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Adaptive Multipoint Model Order Reduction Scheme
for Large-Scale Inductive PEEC Circuits

Trung-Son Nguyen, Tung Le Duc, Thanh-Son Tran, Jean-Michel Guichon,
Olivier Chadebec, and Gérard Meunier

Abstract—The model order reduction techniques based on the
multipoint projection Krylov methods have become the methods of
choice to generate large macromodels of multiport RLC circuits.
A well-known difficulty with such methods lies in the need for
clever point selection to attain model compactness and accuracy.
In this paper, we present an automatic methodology for optimizing
sample point selection. This method is general, suitable for circuits
obtained by the partial element equivalent circuit method coupled
with an adaptive multilevel fast multipole method. Our algorithm
has been validated on an industrial example to demonstrate the
accuracy and robustness of the approach.

Index Terms—Adaptive multilevel fast multipole method
(AMLFMM), model order reduction (MOR), moment-matching
method, partial element equivalent circuit (PEEC method), RLC.

I. INTRODUCTION

P

explosion in memory by the number of terms in the full PEEC
matrix. In order to save the memory and the computation time,
we treat the interactions between far­away basis functions us­
ing the fast multipole method (FMM) [2]. The corresponding
matrix elements do not need to be explicitly stored, result in a
significant reduction in required memory. By using FMM, the
resulted model is available only in the frequency domain and
the link with a conventional circuit representation is lost. To
be included in time­domain simulation of circuit­solvers, this
model needs to be replaced by a reduced­order model, which is
much smaller but would produce a very good approximation of
input–output behavior of the original device.

This problem can be done in two steps. The first step is
the reduction order of frequency model returned by PEEC. We
then obtained a simpler and lighter reduced­order model. In the
second step, this reduced model is synthesized into a circuit
model in netlist representation (RLC elements), which can be
integrated in a circuit­solver [4]. The pure RLC model is then
simple enough to ensure the convergence of the resolution and
accurate enough to return reliable results. The second step is
presented in our recent work [5]. In this paper, we investigate
the first step (reduction of frequency model): the model order
reduction (MOR).

MOR methods for linear model reduction have greatly
evolved and can be broadly characterized into two types: those
based on subspace generation and projection (or moment­
matching method), and those based on balancing techniques
[6]. The balancing techniques can generate models with prov­
able general error­bound [7], on the contrary, global error is
unknown by projection methods [8]. However, the balancing
techniques rely upon dense matrix computations, which seem
unable to deal with large scale PEEC circuit compressed by
FMM. In this case, due to a matrix compression algorithm, only
projection method is suitable.

The projection method has led to construct the projection
space from a rational or multipoint Krylov subspace [9]. The
multipoint approximants are usually more expensive to con­
struct than single point interpolation as PRIMA [10], but
they tend to have better quality models for given effort [7].
Multipoint­based approaches [11]–[15] have recently gathered
renewed attention due to their robustness, reliability.

Although very appealing, a major drawback of such methods
in practical implementation is: how many interpolation points
to choose, and how to place them. For large­scale systems, the
computation cost of Krylov subspace at each expansion point

ARTIAL ELEMENT EQUIVALENT CIRCUIT (PEEC)
approach [1] is known to be very suitable for the model­

ing of combined circuit and electromagnetic field problems. For
low­frequency applications, capacitive effects can be neglected
and the method can be restricted to its inductive formulation
[2], [3]. With such approach, arbitrarily shaped 3­D conducting
devices can be represented by equivalent circuits combining re­
sistors, partial/mutual inductances, and current and/or voltage
sources. The circuit­based model of electromagnetic devices
allows its interface with SPICE­like circuit solvers. This ap­
proach is known to be very efficient for the electromagnetic
modeling of power electronic modules for instance [2], [3]
and finely model can be coupled with the external electrical
circuit.

The increment of number of conductor elements (directly
proportional with the complexity of the devices) causes an
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is expensive, which makes the choice of these points is very
important.

