an-
gular frequency ω = 2πc/λ) is sent onto a fully ionized hydro-
gen plasma. The plasma density profile consists in a long linear
ramp (from x = 100 c/ω to 1280 c/ω) preceding a plateau at
the density n0 = 5 × 10−3nc, with nc = ε0meω

2/e2 the critical
density. The laser pulse, with maximum field strength a0 = 10
(in units of mecω/e) is injected from the x = 0 boundary. It has
a Gaussian temporal profile of 20π ω−1 FWHM (Full Width
at Half Maximum) and a Gaussian transverse spatial profile of
waist 24π c/ω. Its propagation through the plasma is followed
up to a distance of 2050 c/ω. Yet, instead of simulating the full
propagation length, which would be too costly, the simulation
domain consists in a moving window sufficiently large to con-
tain the laser and a few wakefield periods and traveling at the
laser group velocity. The overall domain has a dimension of
503 × 503 × 503 (c/ω)3. It is discretized in 1280 × 320 × 320
cells, corresponding to spatial steps of ∆x = 0.39 c/ω ∼ λ/16
and ∆y = ∆z = 0.157 c/ω ∼ λ/4. The time step is computed
from the CFL condition as ∆t = 0.96∆CFL ' 0.31ω−1. A patch
contains 10× 10× 10 cells, for a total of 128× 32× 32 patches.
Only the electron species is considered and an immobile ion
background is assumed by using the charge conserving current
deposition scheme (with no Poisson solver at initial time). This
simulation setup was run with the scalar, vectorized and adap-
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Figure 13: Laser wakefield acceleration with 4 PPC. a) Volume rendering of the
electron charge density (in units of enc) and laser magnetic field (By, in units
of meω/e), at time t = 2770 ω−1. b) Patches using a vectorized operator for the
electron species at the same time. An animated version of these quantities can
be viewed in the supplementary materials.

tive modes, with 4, 8 and 16 PPC at initialization. The adaptive
mode reconfiguration is done every 50 iterations. These sim-
ulations have run on 96 Skylake processors (48 nodes), corre-
sponding to 2304 cores, with 1 MPI process per processor and
24 OpenMP threads per MPI process.

Figure 13a shows a volume rendering of the electron density
in the 8 PPC case illustrating the wakefield cavities surrounded
by dense electron layers. For the reader’s convenience, Fig. 14a
presents a 2D slice of the same quantity taken at z = 0.5 Lz (Lz

being the domain length in the z direction). At the rear of each
cavity, very high density electron bunches are accelerated by
the strong charge separation electric field. Those beams have
a density that can be several orders of magnitude higher than
the initial plasma density, which translates in a large load im-
balance. In particular, patches in these high-density regions see
their average number of particles per cell largely exceeding the
initial one, and will thus benefit most of the vectorized opera-
tor. Figure 13b (see also Fig. 14b) highlights the regions where
the adaptive mode has switched to vectorized operators. As
expected, these regions corresponds to the patches containing a
large number of PPC, such as the rear side of the wakefield cav-

Figure 14: Laser wakefield acceleration with 4 PPC. Same as Fig. 13 but taking
a 2D slide at z = 0.5 Lz (Lz being the domain length in the z direction) a)
Electron charge −ne/nc at time t = 2770 ω−1. b) Patches using a vectorized
operator for the electron species at the same time.
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Figure 15: Laser wakefield acceleration. Temporal evolution of the mean parti-
cle computation time (only in the particle operators) spent per particle per itera-
tion at 4, 8 and 16 PPC (respectively figures a, b and c for the scalar, vectorized
and adaptive modes. The computation time is averaged across all nodes.

ities (containing the electron beams) and a thin circle around the
first cavity at x = 200 c/ω. Let us note an additional advantage
of the adaptive mode which helps mitigating the load imbal-
ance at the node level as patches holding many particles can be
treated more efficiently than those holding only few of them.

