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Abstract

Galerkin projection of the Navier-Stokes equations on Proper Orthogonal De-

composition (POD) basis is predominantly used for model reduction in fluid

dynamics. Robustness for changing operating conditions, numerical stability

for long-term transient behaviour and pressure-term consideration are still ma-

jor concerns of the Galerkin Reduced-Order Models (ROMs). In this article, we

present a novel interpolation based procedure to construct a solution state using

reduced basis. The POD basis functions are optimal in capturing the averaged

flow energy. The energy dominant POD modes and corresponding base flow

are interpolated for the change in operating parameter, thereby it circumvents

the Galerkin projection of Navier-Stokes equations on reduced basis as well as

the time-integration of the obtained Ordinary Differential Equations (ODEs).

The proposed interpolation ROM approach is thus immune from the numerical

issues associated with Galerkin ROMs. The method of snapshots (snapshots

POD) along with linear interpolation of the reduced basis are used to build

the interpolation ROM. In addition, a posteriori error estimate and stability

analysis of the model are formulated. A detailed case study of the flow past a

cylinder at low Reynolds numbers is considered for the demonstration of pro-

posed method. The ROM results show good agreement with the high fidelity
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numerical flow simulation.

Keywords:

1. Introduction

Computational Fluid Dynamics (CFD) simulations are indispensable ele-

ment of engineering research today. Although there is considerable advance-

ment in computing power in last couple of decades, exact flow simulations at

high Reynolds numbers are unaffordable in terms of time and computing cost.

The efforts become enormous for research applications (e.g. optimization) where

simulations need to be performed repeatedly. Consequently, reduced-order mod-

els (ROMs) are developed extensively in recent years. They offer substantial

reduction in the degrees of freedom and yet retaining the essential features of

the flow by means of reduced basis. The reduced system may leads to better

understanding of the underlying mechanism, thereby improvements in empirical

flow (turbulence) models. Flow control, optimization and stability analysis in

hydrodynamics, aero-acoustics are some of the potential applications of model

reduction (see e.g. (Noack et al., 2011)).

First important step of the model reduction in fluid dynamics is to form an

appropriate reduced basis from a complete set of basis functions. The choice of

particular basis functions may be problem specific and the derivation can be ‘a

priori’ or ‘a posteriori’. One can refer to (Joseph, 1976), (Noack and Eckelmann,

1994) for some of the early works on ‘a priori’ formation of the basis functions. In

the recent, (Dumon et al., 2013) used ‘a priori’ derivation of the basis functions,

in the context of Proper General Decomposition (PGD). Besides, the spectral

discretization methods are often preferred over spatial discretization methods

to gain accuracy for same computing time and space requirements. In ‘a poste-

riori’ formation, the basis functions are derived using existing solution datasets

with methods such as Proper Orthogonal Decomposition (POD) (e.g. method

of Dynamic Mode Decomposition (DMD) in (Rowley et al., 2009) and (Schmid,

2010)). The POD (or Principle Component Analysis) is a popular choice of em-
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pirical basis functions for Navier-Stokes equations. Especially, in understanding

the onset of bifurcations or instabilities and spatial-temporal dynamics of the

flow structures. The error in time-averaged energy remains minimal compared

to every other method for the same number of modes. The convergence in

extracting the space structures (topos) and associated time modes (chronos)

is optimum in terms of flow energy (Aubry, 1991). An elaborated discussion

and mathematical derivations on optimality of the POD method is provided in

(Holmes et al., 1990).

The Galerkin ROMs are build using coordinate transformation performed

by using Galerkin projection of the system of Navier-Stokes equations on the

reduced basis functions. Generally, the flow velocity (vvv) is decomposed in spatial

(φφφi) and temporal (ai) basis functions as shown in Equation (1) for the Galerking

ROMs.

vvv(xxx, t) ≈ vvv[0,1,2,...n] = v̄vv(xxx) +

n�

i=1

φφφi(xxx)ai(t) (1)

Where v̄vv(xxx) is the time-averaged base flow, n is the number of POD modes. This

equation holds good under the assumption that the flow is statistically station-

ary in time. In incompressible flows with Dirichlet type boundary conditions,

the basis functions satisfy both the boundary conditions and divergence-free

constrain of the continuity equation. The Galerkin projection of momentum

equations on the basis functions results in the non-linear quadratic Ordinary

Differential Equations (ODEs) of the form:

dai
dt

= Ci +

n�

j

Lijaj +

n�

j,k

Qijkajak (2)

Where C,L and Q are the Galerkin ROM coefficients. Equation (2) is a re-

duced model for the Navier-Stokes Equations (NSE) with n spatial modes. The

time-integration of Equation (2) with an appropriate initial boundary condition

gives the temporal basis functions, and the flow solution can be easily built by

using Equation (1). The Galerkin projection ideally should preserve the sta-

bility dynamics of the NSE but generally it is achieved with extrinsic stability

enablers. (Rempfer, 2000) showed how the Galerkin ROMs are inherently prone
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to numerical instabilities. The energy associated with the truncated basis func-

