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An accurate and fast post-processing method for computing the magnetic flux through a coil is discussed and applied to the
analysis of inductive power transfer (IPT) systems. This post-processing method is well adapted to various numerical methods.
In this paper, a volume integral method based on magnetic vector potential interpolation is focused to solve the computational
magnetostatic problem for the field quantities. It does not require the discretization of the predominant air domain so is perfectly
suited for the modeling of IPT couplers. In magnetostatic analysis, the magnetic flux is expressed as a summation of two terms.
The first one is created by source coils and is computed by integral expressions. The second one is obtained by a light integration
only on the magnetic region. The method is accurate and associated to a reduced computation time. It is compared with both finite
element method and experimental results to check its performance.

Index Terms—Inductive power transfer (IPT), magnetic flux computation, magnetic vector potential, mutual-inductance, volume
integral method (VIM).

I. INTRODUCTION

MAGNETIC flux computation is important for the design
and the optimization of electromagnetic devices. It

is a useful quantity to evaluate the magnetic coupling in
transformers, electric machines or various novel applications
like inductive power transfer (IPT) which is one of emerging
technologies to achieve the contactless power transmission [1].

Nowadays, IPT technology has been gradually employed
from wireless charging for consumer electronics to higher
power transmission applications, such as the underwater charg-
ing and the online charging of electric vehicles [2]. As
illustrated in Fig. 1, a mobile IPT system is principally
composed of three parts: 1) The primary side includes several
power converters to generate a high-frequency current; 2) The
secondary side includes several power converters to regulate
the high-frequency induced voltage to feed the load; 3) Both
sides are wirelessly connected by an electromagnetic coupler,
which is made up of a primary coil, a secondary coil and a
ferrite structure to enhance the capacity of energy transfer.

The mutual-inductance between both coils in the coupler
drives the capacity and stability of the power transmission.
Stationary IPT system operates in a constant coupling condi-
tion to maintain a stable and efficient power transmission [3].
However, in the context of mobile applications, the external
mechanical disturbances can produce an unavoidable instabil-
ity to the system due to a bad positioning of the coupler [4].
Thus, in the design and optimization of couplers, it is essential
to accurately and quickly evaluate the sensitivity of the mutual-
inductance versus its degrees of freedom [5].

Analytical approaches, such as [6], have been proposed
to calculate the mutual-inductance between two coils with
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Fig. 1. Illustration of a mobile IPT system.

canonical geometries. However, this method is not general and
cannot deal with ferrite core structure.

Numerical approaches are more general in the study of engi-
neering problems. Many electromagnetic simulation software
based on finite element method (FEM) could be convenient
for the analysis of the coupler. However, the FEM requires to
completely mesh both the active domain (i.e magnetic regions
and conductive electrical region) and the inactive domain (i.e.
large air volume region). In the context of IPT couplers, the
predominant air region leads to an undesirable increase of both
mesh size and computation times. Moreover, with the FEM, a
new mesh has to be generated for each new relative positioning
of both parts of the coupler.

Alternatively, the volume integral method (VIM) does not
require the mesh of the air region and can deal with non-linear
magnetic materials [7], [8]. For instance, a VIM based on the
edge elements interpolation of magnetic vector potential has
been proposed in [9]. It has shown a remarkable efficiency for
solving problems with predominant air region. It is thus very
suitable to model IPT couplers with this method. In this paper,
the VIM will be used to solve the magnetostatic problem
to get the magnetic state (i.e. the magnetic vector potential
interpolated on the mesh of the problem).

Once the magnetic state obtained, a new post-processing
method is proposed in this paper to compute magnetic flux in
coils and is implemented to calculate the mutual-inductance
between both coils in an IPT coupler. The main idea is that
the magnetic flux can be computed by summing two terms.
The first one is generated by source coils in the domain without
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magnetic region (i.e. flux generated by coils in vacuum) and
the second one is generated by the magnetization in the ferrite
core. The computation of both terms will be described in the
next sections. Even the proposed method has been developed
and validated in the VIM context, it should be pointed out that
this approach is general and can be applied to the FEM as well,
especially for magnetic scalar potential formulations [10].