Until now, this area of research has barely been touched upon
and the problems above still remain open. An early method
called Complex Frequency Hopping (CFH) is proposed in [16]
and [17] to illustrate a principle of choosing multiple expan-
sion points of the transfer function. By using a binary search
algorithm, the expansion points are chosen with respect to the
common poles contained in both circles of the neighboring ex-
pansion points. However, the choice of expansion points is not
optimal, which can lead to a large number of expansion points.
The ARMS technique in [12] proposed a fully automated proce-
dure to choose expansion point, which is based on maximizing
the subspace spawned by the sampling set in order to obtain a
good approximation of the dominant subspace in the orthonor-
malization step (construction of Krylov subspace). However,
this approach is not specifically directed to point placement but
to choose the best future point in a set of initial point.

Obviously, strategies include random selection of points or
uniform grinding of the domain. Both of these can be shown
as uninformed algorithms about either the structure or the be-
havior of the system, and as such, they may not be optimal.
Resampling plans have been proposed in [13] to provide guid-
ance for future sample point placement in linear MOR, based on
variance measurements of the reduced transfer function. How-
ever, it requires the evaluation of several reduced models, which
may be expensive, and, in addition, seem awkward to extend to
multidimensional cases.

Intuitively, an efficient point selection algorithm should place
new points, where the error or model uncertainty is large without
evaluating the detailed model, which is expensive. There is no
general answer to this question but we know some points could
have large error: fmin , fmax , poles of the models (peak point
in frequency response) [18]. Unfortunately, these poles are not
known a priori. The work in [19] for SISO systems and a MIMO
version [20] shows how to compute these points by an iterative
procedure and the algorithm is fast convergence. It aims at auto-
matically finding the optimal ||H||2–norm model for a fixed qth
order, based on a refinement of the interpolation points. How-
ever, the algorithm needs to solve the original system at r-points
at each refinement iteration, which makes the procedure expen-
sive. The authors in [21], [22] proposed a cumulative reduction
scheme (CURE framework), which offers more flexibility ver-
sion of IRKA [16] without loss of precision. In this method, the
authors reuse the previous constructed Krylov space to reduce
computation cost. A recent work in [11] presented a fully adap-
tive scheme for Krylov-based MOR. Although, the proposed
approach provides an interesting way of adaptive choosing mo-
ment (q), the computation time is rather high because at each
expansion point we need to compute the original model and
the reduced model. The author in [23] also proposed a greedy
multipoint MOR technique applied for second-order systems
and a “goal-oriented” error estimator different than the system’s
impedance. Recently, there are many research related to MOR
methods for finite element method [33], [34] but it is difficult
to apply for our research because of the fully dense matrix in
PEEC method (FEM matrix is sparse).

The multipoint MOR method for delayed PEEC circuits in-
cluding the capacitive effects [14] and parameterized MOR [35]
have been developed recently. In our research, the PEEC formu-
lation is restricted on the inductive effects but it can be extended
to general case as in [14] because the fully dense and sparse
matrices are all treated in our study. An interesting approach for
adaptive choice of expansion point is presented in [35] but the
validation process of the method needs the computation of orig-
inal model. In our approach, the exact computation of original
model is impossible because of FMM algorithm. We also avoid
the high computation cost of full model and focused on memory
and time saving for large-scale application.

In this paper, we will propose a novel methodology for au-
tomated selection of optimal expansion points for first-order
systems. The procedure not only shares some ideas in [11] and
[19] but also exploits some properties of Krylov subspace and
thick-restart techniques [24] to reduce the computation cost as
much as possible. The originality of this study is its formulation
coupled with the FMM method and a novel adaptive algorithm
for selecting expansion points automatically in regard to mini-
mize computation cost.

The paper is organized as follows: in Section II, the back
ground state space equation of PEEC method is presented. In
Section III, we discuss the implementation of our algorithm in
presence of FMM and an adaptive point selection algorithm is
introduced in Section IV. For the Section V, we show a com-
putational experiment to illustrate the advantage of proposed
approach and give several conclusions in Section VI.