tions keeps piling on, that results in the divergence of ROMs. The concept of

artificial viscous dissipation to stabilize the Galerkin ROM was introduced in

(Aubry et al., 1988). Later, (Sirisup and Karniadakis, 2004) proposed a spec-

tral viscosity diffusion convolution operator based on bifurcation analysis. In

addition, the stability of Galerkin ROM greatly depends on parameters such as

flow compressibility, pressure-term consideration, time varying boundary con-

ditions etc. The flow compressibility effect can be considered by means of an

energy based inner product to build the ROM (Rowley et al., 2004). The POD-

penalty method was proposed by (Sirisup and Karniadakis, 2005) to treat the

time dependence of boundary conditions on the Galerkin ROM. The Galerkin

projection of the pressure-gradient term of NSE on the reduced basis functions

can be neglected for internal flows. While as for open flows, the pressure term

does not disappear (Noack et al., 2005) and needs to be modeled. The pressure

term is accounted in the formulation of pressure extended Galerkin ROM by

(Bergmann et al., 2009). In addition, (Noack et al., 2003) demonstrated that

neglecting the interactions between time-averaged base flow and the fluctuating

flow may lead to unstable Galerkin ROM and also introduced the concept of

‘shift mode’ correction technique. Further, from the flow control applications

viewpoint (Morzynski et al., 2006) proposed a method in which an interpola-

tion between stability eigenmodes and POD modes is performed to deal with

changing flow conditions. A detailed discussion on numerical instabilities and

perspectives of the reduced order models in fluid dynamics is provided by (Las-

sila et al., 2013).

An appropriate reduced basis and the Galerking projection of NSE on the

reduced basis followed by the time-integration of obtained ODEs are main ele-

ments of the Galerkin ROMs. The POD basis functions are optimal choice in

terms of flow energy but the Galerkin projection of NSE on the reduced basis

may not produce a stable ROM as discussed above. In this article we propose a

novel approach, where we completely avoid the Galerkin projection of NSE on

the reduced basis and the time-integration to obtain the ROM time coefficients.
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The time-averaged base flow and the POD space basis functions (topos) are

interpolated for the change in operating condition. The POD temporal basis

functions (chronos) are also interpolated in phase space. The periodicity (the

period of limit-cycles) of the POD temporal modes is accounted for the energy

conservation. The article is organised as: Section (2) is dedicated to the math-

ematical formulation and error analysis of the proposed ROM. In Section (3),

we provide a demonstration of the method using a case study of the flow past a

cylinder at low Reynolds numbers. At last, the work is summarised in Section

(4).

2. Mathematical formulation

The compressible Navier-Stokes equations (including the continuity and en-

ergy equations) are considered here as the High Fidelity Model (HFM). The

flow is statistically stationary in time such that Equation (1) is applicable to

the solution (state) variables. The state vector sss = sss(xxx, t) is spanned on the

space xxx ∈ Ω, Ω is the spacial flow domain. t is the time in [0, T∞]. Let H be

a Hilbert space and sss ∈ H. The standard inner product, induced norm and

time-average for its elements uuu,vvv ∈ L2(Ω) are respectively,

(uuu,vvv)Ω =

�

Ω

uuu ·vvv dxxx, ||uuu||Ω =
�
(uuu,uuu)Ω and ūuu =

1

T∞

�

T∞

uuu dt = �uuu�T∞
(3)

2.1. Method of snapshots POD

The POD or Karhunen-Loeve expansion was first introduced in fluid dy-

namics by (Lumley, 1967) for the analysis of coherent structures in turbulence.

Following the development of POD, (Sirovich, 1987) introduced the method of

snapshots for the experimental and numerical datasets. It allows further reduc-

tion of degrees of freedom, compared to the direct method of POD.

The solution state vector sss includes all variables varying in time and space.

Let η be an operating parameter (e.g. Reynolds number). The state vector of
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the High Fidelity Model (HFM) solution can be defined as,

sss(xxx, t; η) =




ρ(xxx, t; η)

vvv(xxx, t; η)

p(xxx, t; η)
...




(4)

Where ρ, vvv and p are the fluid density, velocity vector and static pressure

respectively. The state vector can be separated in the time-averaged base flow

and the unsteady part as shown in Equation (5).

sss(xxx, t; η) = s̄ss(xxx; η) + sss�(xxx, t; η) (5)

= s̄ss(xxx; η) +

∞�

i=1

φφφi(xxx; η)aaai(t; η) (6)

In Equation (6), the unsteady part (sss�(xxx, t; η)) is decomposed into the POD basis

functions using Galerking expansion. The time invariant orthonormal φφφi(xxx; η)

and the space invariant orthogonal aaai(t; η) are the POD basis functions (modes).

The state vector can be obtained in discrete (Nt) snapshots by performing a

CFD simulation. The snapshots can be collected once the flow becomes sta-

tistically stationary and using (typically) a constant timestep (Δtsn). Let Nt,

Npod be the number of snapshots and number of POD modes respectively, also

Npod ≤ Nt−1. The state vector is approximated using discrete snapshots as,

sss(xxx, t; η) ≈ sss(xxx, t1; η), ......., sss(xxx, tNt ; η) (7)

≈ s̄ss(xxx; η) +

Npod�

i=1

φφφi(xxx; η)aaai(t; η) t1 ≤ t ≤ tNt (8)

Where t1 and tNt
are the time coordinates of the first and last snapshots. Also,

let Tsn = [t1, .., tNt ] be the time domain of discrete snapshots collection. The

time step (Δtsn) of snapshots and number of snapshots (Nt) depend on the

desired resolution in the temporal harmonics of the POD modes (Noack et al.,

2005).