II. INTEGRAL FORMULATION

Figure 2 illustrates an EE-type coupler which is often using
in the online charging of electric vehicles. This coupler has
three degrees of freedom for translation (e.g. the vertical
distance between both parts, the movement of the car and
the misalignment along the direction of movement). In mag-
netostatic analysis, it can be abstracted as a computational
problem in a whole domain Ω, where coil regions are denoted
by Ω0k

and non-conducting magnetic regions are denoted by
Ωm. The boundary between magnetic regions and the free
space is denoted by Γm.

A. Magnetostatic Integral Equation
Without any massive conductive region, the problem is

governing by magnetostatic equations{
∇ ·B = 0

∇×H = J
(1)

where B is the magnetic flux density, H is the magnetic field
intensity and J is the current density. The constitutive relation
of magnetic materials is

B = µ0 (H + M) (2)

where M means the magnetization. The relation between M
and B in materials is

M = (ν0 − νm)B (3)

where ν0 is the reluctivity of free space and νm is the re-
luctivity of ferromagnetic materials. The νm can be expressed
by νm = ν (B) to represent the non-linear characteristic of
materials. Besides, H can be decomposed into the sum of
the source magnetic field H0 and the reduced magnetic field
Hr = ∇ϕr as

H = H0 −∇ϕr (4)

According to [11], the reduced scalar potential ϕr is

ϕr =
1

4π

∫
Ω

(ν0 − νm)B · ∇
(

1

r

)
dΩ (5)

where the r means the distance between the point where the
reduced potential is expressed and the integration point.

B. Magnetic Vector Potential Formulation
By introducing the magnetic vector potential A that satisfies

B = ∇×A, (4) becomes

νm (∇×A) +∇ϕr = H0 (6)

The magnetic vector potential A can be interpolated only on
magnetic regions Ωm with first order edge elements functions

A =

Ne∑
j

wjAj (7)

s0Ω

p0ΩmΩ

Misalignment (ρ)

Distance (d)

Movement (a)

mΓ
Ω

Fig. 2. A magnetostatic problem with conductive regions and magnetic
regions, illustrating by a EE-type coupler of IPT system.

where wj is the function associated to edge j, Aj =
∫
j
A dl

is the integration of the tangent component of magnetic vector
potential A on the edge, and Ne is the total number of edges
in the magnetic regions mesh. Using a Galerkin method with
∇ × wi as test functions, the projection of (6) on magnetic
regions Ωm leads to∫

Ωm

νm (∇×wi) · (∇×A) dΩ

+

∫
Ωm

∇×wi · ∇ϕr dΩ =

∫
Ωm

∇×wi ·H0 dΩ

(8)

C. System Resolution

The previous equation (8) can be rewritten as a matrix
system:

([R] + [L]) {A} = {U0} (9)

where the matrices R, L and U0 are discussed in [7], as:

Rij =

∫
Ωm

νm (∇×wi) · (∇×wj) dΩ

Lij =
1

4π

∫
Γm

1

Si

∑
fi

δυfi
1

Sj

∫
fj

1

r
df

 dΓ

U0i =

∫
Ωm

∇×wi ·H0 dΩ

(10)

where the Si is the area of face fi shared between two adjacent
volume elements and δυfi is the reluctivity jump. A Newton-
Raphson method is used to solve the problem with the non-
linear material and to get magnetic vector potential A [7].