Figure 15 presents the temporal evolution of the mean com-
putation (node) time per particle and iteration considering 4, 8
and 16 PPC (panels a, b and c, respectively). The computation
of the times per particle per iteration follows the definition of
section 2.4. The notion of node time is obtained after an aver-
age of the times accross all nodes.

One recovers that when using few particles per cell (4 PPC
in panel a), the scalar operator is the most efficient one, while
considering a larger number of particles per cells (16 PPC in
panel c), the vectorized one is more interesting. Importantly,
the adaptive mode allows to select the optimal operator for all
three panels and provides the most efficient approach.

Overall, considering 4 PPC, the computation time spent in
the particle operators is close to 680 s for both the scalar and
adaptive modes, and of 1080 s for the vectorized one. As most
of the simulation box contains few PPC, the adaptive mode se-
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lects adequately the scalar operator.
With 8 PPC, the computation times for all three modes are

similar, equal to 1300 s (scalar), 1400 s (vectorized) and 1260
s (adaptive). This number of PPC is indeed close to what was
referred to as the inversion point in Sec. 5.

With 16 PPC, the vectorized mode is the most efficient with
a computation time of 1950 s, while the scalar mode is signif-
icantly slower with a particle computation time of 2500 s. The
adaptive mode hence selects adequately the vectorized operator
leading to the same time of ∼ 1950 s, see also Fig. 15c.

Let us finally note that the computation time per particle per
iteration decreases with the number of PPC using the adaptive
mode while it is barely sensitive to the number of PPC con-
sidering the scalar one. At the modest number of 16 PPC, the
vectorized operator already allows to decrease the computation
time by more than 20% with respect to the scalar one. Finally,
for all cases, the time allocated to the adaptive reconfiguration
process is well below 1% of the simulation time.

7.2. Laser interaction with a solid-density thin foil
Laser interaction with high-density (n0 � nc) plasmas cre-

ated by irradiating solid-density foils is at the center of var-
ious experimental and theoretical investigations by the laser-
plasma community. These studies are motivated by the broad
range of physical mechanisms and potential applications of this
kind of interaction, ranging from electron and ion acceleration,
new radiation sources (from THz to XUV and γ), to the pos-
sibility to address strong field quantum electrodynamics effects
[32, 33, 34].

In this Section, we illustrate the impact of the vectorization
strategy on the simulation of such a high-density target irradi-
ated by an ultra-intense laser pulse. To do so, three simula-
tions using either the scalar, vectorized or adaptive operators
are reported. In these simulations, a laser pulse with wave-
length λ (corresponding to an angular frequency ω = 2πc/λ)
is focused at normal incidence onto a carbon foil located at
∼ 37.7 c/ω (6λ) from the x = 0 boundary. The carbon foil
is a fully-ionized plasma which density increases from 0 to its
maximum n0 = 492 nc linearly over ∼ 12.6 c/ω (2λ) (this
ramp mimics a pre-plasma) then forms a plateau with thick-
ness ∼ 12.6 c/ω (2λ). The foil density is otherwise uniform
over the full simulation domain in the transverse (y and z) di-
rections. At initialization, both carbon ions and electrons have
the same uniform temperature of 1 keV. The laser pulse, with
maximum field strength a0 = 100 (in units of mecω/e), is in-
jected from the x = 0 boundary. It has a fourth-order hyper-
Gaussian temporal profile of FWHM ∼ 188.5 ω−1 (30λ/c) and
a transverse Gaussian profile with waist ∼ 12.6 c/ω (2λ). It
is focused at the front of the preplasma (x = 6 λ) and at the
center of the simulation box in the y and z directions. The sim-
ulation lasts for 100 laser periods (λ/c), the time to fully com-
plete the laser interaction. The simulation domain extends over
∼ 100 × 67 × 67(c/ω)3 (approximately 16λ × 11λ × 11λ) dis-
cretized in 1024×256×256 cells, corresponding to a spatial res-
olution ∆x = λ/64 ' 0.10c/ω and ∆y = ∆z = λ/24 ' 0.26c/ω,
and the time step is ∆t = 0.96∆CFL ∼ 0.083 ω−1. Cells con-
taining plasma are initialized with 32 randomly-distributed PPC
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Figure 16: Laser over-dense foil interaction. a) Volume rendering of the nor-
malized electron density ne/nc at time t = 537 ω−1. Only half of the target
(subset 0 < z ≤ 0.5Lz) is shown. The cross-section highlights the inner target
structure in addition to the outer target distortion effects. b) Patches using a
vectorized operator (adaptive mode) for the electron species at the same time.
An animated version of these quantities can be viewed in the supplementary
materials.