Let RRR(η) be the two point time-correlation function, given by,

RRR(η) = RRR(ti, tj , η) =
1

Nt
(sss�(xxx, ti; η), sss

�(xxx, tj ; η))Ω i, j = 1, 2, .....Nt (9)
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The correlation function RRR(η) is solved for the eigenvalue problem, as in Equa-

tion (11).

RRR(η)ψψψi(t; η) = λiλiλiψψψi(t; η) (10)

where λλλi are the eigenvalues. The orthogonal eigenfunctions ψψψi(t; η) are then

normalized as,

(ψψψi(t; η),ψψψj(t; η))Tsn
= δδδij (11)

The POD modes are arranged in descending order of their energy content

(the eigenvalues associated with the modes). i.e λλλ1 > λλλ2 > ............... >

λλλNpod
> 0. The orthonormal ‘topos’ are obtained using Equation (12), such

that (φφφi(xxx; η),φφφi(xxx; η))Ω = δδδij .

φφφi(xxx; η) =
1√
Ntλλλi

(sss�(xxx, t; η),ψψψi(t; η))Tsn
(12)

The corresponding POD time coefficients are given by,

aaai(t; η) = (φφφi(xxx; η), sss
�(xxx, t; η))Ω

=
�
Ntλλλiψψψi(t; η) (13)

Generally, the number of reduced POD modes (Nr) is much smaller compared

to the total POD modes (Nr << Npod). The relative energy captured (EcEcEc) by

the most energetic (first few) POD modes is substantial. It can be given as,

%EcEcEc =

�Nr

i=1λλλi�Npod

i=1 λλλi

× 100 (14)

2.2. Periodicity of POD temporal modes

The total energy 1 EEE(η)pod of the unsteady part of the discrete state vector

can be given by,

EEE(η)pod =

�

Ω

�
sss�(xxx, t, η)2

�
Tsn

dxxx =

Npod�

i=1

λλλi =

Npod�

i=1

�
aaai(t; η)

2
�
Tsn

(15)

1An appropriate term for the non-velocity variables (e.g. density, pressure) be the ‘vari-

ance’.
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The space domain (Ω) is limited by a boundary (∂Ω). Similarly, let Tmin be the

minimum time window for which the total energy in Equation (15) remains the

same, such that,

EEE(η)pod =

�

Ω

�
sss�(xxx, t, η)2

�
Tmin

dxxx =

Npod�

i=1

λλλi =

Npod�

i=1

�
aaai(t; η)

2
�
Tmin

(16)

In statistically stationary flows, the POD temporal basis functions observe

the stable limit cycles in phase space (see for e.g. (Sirisup and Karniadakis,

2004), (Ma and Karniadakis, 2002), (Aubry, 1991)). Let Tη be the time period

of the limit-cycle of first POD time coefficient aaa1(t; η). The higher (well resolved

by snapshots) POD time modes for the state vector are periodic with the time

Tη. The characteristic POD time coefficients can be defined as,

ãaai(t; η) = aaai(t; η) for t ∈ [ta, ta + Tη] (17)

Where ta ∈ [0, (Tsn − Tη)] is an arbitrary time. Further, the total energy in

Equation (16) becomes,

EEE(η)pod =

Npod�

i=1

�
ãaai(t; η)

2
�
Tη

=

Npod�

i=1

�
aaai(t; η)

2
�
Tmin

=

Npod�

i=1

λλλi (18)

It also implies that the minimum time window (Tmin) is the time period of first

POD temporal mode (Tη).

Under the statistically stationary flow assumption and using periodic charac-

teristic POD temporal modes (Equation 17), one can reconstruct the flow with

reduced number (Nr) of POD basis even outside the snapshots time domain

(Tsn) as,

sss(xxx, t; η) ≈ s̄ss(xxx; η) +

Nr�

i=1

φφφi(xxx; η)ãaai(t; η) t ≥ 0 (19)

2.3. Linear interpolation

The linear interpolation is used to interpolate the right hand side terms of

Equation (19) for the change in operating parameter η. The interpolation of

the characteristic POD temporal modes (ãaai) ensures an appropriate flow energy

(EEE(η)) levels in the interpolated state.
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Let sss(xxx, t; ηj) with j = 1, 2 be the two reference states. In order to build the

solution state vector at an operating parameter η ∈ [η1, η2], the time-averaged

base flow s̄ss(xxx; η), the POD spacial modes (φφφi(xxx; η)) and the associated time

coefficients ãaai(t; η) are obtained by the interpolation of the reference states. The

interpolation is formulated using a vector ΓΓΓ(βββ; η) in Equation (20). It represents

either the solution state average (s̄ss(xxx; η)) or the POD modes (φφφi(xxx; η) or ãaai(t; η)).

ΓΓΓ(βββ; η) = ΓΓΓ(βββ; η1) +

�
(ΓΓΓ(βββ; η2)−ΓΓΓ(βββ; η1))

(η2 − η1)

�
(η − η1) (20)

A priori, the condition in Equation (21) is satisfied such that the interpolated

quantities (RHS of Equation (19)) follow the signs of η1 reference case.