III. MAGNETIC FLUX COMPUTATION

The magnetic flux through a coil k associated to region Ω0k
,

can be expressed as

Φk =

∫
Ω0k

j0k
·A dΩ (11)

where the j0k
is a function space describing the normalized

current density in each point of the coil domain. For the prob-
lem contained coil regions Ω0k

and non-conducting magnetic
regions Ωm, the magnetic vector A can be firstly separated
in two terms, as A = A0 + Am, where A0 and Am are
generated respectively by coils in vacuum and the magnetic
regions. Therefore, the contribution of the total magnetic flux
Φk through a coil k is represented by

Φk = Φ0k
+ Φmk

(12)

where Φ0k
and Φmk

are contributions of all the coils and of
the magnetization of magnetic regions.
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A. Computation of Φ0

First, a general expression for the magnetic vector potential
A0 which is generated by all coils is

A0 =
µ0

4π

∑
l

(∫
Ω0l

j0l

r
dΩ

)
Il (13)

where the Il is the current flowing in the coil l and r is the
distance between the integration point in coils and the point
where the vector potential is calculated. Thus, for the coil k,
the first part of magnetic flux Φ0k

generated by all the coils
can be calculated by

Φ0k
=
µ0

4π

∫
Ω0k

j0k
·

(∑
l

Il

∫
Ω0l

j0l

r
dΩ

)
dΩ (14)

A semi-analytical integration method based on the dis-
cretization of the coils can be used to compute the double
integral (14). The first integral on the coil region Ω0l

can be
evaluated by the analytical expression like proposed in [12].
The second integral on the coil region Ω0k

can be computed
by quadratic Gauss points integration.

B. Computation of Φm

The contribution of vector potential Am, generated by mag-
netic regions Ωm, can be calculated from the magnetization
field M as

Am =
µ0

4π

∫
Ωm

M×∇
(

1

r

)
dΩm (15)

Therefore, the magnetic flux Φmk
can be computed by

Φmk
=
µ0

4π

∫
Ω0k

j0k

[∫
Ωm

M×∇
(

1

r

)
dΩm

]
dΩ0 (16)

However, in order to get an accurate solution of the integral
over the conductive regions Ω0k

, the coil mesh should be
adapted to the variation of the magnetization field in these
regions. Since a great number of elements will increase the
computation time, it may be not efficient to compute directly
the integral (16), especially when dealing with the complex
geometries. An alternative method is thus proposed without
the need of a fine discretization for the coil. By applying the
partial integration theorem to the equation (11), it yields∫

Ω0k

j0k
·Am dΩ =

∫
Ω

(∇× h0k
) ·Am dΩ

=

∫
Ω

h0k
· (∇×Am) dΩ +

∫
Ω

∇ · (h0k
×Am) dΩ

(17)

where h0k
represents the magnetic field generated by the coil

k with 1 A. According to the divergence theorem, the first term∫
Ω
∇·(h0k

×Am) dΩ is equal to the integral on the boundary
by
∫

Γ
(h0k

×Am)·n dΓ. Thanks to continuity in medium, the
term h0 and Am can be expanded until the infinity boundary
Γ∞ where h0k

= 0, thus∫
Ω

∇ · (h0k
×Am) dΩ =

∫
Γ∞

(h0k
×Am) · n dΓ = 0 (18)

B (T)

H (A/m)0

r 3300µ =

s 0.53 T=B

(a) (b)

Fig. 3. Experimental coupler prototype. (a) Photo of the coupler. (b) Mag-
netization curve of the ferromagnetic material.

Therefore, the magnetic flux Φmk
generated by magnetiza-

tion can be computed by the second term:

Φmk
=

∫
Ω

h0k
· (∇×Am) dΩ (19)

From (2), (4) and the decomposition of A = A0 +Am, the
field B can be rewritten as

B = ∇×A0 +∇×Am

= µ0 (H0 −∇ϕr + M)
(20)

By notice that ∇ × A0 = µ0H0, the previous equation
allows to express Am such as

∇×Am = µ0 (−∇ϕr + M) (21)

Substituting (21) into (19), the flux Φmk
becomes

Φmk
= µ0

∫
Ω

h0k
(−∇ϕr + M) dΩ (22)