and the simulation domain is decomposed into 128 × 32 × 32
patches, each patch containing 8×8×8 cells. Three simulations
have been run considering the scalar, vectorized and adaptive
modes, respectively. For the latter, the adaptive mode reconfig-
uration is done every 8 iterations. These simulations run on 64
Skylake processors (32 nodes, 1536 cores) with 1 MPI process
per processor and 24 OpenMP threads per MPI process.

Figure 16a illustrates the deformation of the foil as it is irradi-
ated by the ultra-intense laser pulse. Indeed, the overdense (i.e.
with density n0 > nc) plasma is opaque to the laser light which
is thus reflected at the foil’s surface. As the laser pulse bounces
off the target, it exerts a strong (radiation) pressure onto its sur-
face which is pushed inward, a process known as hole boring
and highlighted in Fig. 16a. At the same time, the laser plasma
interaction in the pre-plasma at the target front side leads to
the copious production of relativistic electrons that propagate
throughout the foil, and eventually escape at its back as a hot,
low density, electron gas. Also illustrated in Fig. 16a, this tenu-
ous electron plasma escaping from the target is better illustrated
in Fig. 17a, showing a 2D slice (at z = 0.5Lz) of the electron
density in logarithmic scale.

Figure 16b presents, for the simulation in adaptive mode, the
distribution of patches relying on vectorized operators. Inter-
estingly, these patches are located where the particle density is
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Figure 17: Laser over-dense foil interaction. a) Slice at z = 0.5Lz of the electron
density ne/nc at time t = 475ω−1 corresponding to the end of the laser inter-
action. b) Patches using a vectorized operator (adaptive mode) for the electron
species at the same time..
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Figure 18: Laser over-dense foil interaction. Temporal evolution of the compu-
tation particle time (only in the particle operators) spent per particle per iteration
for the scalar, vectorized and adaptive modes. Among all MPI processes, aver-
age, minimum and maximum times are shown. Note that the time acquisition
is started at t = 37ω−1 when the laser strikes the target.

high, that in the region corresponding to the initial target loca-
tion minus the front side hole-boring region that has been de-
pleted of particles. Note also that patches located in the region
at the back of the target, where hot electrons are escaping, use
the scalar operator as the hot electron gas is tenuous and thus
described by only few PPC.

Figure 18 presents the temporal evolution of the computa-
tion (node) time per particle and iteration. The mean value
(solid line) shows that for these simulations, the adaptive mode
is the one that provides the most efficient treatment over the
full simulation. In addition to the mean value, the computa-
tion (node) time per particle and iteration was also computed
for each MPI task separately, and the minimum and maximum
values reported in Fig. 18. The maximum value is particularly
interesting as it refers to the computation time on the least effi-
cient MPI task. Following this value in time allows to see how
the adaptive mode adapt to each phase of the physics process.
At early times, the dense target is associated to a large number
of PPC, the vectorized operator is the most efficient one, and
adaptive mode adequately select it. At later times, the electron
population expends, its density decreases and more and more
patches with few PPC are generated. As a result, the vectorized
mode becomes less and less efficient and, at t ∼ 400ω−1, the
scalar operator becomes more interesting. The adaptive mode
thus eventually selects the scalar operator, and throughout the
simulation, the adaptive mode is the one that proves the most
efficient.