(ΓΓΓ(βββ; η1),ΓΓΓ(βββ; η2))βββ ≥ 0 (21)

The time-averages of the state vectors (s̄ss(xxx; ηj) for j = 1, 2) generally do not

alter its sign for a change in the operating parameter (ηj). A symmetry in the

flow geometry can lead to a phase change of π between the POD space modes

(φφφi(xxx; ηj)) for different operating conditions (ηj). The constrain in Equation

(21) ensures that they do not cancel out, while performing the interpolation.

In addition, the reference states ηj should be close enough, in order to perform

the linear interpolation (Equation 20). The characteristic POD time coefficients

(ãaai(t; η)) are brought in minimal phase by using Equation 21. The interpolated

base solution and the POD modes follow any one of the reference states for

the phase. The characteristic time period (Tη) is also linearly interpolated

for a change in the operating parameter (η). The interpolation ROM, with the

reduced number (Nr) of POD interpolated basis and for the change of parameter

(η) in [η1, η2], can be written as,

sss(xxx, t; η) ≈ s̄ss(xxx; η) +

Nr�

i=1

φφφi(xxx; η)ãaai(t; η) t ≥ 0 & η ∈ [η1, η2] (22)

2.4. A posteriori error estimate and stability

The High Fidelity Model (HFM) solution can be an accurate CFD solution

to the full NSEs or the experimental datasets for the flow under consideration.
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The HFM solution state vector can be expressed in terms of POD basis functions

by Equation (6). The method of snapshots leads to an approximation (similar

to Equation 8),

sss(xxx, t; η)hf ≈ s̄ss(xxx; η)pod +

Npod�

i=1

φφφi(xxx; η)podãaai(t; η)pod (23)

The subscript ‘hf ’ stands for a high fidelity solution, while as the subscript

‘pod’ stands for quantities estimated using POD. A posteriori the error in POD

discretization can be given by,

���psss(xxx, t; η) = sss(xxx, t; η)hf − sss(xxx, t; η)pod (24)

Where the subscript ‘psss’ stands for a POD based error in the solution state

vector sss. The POD error depends mainly on the timestep of snapshots collection

(ΔTsn), number of snapshots (Nt) and the time-window of snapshots collection

(Tsn). A rigorous parametric analysis and error estimate study of the POD

method was performed by Kunisch and Volkwein (2002). In order to normalise

the errors, let us represent the element wise division of vectors uuu and vvv as uuu�vvv,

for no element of vector vvv is zero (vi �= 0). Further, the total variance can be

defined for the high fidelity state vector sss(xxx, t; η) as,

σσσ2(η) =

�

Ω

�
sss�(xxx, t; η)2hf

�
T∞

dxxx (25)

A posteriori, normalized error in POD discretization can be given by,

�p(t; η) =

����
����
�

Ω

���psss(xxx, t; η)
2dxxx� σσσ2(η)

����
����
r(sss)

(26)

Where r(sss) stands for number of state variables. In addition, the error intro-

duced by truncation of the higher (> Nr) POD modes can be obtained as,

���tsss(xxx, t; η) =

Npod�

i=Nr+1

φφφi(xxx; η)pod ãaai(t; η)pod (27)

The normalized truncation error becomes,

�t(t; η) =

����
����
�

Ω

���tsss(xxx, t; η)
2dxxx� σσσ2(η)

����
����
r(sss)

(28)
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2.4.1. Interpolation error

The interpolation error associated with each term can be defined as,

���s̄ss(xxx; η) = s̄ss(xxx; η)pod − s̄ss(xxx; η)

���φφφi
(xxx; η) = φφφi(xxx; η)pod − φφφi(xxx; η)

���ãaai
(t; η) = ãaai(t; η)pod − ãaai(t; η) (29)

A combined interpolation error at a time instance can be formulated for the

reduced POD basis (Nr) as,

���isss(xxx, t; η) = ���s̄ss(xxx; η)+

Nr�

i=1

φφφi(xxx; η)���ãaai
(t; η) + ���φφφi

(xxx; η)ãaai(t; η) + ���φφφi
(xxx; η)���ãaai

(t; η) (30)

A priori, the maximum error bound in the linear interpolation can be given

by Equation (31), for each interpolation error term from Equation (30). The

second derivatives (ααα∗) must exist.

|���s̄ss(xxx; η)| ≤ 1

8
(Δη)2 sup

η∈[η1,η2]

|αααs̄ss(xxx; η)| where αααs̄ss(xxx; η) =
∂2

∂η2
(s̄ss(xxx; η)pod)

|���φφφi
(xxx; η)| ≤ 1

8
(Δη)2 sup

η∈[η1,η2]

|αααφφφi
(xxx; η)| where αααφφφi

(xxx; η) =
∂2

∂η2
(φφφi(xxx; η)pod)

|���ãaai(t; η)| ≤ 1

8
(Δη)2 sup

η∈[η1,η2]

|αααãaai(t; η)| where αααãaai(t; η) =
∂2

∂η2
(ãaai(t; η)pod)

(31)

The error is O(Δη2). Here Δη = (η2−η1). The value of Δη can be chosen based

on the total interpolation error bound |���isss(xxx, t; η)|. The total interpolation error

in the solution state vector sss(xxx, t; η) is in bounds as,

|���isss(xxx, t; η)| ≤
1

8
(Δη)2 sup

η∈[η1,η2]