Applying the partial integration theorem to the integral∫
Ω
h0k

(∇ϕr) dΩ, it yields∫
Ω

∇ · (ϕrh0k
) dΩ−

∫
Ω

ϕr∇ · h0k
dΩ (23)

Actually, both terms are equal to zero. For the first term,
because of the theorem of divergence, we get∫

Ω

∇ · (ϕrh0k
) dΩ =

∫
Γ

ϕrh0k
dΓ =

∫
Γ∞

ϕrh0k
dΓ (24)

where the ϕr = 0 and h0k
= 0 at the infinity boundary. For

the second term, the divergence of h0k
is also equal to zero.

Finally, the term Φmk
which is the contribution of ferro-

magnetic core, can be expressed through a simple integral over
only magnetic regions Ωm, as

Φmk
= µ0

∫
Ωm

h0k
·M dΩ (25)

where M = (ν0 − νm) (∇×A).

IV. APPLICATION TO IPT SYSTEM

In IPT system, the mutual-inductance of the coupler be-
tween both coils (the primary coil p caring a current Ip and
the secondary coil s with zero current) can be calculated by

Msp =
Φs

Ip
=

Φcs + Φms

Ip
(26)

Figure 3 presents an experimental EE-type coupler used in
IPT system. The ferromagnetic material used in the coupler is
the TDK PC95 [13], with a initial relative permeability µr =
3300 and a saturation magnetic flux density Bs = 0.53 T.
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Fig. 4. Sensitivity analysis of mutual-inductance versus distance and the
relative difference between VIM and FEM.
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Fig. 5. Sensitivity analysis of mutual-inductance versus misalignment (nomi-
nal distance d = 50 mm) and the relative difference between VIM and FEM.

After solving the computational magnetostatic problem by
VIM and calculating (26), the mutual-inductance variation
characteristics versus degrees of freedom of the coupler are
presented in Fig. 4, Fig. 5 and Fig. 6. All the computational
results (denoted by “VIM”) have been checked by experi-
mental measurements (denoted by “EXP”) with a very good
agreement. Moreover, the comparison of the results obtained
with our approach versus those obtained in a commercial
finite element analysis software (denoted by “FEM”) shows
a difference of less than 2% in the operation zone.

In the comprehensive analysis of the sensitivity versus
the positioning geometrical parameters, the mutual-inductance
decreases with the distance in Fig. 4, due to the increase
of the magnetic flux leakage in the air. Thus, a nominal
distance setting to 50 mm can enable the coupler to operate
with a sufficient value of mutual-inductance (50 µH) and
with a relatively small variation. In the sensitivity analysis
of misalignments and movements with a nominal distance
d = 50 mm, the mutual-inductance reaches the maximum
value when both parts perfectly face each other and the
decline tendency are in symmetry for the EE-type coupler.
The sensitivity analysis can enable to evaluate the disturbance
range of mutual-inductance for the design and optimization.

Furthermore, as illustrated in Fig. 7, the convergence of both
algorithms (VIM and FEM) versus the number of elements in
the magnetic region has been studied to analyze the efficiency
of the proposed method. With much less elements to reach the
convergence (6042 for the VIM and 161501 for the FEM), the
VIM formulation and the propose flux computation technique
is an effective method for the study of electromagnetic devices
like the coupler in IPT system.

V. CONCLUSION

To fulfill a more efficient post-processing method of flux
computation, an integral formulation has been proposed to
compute magnetic flux and it has been applied to calculate
the mutual-inductances of the coupler in the IPT system. The
magnetic vector potential VIM formulation is used to solve the
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magnetostatic problem without considering the predominant
inactive region. Then, an original magnetic flux computation
method with a good efficiency has been proposed. Let us
notice that this flux computation method is general and can
be applied whatever the numerical method used to solve the
problem (VIM but also FEM based formulation).
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