Overall, after 7550 iterations, the computation time spent in
the particle operators is 912 s with the scalar mode, 647 s with
the vectorized mode and 604 s with the adaptive mode. The
adaptive mode thus allows to reduce the simulation time by
∼ 34%, and for this case, the overhead due to the adaptive re-
configuration of is also below the percent.

7.3. Mildly-relativistic collisionless shock
Ubiquitous in astrophysics, collisionless shocks have been

identified as one of the major sources of high-energy parti-
cle and radiation in the Universe [35], and, as such, have
been the focus of numerous PIC simulations over the last
decade [36, 37, 38]. Collisionless shocks can form during the
interpenetration of two colliding plasmas. In the absence of ex-
ternal magnetic field, the Weibel instability [39] provides the
dissipation mechanism necessary to shock formation. This in-
stability quickly grows in the overlapping plasma region (see,
e.g. [40]), and leads to the formation of current filaments asso-
ciated with a strong magnetic field perturbation. At the end of
the linear phase, the magnetic and current filaments distort into
a region of electromagnetic turbulence, decelerating and trans-
versely heating the flow’s particles, ultimately leading to their
isotropization and thermalization. This leads to a pile-up of the
particle in the turbulent region during which both the plasma
density and pressure increase up to the formation of a shock
front.

To illustrate this process and the impact of adaptive vec-
torization on its simulation, three series (considering either 4,
8 or 32 PPC) of three simulations (using the scalar, vector-
ized and adaptive modes) are presented. In these simulations,
two counter-propagating electron-positron plasma flows are ini-
tialized each filling half of the simulation domain (in the x-
direction). Both flows, with density n0, have opposite drift ve-
locity ±0.9 c (in the x-direction), corresponding to a Lorentz
factor γ0 = 2.3, so that they collide at the center of the 3D sim-
ulation domain. The domain size is 300 × 28.5 × 28.5 (c/ω)3,
with ω =

√
e2n0/(meε0) the electron plasma frequency associ-

ated to the initial flow density n0. The cell sizes were set to
∆x ' 0.11 c/ω and ∆y = ∆z ' 0.15 c/ω, and the time step
to ∆t = 0.95∆CFL. This ensures a good resolution of the rela-
tivistic electron skin-depth de,rel =

√
γ0c/ω ' 1.5 c/ω and thus

of the Weibel filaments. The simulation lasts 100 ω−1. Each
patch contains 8 × 8 × 8 cells, initialized with either 4, 8 or 32
randomly-distributed PPC. The adaptive mode reconfiguration
is done every 8 iterations. These simulations have been run on
64 Skylake processors (32 nodes), corresponding to 1536 cores.

Figure 19a shows a 3D volume rendering of the electron den-
sity at an early stage of the interaction (t = 34ω−1) in the 8 PPC
case. The Weibel filamentation region is clearly illustrated as
well as the on-set of turbulence in the central region. Figure
19b shows, at the same time and for the same case, the distri-
bution of patches for which the adaptive mode switched to the
vectorized operator. It is clear that these patches are located in
the high-density regions at the position of the Weibel filaments,
as well as in the central region where the density increases by
a factor nearly of ×4, as expected for a fully formed 3D shock.
For the reader’s convenience, a 2D-slice taken at z = 0.5Lz is
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Figure 19: a) Volume rendering of the normalized electron density ne/nc at time
t = 34 ω−1 after the beginning of the collision in the 8 PPC case. b) Patches in
vectorized mode for the electron species at the same time. An animated version
of these quantities can be viewed in the supplementary materials.

Figure 20: a) Slice of the transverse normalized magnetic field Bz/B0 during
the plasma flow collision at z = 0.5Lz, Lz being the domain length in the z
direction at time t = 34 ω−1 in the 8 PPC case. b) Slice of the normalized
electron density ne/nc at time t = 34 ω−1 and z = 0.5Lz. c) Computational
mode (scalar or vectorized) of the electron species for each patch in the slice
z = 0.5Lz at t = 34 ω−1.
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Figure 21: For the collisionless shock simulations: temporal evolution of the
mean particle computation time (only in the particle operators) spent per par-
ticle per iteration at 4, 8 and 32 PPC (respectively figures a, b and c) for the
scalar, vectorized and adaptive modes. The computation time is averaged across
all nodes.

also presented in Fig. 20. In panel a is also presented the mag-
netic field structure characteristic of the Weibel instability and
its latter more turbulent state in the central region.