αααs̄ss(xxx; η) +

Nr�

i=1

φφφi(xxx; η)αααα̃ααi(t; η)+

αααφφφi
(xxx; η)ãaai(t; η) +

1

8
(Δη)2αααφφφi

(xxx; η)αααα̃ααi(t; η) (32)
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On the other hand, the interpolation error can be a posteriori given by,

���isss(xxx, t; η) =

�
s̄ss(xxx; η)pod +

Nr�

i=1

φφφi(xxx; η)podãaai(t; η)pod

�
−

�
s̄ss(xxx; η) +

Nr�

i=1

φφφi(xxx; η)ãaai(t; η)

�
(33)

The normalized interpolation error will be,

�i(t; η) =

����
����
�

Ω

���isss(xxx, t; η)
2dxxx� σσσ2(η)

����
����
r(sss)

(34)

Generally, the error in Galerkin ROMs is quantified based on quadratic flow

energy terms. The POD basis functions (topos and chronos) are the optimal

basis for ROM in fluid dynamics, hence provide an upper bound for the er-

ror in Gelerkin ROM ((Balajewicz and Dowell, 2012), (Demmel, 1997)). The

normalized error in ROM based on the kinetic energy can be expressed as,

�e(t; η) =
����(EEE(t; η)pod −EEE(t; η))� σσσ2(η)

����
r(sss)

=

������

������




Npod�

i=1

ãaai(t; η)
2
pod −

Nr�

i=1

ãaai(t; η)
2


� σσσ2(η)

������

������
r(sss)

(35)

The energy based error (�e(t; η)) does not account for the error in interpolation of

the time-averaged base flow (s̄ss(xxx; η)) as well as the POD space modes (φφφi(xxx; η)).

Therefore the total error relevant to the interpolation ROM can be defined as,

�it(t; η) = �i(t; η) + �t(t; η) (36)

2.4.2. Stability of the interpolation ROM

Almost all the Galerkin ROMs are unstable and need stabilization techniques

such as, artificial viscosity terms, increasing order of the ROMs. This way either

the high fidelity Navier-Stokes equation are altered or the computational efforts

are increased (Balajewicz and Dowell, 2012). On the contrary, the interpolation

based approach of ROM uses flow stationarity for the energy balance instead of

considering the energy of truncated POD modes in terms of empirical turbulence
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models. The time average of the total error �it(t; η) in the interpolation ROM

(Equation (36)) can be given by,

�(η) = ��it(t; η)�T∞
= ��it(t; η)�Tη

(37)

it implies,
∂�(η)

∂Tη
= 0 (38)

The errors (���psss(xxx, t; η), ���tsss(xxx, t; η) and ���isss(xxx, t; η)) in the interpolation ROM

are in bounds under the stationary flow assumption for all time. The total

normalized error �(η) remains a function of the parameters ΔTsn, Nt, Npod, Nr,

Δη and the second derivatives αααs̄ss, αααφφφi
and αααãaai .

3. Flow past a cylinder at low Reynolds number - a case study

A compressible Navier-Stokes flow solver (Navier-Stokes Multi Block - NSMB)

is used with a preconditioning for the incompressible flow at low Mach num-

ber. The NSMB solver is developed in collaboration between several European

organizations which mainly includes Airbus, KTH, EPFL, IMFT, ICUBE, CER-

FACS, University of Karlsruhe and ETH-Ecole Polytechnique de Zurich. The

code has been developed since early 90’s. It is coordinated by CFS Engineering

in Lausanne, Switzerland. NSMB is a structured code including a variety of

high-order numerical schemes and turbulence modeling such as LES, URANS,

RANS-LES hybrid turbulence modeling, especially DDES (Delayed Detached

Eddy Simulations).

The flow past a cylinder at low Reynolds number (Re = 125 ∼ 150) in

2-dimension (2D) is considered for the demonstration of the proposed Reduced-

Order Model (ROM). Figure (1) shows the flow domain and the instantaneous

flow fields (u, v and p) at Reynolds number Re = 125 (Re = ρu∞D/µ). The

cylinder of diameter D = 1 is at the center of the computational domain. The

inflow streamwise (along +x axis) velocity (u∞) as well as the temperature

(θ∞) far upstream are set to 1. The density of the fluid (calorically perfect

gas) is ρ = 1. The Mach number upstream is M∞ = 0.18, while as the specific

13



heat ratio of 1.4 (for air) is taken. The gas constant R and the inflow pressure

p∞ are 22.05. The dynamic viscosity (µ) is constant, it is estimated using

the Reynolds number (Re∞) as, µ = (ρvvv∞D)/(Re∞). The inflow transverse

velocity is v∞ = 0. The internal energy (e) and the enthalpy (h) are given by

Cvθ and Cpθ respectively, where Cv, Cp are the specific heats at constant volume

and constant pressure respectively. The total energy (E) and the internal energy

(e) are related by

e = E − 1

2

�
u2 + v2

�
)

3.1. Governing flow equations and numerical methods

The compressible unsteady Navier-Stokes equations in 2D can be written as,

∂

∂t
(www) +

∂

∂x
(fff − fffν) +

∂

∂y
(ggg − gggν) = 0 (39)

Where,

www =




ρ

ρu

ρv

ρE


 , fff =




ρu

ρu2 + p

ρuv

u(ρE + p)


 , ggg =




ρv

ρvu

ρv2 + p

v(ρE + p)




fffν =




0

τxx
τxy

[τττ ,vvv]x − qx


 , gggν =




0

τyx
τyy

[τττ ,vvv]y − qy




Here www is the state vector. fff , ggg are the convective fluxes, while as fffν , gggν

are the viscous fluxes. The components of shear stress tensor τττ in the viscous

fluxes are given by Equation (40).

τxx =
2

3
µ

�
2
∂u

∂x
− ∂v

∂y

�
, τyy =

2

3
µ

�
−∂u

∂x
+ 2

∂v

∂y

�

τxy = τyx = µ

�
∂u

∂y
+

∂v

∂x

�
(40)

The heat flux is calculated using Fourier’s law as,

qx = −k
∂θ

∂x
, qy = −k

∂θ

∂y
with k = µCp/Pr (41)
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(a) Geometry and mesh (b) Streamwise velocity u at Re = 125

(c) Transverse velocity v at Re = 125 (d) Pressure p at Re = 125

Figure 1: Computational domain and instantaneous flow fields at Re = 125

Where k is the thermal conductivity. The Prandtl number (Pr) is taken 0.72

(for air).

The second order fully implicit LU-SGS (Lower-Upper Symmetric Gauss-

Seidel) backward A-stable scheme with a dual-time stepping is used for the

time marching. The space discretization is done using forth order central finite

volume scheme in a skew-symmetric form. The preconditioning method pro-

posed in (Turkel et al., 1996) to impose the incompressibility is used, for the
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flows at low speed (mach number).

3.2. Results and discussion

The state vector sss in the case study (2-D, incompressible flow) can be con-

sidered as,

sss(xxx, t; η) =



u(xxx, t; η)

v(xxx, t; η)

p(xxx, t; η)


 (42)

Where xxx is the space domain with x and y dimensions. t represents the time.

The operating parameter η is the Reynolds number Re. The two reference cases

are considered at Reynolds numbers η1 = Re1 = 125 and η2 = Re2 = 150. The

number of snapshots taken for each reference case is Nt = 900, this constitutes

≈ 14 vortex shedding periods. The time step for snapshots collection is Δtsn =

0.05. The correlation matrix was built for each reference case and solved for

the eigenvalue problem as detailed in Section (2.1). The off-reference case is

considered at η = Re = 140. The linear interpolation of the state vector time-

averages and POD modes (both topos and chronos) using the reference states

is performed as per Section (2.3). The results are build using first 10 POD

modes (Nr = 10) out of 500 POD modes (Npod = 500) and compared with

the Navier-Stokes High Fidelity Model (HFM) simulation results at the same

Reynolds number.

The results of POD analysis at Re = 140 are shown is Figure (2), in terms

of the eigenvalues and the time evolution of the discretization error involved in

the method of snapshots POD. Figure 2(a) shows the % energy associated with

each POD mode of the state variables. It also indicates that the ≈ 99.99% of

total energy is contained in first 10 modes of each state variables. Therefore

the number of reduced basis Nr = 10 is chosen for the interpolation (ROM).

The discretization error in the method of snapshots POD (�p(t; η)), as defined

in Equation (26) is plotted in Figure 2(b). The root-mean-srquared (rms) of

the error is ≈ 0.25% of the variance of the state variable.
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Figure 2: POD analysis of the flow at Re = 140 (η)

3.2.1. Interpolation of the POD reduced basis

In this case study, the POD space modes (φφφi(xxx; η)) are either symmetric or

antisymmetric about the x axis. The preconditioning in Equation (21) is needed

for the antisymmetric modes, only when they observe a flip of sign in changing

operating condition (η). Figure (3) shows the linear interpolation performed

for the fifth space mode of the streamwise velocity (φu
5 ). Figures 3(a) and

3(b) are the fifth POD space modes of the reference cases at Re1 = 125 and

Re2 = 150 respectively. The result of interpolation at Re = 140 for φu
5 (xxx;Re)

is shown in Figure 3(d). Figure 3(c) shows the actual POD mode (φu
5 ) at

Re = 140, computed using the method of snapshots POD for comparison with

the interpolated mode.

Similarly, the remaining topos from the reduced basis were interpolated at

Reynolds number Re = 140. Figure (4) shows comparison of the first four

interpolated (ROM) modes (Figures 4(b), 4(d), 4(f), 4(h)) versus the snapshots

POD modes (Figures 4(a), 4(c), 4(e), 4(g) respectively). One can notice that the

POD modes act in pairs. The first pair of POD modes of streamwise velocity u

(mode number 1 & 2) is antisymmetric, while the second one is symmetric about

the x axis. In general here, the odd pairs of POD modes of u are antisymmetric
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(a) φu
5 (xxx;Re1) (POD) (b) φu

5 (xxx;Re2) (POD)

(c) φu
5 (xxx;Re) (POD) (d) φu

5 (xxx;Re) (ROM)

Figure 3: Interpolation of φu
5 (xxx, ·)

and the even pairs are symmetric. The antisymmetry of the modes about x

axis is dealt by the constrain in Equation (21) before interpolating the modes.