Figure 21 provides the detailed evolution of the mean compu-
tation time (averaged accros all nodes) per particle per iteration
at respectively 4, 8 and 32 PPC (panels a, b, c, respectively).
As expected, at 4 PPC, the scalar operator is the most efficient
and the adaptive mode adequately selects it, leading to similar
computation time. As the simulation goes on, particles starts
piling up in the overlapping region at the center of the simula-
tion domain. The effective number of PPC in the central patches
increases and the vectorized operator becomes more and more
interesting with respect to the scalar one. The adaptive mode
benefits from this speed-up by selecting the vectorized opera-
tor wherever it allows from improved efficiency. For 8 and 32
PPC, the vectorized operator and the adaptive mode lead to the
highest efficiency.

Overall, at 4 PPC, the computation time spent in particle op-
erators is for the full simulation (1515 iterations) of 433 s, 534
s and 405 s in the scalar, vectorized and adaptive mode, respec-
tively. Even with such a small number of PPC, the adaptive ap-
proach allows for 6% gain in efficiency with respect to the scalar
mode. At 8 PPC, the particle computation time is of 826 s, 723
s and 709 s for the the scalar, vectorized and adaptive mode,
respectively. The gain in efficiency thus increases to 14%. Fi-
nally, at 32 PPC, the particle computational time is of 3160 s
for the scalar mode and reduced to 1660 s for both the vector-
ized and adaptive modes. In this case, the gain in efficiency
due to the vectorized operators is of 47%, that corresponds to a
speed-up of almost ×2 for this configuration.

Last, we note that, in this configuration again, the time per
particle per iteration decreases with the number of particles. In
addition, the overhead due to the adaptive reconfiguration re-
mains for all cases below 1% of the full simulation time.
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8. Conclusion

The new vectorized particle operators implemented in Smilei
rely on an optimized cycle sort. It sorts particles by dual cell
(particles with the same primal index are contiguous in mem-
ory) at all times. It takes advantage from the low number of par-
ticles changing cells between time steps and from the fact that
there are several particles in each cell. The number of particle
copies is minimized and the algorithm complexity is reduced to
O

(
Npart

)
by keeping track of the cell locations, as in a counting

sort.
The interpolation operator has been efficiently vectorized

thanks to this sorting method that avoids random memory ac-
cess and facilitates data reuse. Although the pusher was already
efficiently vectorized using the particles’ structure of arrays, it
is now applied more efficiently on particle groups instead of the
full arrays. The Esirkepov projection, being hardly vectorizable
in its naive implementation due to concurrent memory access,
has taken advantage of the new cycle sort and thus shown an ef-
ficient vectorization. The presented method computes particles
by groups of 8 and uses temporary buffers sized accordingly
(a reduction step is necessary to update eventually the main ar-
rays). Clusters of 4 cells are considered to limit the memory
footprint and the number of reductions. An improved efficiency
of the vectorized operators is obtained, compared to their orig-
inal scalar implementation, when the number of particles per
cell is sufficiently large, generally above 8 particles per cell.
This threshold depends on the processor architecture (vector
instruction set) and the order of the interpolation shape func-
tions. In all cases, the vectorized operators, combined with the
cycle sort, significantly speed up the particle processing when
the number of particles per cell is several multiples of the vector
register length.