The POD is a biorthogonal decomposition of the flow in space and time, there

is one-to-one correspondence between topos and chronos (Aubry, 1991). The

change in symmetry of a topo reflects in the corresponding chrono. Although

this change of sign (of φφφi and ãaai for the same operating condition) does not

alter the value of flow reconstruction by Equation (22). The phase information

is anyway lost because of the second order statistics used in the POD basis

functions (Schmid, 2010). In addition to the phase information, the change of

operating condition (Re) leads to the change in orientation of the POD basis

functions. The interpolation procedure ensures an appropriate orientation of

the POD reduced basis for an intermediate operating conditions between the

reference states.

In Galerkin ROMs the time coefficients often need corrections in their am-

plitudes. The common source of error is due to the truncation of higher POD

modes and the formulation of the ROM without pressure-term representation.
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(a) φu
1 (xxx;Re) (POD) (b) φu

1 (xxx;Re) (ROM)

(c) φu
2 (xxx;Re) (POD) (d) φu

2 (xxx;Re) (ROM)

(e) φu
3 (xxx;Re) (POD) (f) φu

3 (xxx;Re) (ROM)

(g) φu
4 (xxx;Re) (POD) (h) φu

4 (xxx;Re) (ROM)

Figure 4: Comparison of φu
1 (xxx,Re) to φu

4 (xxx,Re) modes obtained by the snapshots POD against

the modes obtained using linear interpolation (ROM) at Re = 140

For instance, the Galerkin ROMs without pressure-term consideration leads to

higher amplitudes of the POD time coefficients (Noack et al., 2005). The char-

acteristic POD time coefficients (ãaai(t;Re)) are immune from the truncation and

pressure-term errors, since they are extracted from the time coefficients of the
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ãu1 (t)
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Figure 5: Comparison of the time coefficients ãui (T·; ·) of the first five chronos. The blue

curve in each plot is an interpolated mode (ROM) at Re = 140 against the snapshot POD

mode at Re = 140 in green. The other color correspondence with Reynolds numbers is: Red

→ Re1 = 125 and Pink → Re2 = 150

POD (aaai(t;Re)) itself as per Equation (17) for the reference cases (η1 and η2).

The characteristic time coefficients, similar to the fellow spacial modes act in

pairs. The interpolation results for the characteristic time coefficients (chronos)
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are shown in Figure (5). It shows the comparison of interpolation results in

phase space for the first five characteristic time coefficients. The curves in each

plot (Figures 5(a), 5(b), 5(c) and 5(d)) expand in size, with the increase of

Reynolds number. The limit-cycles represented in red color are for the refer-

ence state Re1 = 125, while the ones in pink color are for the reference state

Re2 = 150. The limit-cycles at Re = 140, in blue color are interpolated using

the reference states Re1 and Re2. It can be compared with the characteristic

POD time modes obtained using snapshots POD at Re = 140 in green color.

In addition, the characteristic times (Tη) of the reference states Re1 = 125

and Re2 = 150 are TRe1 = 5.647 and TRe2 = 5.400 respectively. The linearly

interpolated characteristic time at Re = 140 is TRe = 5.499 against the value

5.489 obtained in POD analysis.
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(b) Cumulative energy comparison

Figure 6: Energy comparison of the interpolated (ROM) modes with the snapshots POD

modes

The eigenvalues of the interpolation ROM solution at Re = 140 were esti-

mated using relation,

λλλi =
�
ãaai(t;Re)2

�
TRe

(43)

Figure 6(a) shows the energy (in %) associated with the reduced interpolated

(ROM) modes at Re = 140, it is compared with the energy (in %) of the

corresponding snapshots POD modes (cumulative plot in Figure 6(b)). The

time-averaged flow energy estimation using the interpolated POD time modes
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(Equation 43) evinces the orthogonality of the interpolated modes (Balajewicz

and Dowell, 2012). An additional orthogonality check is performed a posteriori

on the interpolated reduced basis. The angle (θγγγ,βββ) between interpolated modes

(γγγ, βββ ∈ L2(Ω)) is calculated by means of their inner product as,

θγγγ,βββ = arccos

�
(γγγ,βββ)Ω

||γγγ||Ω||βββ||Ω

�
(44)

The angles (in degree) between the interpolated reduced basis of streamwise

velocity (u) are tabulated in Table (1). It clearly demonstrates that the inter-

polation of the POD modes retains the orthogonality of both the topos (φφφi) and

chronos (ãaai).

φu
1 φu

2 φu
3 φu

4 φu
5 φu

6 φu
7 φu

8 φu
9 φu

10

φu
1 00.0 89.9 89.9 90.4 90.1 90.0 90.0 90.0 90.0 90.1

φu
2 89.9 00.0 90.4 90.1 89.8 90.0 90.0 90.0 90.0 90.0

φu
3 89.9 90.4 00.0 90.4 89.8 90.5 90.1 89.9 90.0 90.0

φu
4 90.4 90.2 90.4 00.0 90.5 90.3 90.1 89.8 90.0 90.0

φu
5 90.1 89.8 89.8 90.5 00.0 89.8 90.3 89.7 90.5 89.9

ãu1 ãu2 ãu3 ãu4 ãu5 ãu6 ãu7 ãu8 ãu9 ãu10

ãu1 00.0 90.1 89.0 89.3 90.2 89.7 89.5 90.4 90.4 90.3

ãu2 90.1 00.0 88.7 90.3 91.6 91.3 90.1 90.5 90.3 88.3

ãu3 89.0 88.7 00.0 90.5 91.7 88.3 90.2 88.0 90.3 89.7

ãu4 89.3 90.3 90.5 00.0 88.1 88.0 90.8 89.6 89.6 91.0

ãu5 90.2 91.6 91.7 88.1 00.0 89.9 87.8 94.0 91.4 90.3

Table 1: Orthogonality (angle between the modes in degree) of the interpolated reduced basis

The errors quantification, as formulated in Section (2.4) is plotted in Figure

(7). The truncation error (�t(t;Re)) is nothing but the contribution of higher

order POD basis functions (Npod − Nr) to the fluctuations in state variables.