But when the number of particles per cell is lower than the
vector register length, the vectorized operators become less ef-
ficient than their scalar counterparts. This issue is addressed
by using a adaptive mode able to pick locally (each patch, each
species) and dynamically (every number of time steps) the most
efficient version. Simulations presenting a strong imbalance
in the number of particles per cell contain both vectorized and
scalar patches, depending on their load. If the plasma evolves,
the mode of each patch changes accordingly. This adaptive ap-
proach results in a simulation cost equal to or lower than the
best mode (scalar or vectorized). The adaptive reconfiguration
overhead appears negligible. The optimal scenario corresponds,
as expected, to a fully vectorized simulation, but this is not suit-
able for all physical cases, hence the adaptive approach.

This adaptive mode does not require any input from the
user as the algorithm detects automatically which operators
to pick. However, the implementation is based on empirical,
architecture-dependent metrics, and should be reevaluated on
other processor types for optimal performances. Fortunately,
several architectures can share a similar behavior and it is pos-
sible to build common approximate metrics. The order of the
interpolation shape functions, the MPI/OpenMP ratio, the com-
piler version, or other parameters may also modify these results.
In the future, an automated analysis could be performed by the

code at initialization to compute the most suitable metrics. For
large-scale simulations, this evaluation would represent a neg-
ligible cost.

There is, for the moment, no overlapping strategy between
computation and communications. This constitutes a next de-
velopment axis that would enhance the benefits brought by this
adaptive strategy. A better integration of the dynamic load bal-
ancing with the adaptive vectorization mode constitutes a sec-
ond possible improvement: they are not coupled even if they
can both contribute separately to the simulation efficiency. For
instance, they do not share the metrics used to estimate the par-
ticle computation time.
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Appendix A. Compilation

There are 4 different clusters used in this article. Each of
them is equipped with processors of different Intel architectures
that represent the most used with Smilei:

• Jureca supercomputer: 2 x Haswell node (Intel Xeon E5-
2680 v3, 12 cores)

• Tornado supercomputer: 2 x Broadwell node (Intel Xeon
CPU E5-2697 v4, 16 cores, 2.3 GHz)

• Frioul supercomputer: Knights Landing (KNL) node (In-
tel Xeon Phi 7250, 68 cores, 1.4 Ghz)

• Irene Joliot-Curie supercomputer: 2 x Skylake node (Intel
Skylake 8168, 24 cores, 2.7 - 1.9 Ghz)

On each of them, the code is compiled with the following ver-
sions:

• Intel compiler 18.0.1.163, IntelMPI 18.0.1.163

• Intel compiler 17.3.191, OpenMPI 1.6.5

• Intel compiler 18.0.1.163, IntelMPI 18.0.1.163

• Intel compiler 18.0.1.163, IntelMPI 18.0.1.163
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The most recent architecture is Skylake and uses the extended
AVX512 vector instruction set coming from the Xeon Phi fam-
ily (including KNL). It has the larger vector size able to treat
8 double precision floats in a single instruction. The Skylake
architecture can handle by legacy the AVX2 instruction set in-
herited from the Haswell and Broadwell processors. The Intel
Turboboost technology allows the processor to adjust the core
frequency to the total number of used cores and the required
instruction set. Regarding the Skylake processor used in this
article, the base frequency without vectorization is 2.7 GHz,
2.3 GHz for AVX2 and 1.9 GHz for AVX512.

The code is compiled with the most advanced architecture
vectorization flags, i.e. -xCORE-AVX2 on Haswell and Broad-
well, -xMIC-AVX512 on KNL and -xCOMMON-AVX512 on
Skylake. The flag -xCORE-AVX2 can also be used on KNL and
Skylake to test the code with the AVX2 instruction set that limit
the vector register size to 256 bit (4 double precisions float).
These flags are completed by -O3 -ip -ipo -inline-factor=1000
-fno-alias for best performance. The KNL cluster is configured
in Quadrant cache mode. On KNL, OpenMP is used to keep the
64 cores busy among the 68 available. The remaining cores are
let alone for the system. Hyperthreading is not activated. For
the other types of processors, we use all available cores.

Appendix B. Cycle sort

The push back() method adds an element at the end of the
array effectively increasing its size by 1. The resize() method
dynamically sets the size of the array.
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