The maximum truncation error is ≈ 0.25% of the variance (σ2) for each state

variable (Figure 7(a)). The interpolation error (�i(t;Re)) is relatively high, the

maximum of it is about 2% of the variance, for Δη = ΔRe = 25. The total error
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Figure 7: Time evolution and phase diagrams of the Errors

relevant to the interpolation ROM (�it(t;Re)) is also ∼ 10 times the truncation

error. Figure 7(b) shows the errors (�i, �t & �it) in phase space. The limit

cycles illustrate the boundedness of errors amplitude with the time evolution.

On the other hand, maximum of the energy based error �e(t;Re) (as defined
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in Equation (35)) is ≈ 22% of the variance (Figure 7(c)). Further, the phase

diagrams in Figure 7(b) and Figure 7 (d) show that the errors follow the stable

limit cycles, demonstrating the stability of interpolation ROM method.

3.2.2. High fidelity solution comparisons

(a) ū(xxx;Re) (HFM) (b) ū(xxx;Re) (ROM)

Figure 8: Time-averaged base flow comparison at Re = 140 (ū(xxx,Re))

Figure 8(a) shows the average of streamwise velocity ū(xxx;Re) obtained using

the high fidelity computational fluid dynamics (CFD) simulation at Reynolds

number Re = 140. The interpolated time-average of the streamwise velocity

at same Reynolds number (Re = 140) using the reference states at Re = 125

and Re = 150 is shown in Figure 8(b). Generally, the time-averaged base flow

shows little variation over the long range of Reynolds numbers. In addition, the

dimensionless quantities of practical importance such as Drag, Lift coefficients

vary with the logarithmic change in Reynolds number. Therefore the second

derivatives ααα∗ in Equation (32), contributing to the error bounds for the inter-

polation error can expected to be small, providing the possibility to have larger

Δη. Figure 9(a) shows the phase plot of the Drag versus Lift coefficients esti-

mated using pressure force, for both the high fidelity (HFM) and interpolation

ROM solutions at Re = 140. Figure 9(b) shows the comparison of time-averaged

pressure coefficient profile on the surface of cylinder at Re = 140. The Drag,

Lift and pressure coefficients are estimated (respectively) as,

Cd = 2

�

Lp

plx̂dl; Cl = 2

�

Lp

plŷdl and Cp = 2(p− p∞) (45)

Where Lp is the perimeter of cylinder, pl is the pressure on the small segment
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Figure 9: Phase plot of drag Vs lift coeff. and surface pressure profile comparison

(dl) of the perimeter. x̂, ŷ are the projections of the unit vector normal to a

length segment dl along the inflow (x) and flow normal (y) directions respec-

tively.

The time signal of streamwise velocity in Figure 10(a) is probed at x = 5, y =

0. The time evolution of the Drag and Lift coefficients for unit cylinder length

(estimated using pressure force only) is compared in Figure 10(b). It shows a

fairly good agreement with the high fidelity CFD simulation results. The ROM

time signals are ∼ 27 TRe long and they persist for any time duration (T∞).

4. Summary

A simple and robust approach to the model reduction of Navier-Stokes equa-

tions is presented. In contrast to the Galerkin Reduced-Order Models (ROMs),

the method is based on the periodicity of the Proper Orthogonal Decomposi-

tion (POD) time coefficients - a beautiful feature of the POD temporal basis

functions (chronos) - in statistically stationary flows. In order to cope with the

changing operating condition (such as Reynolds number) the reduced POD basis

is interpolated using linear interpolation of the reference operating conditions.

The error and stability analysis suggests that the errors in snapshot POD, trun-

cation of higher POD modes and the linear interpolation are bounded for the

time evolution. The total absolute error mainly depends on the difference in
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(a) Streamwise velocity at x = 5, y = 0

(b) Drag and Lift (pressure) force coeff.

Figure 10: Comparison of time signals of u, Cd and Cl

two reference states (Δη) and sensitivity of the flow to the operating parameter.

The results of high fidelity CFD simulation of the flow past a cylinder show good

agreements with the proposed method. The stable limit-cycles of the errors and

the linear interpolation of reduced basis for changing operating condition ensure

the stability and robustness of the interpolation ROM. Although we did con-

sider a case study of 2-dimensional (2-D) incompressible flow, the mathematical

formulation is developed for the full 3-D compressible Navier-Stokes equations.

Further, each state variable is treated independently, therefore we anticipate the

applicability of the method for wide range of problems with coupled phenomena

(e.g. flow around aerofoil at high Mach, fluid-structure interaction).
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