II. PEEC RLMC CIRCUIT EQUATIONS

Considering a RLMC circuit (resistor—R, inductance—L,
mutual inductance—M, capacitor—C) that is only excited by
current sources. The incidence matrix of nodes/branches A, the
branch currents iB , and nodal voltages vN can be written as
follows:

A = [AR AC AL AI ]; iB =
[
iR iC iL iI

]T

vN =
[
vR vC vL vI

]T
(1)

where the subscripts R, L, M, C, and I are associated with the
branches containing resistors, the partial and mutual inductances
(calculated by PEEC integral method), the external capacitors,
and the external current sources. The state equations of electrical
circuits provide:

iI = −It (t) ; iR = REXT
−1 · vR ;iC = CEXT

d

dt
vC ;vL

= LEXT
d

dt
iL (2)

where It(t) is the vector of current sources,REXT andCEXT are
diagonal matrices, and LEXT is an inductance matrix from exter-
nal circuit. For full matrix LPEEC (inductive coupling PEEC)
and resistance diagonal matrix RPEEC , we have an equation
restricted to the PEEC elements:

vlPEEC = RPEEC · ilPEEC + LPEEC
d

dt
ilPEEC . (3)
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Fig. 1. Taylor expansion around s = 0.

In order to compute the impedance matrix, the final state
space formulations are:

E
dx (t)

dt
= −G · x (t) + B · u (t)

y (t) = BT · x (t) (4)

where

E =

⎡

⎢
⎢
⎢
⎣

AC · CEXT · AT
C 0

0

[
LPEEC 0

0 LEXT

]

⎤

⎥
⎥
⎥
⎦

G =

⎡

⎢
⎢
⎢
⎣

AR · REXT
−1 · AT

R AL

−AT
L

[
RPEEC 0

0 0

]

⎤

⎥
⎥
⎥
⎦

(5)

B =

[
AI

0

]

x =

[
vN

iL

]

u = −iI . (6)

By applying the Laplace transform to (4), we can calculate
the matrix Z(s) or transfer function:

Z(s) = BT · (G + s · E)−1 · B. (7)

III. MULTIPOINT EXPANSION MOR COUPLED WITH FMM

With an expansion point s0 , we can rewrite (7) as follows:

Z(s) = BT · (G + s0 · E + (s − s0) · E)−1 · B
= BT · (I − (s − s0) · D)−1 · F (8)

and

D = −(G + s0 · E)−1 · E;F = (G + s0 · E)−1 · B. (9)

In the conventional PRIMA method, only one expansion point
(s = 0) is used to construct the Krylov subspace created by the
method block Arnoldi [10]. This approach is equivalent to a
Taylor series expansion of the last (8) at s0 = 0 Fig. 1

Km (D,F) ≡ span
{
F,D · F,D2 · F, ...,Dq−1 · F}

= span {s0} (10)

with q order of Taylor series expansion (size of Krylov sub-
space).

Algorithm 1: Block Arnoldi for multipoint.

1. Ktotal = Ø
2. For i = 1, 2 , . . . , r, Do
3. Orthonormalisation Fi with Ktotal by modified

Gram Schmidt process. If Ktotal = Ø,
orthonormalisation Fi

4. Construction Ki by block Arnoldi method
5. Ktotal = ortho(Ktotal, Ki)
6. EndDo

Fig. 2. Taylor expansion around several points s.

A. Multipoint Expansion Method

In this approach, several expansion points are selected for
construction of Krylov subspace, the result is then more
accurate Fig. 2.

Combination of several subspaces for each expansion point
sj gives us the new Krylov subspace Um :

Um = span

{

F,D · F,D2 · F, ...,Dq−1 · F
︸ ︷︷ ︸

points=0

,

...Fj ,Dj · Fj ,Dj
2 · Fj , ...,Dj

q−1 · Fj︸ ︷︷ ︸
points �=0

}

= span {s0 , s1 , ..., sj} (11)

with Dj = −(G + sj · E)−1 · E;Fj = (G + sj · E)−1 · B.
The Krylov subspace, therefore, consists of a first portion cor-

responding to the first point of expansion and a second portion
corresponding to the second point and so on. Let us notice that
the vectors constituting this subspace are orthogonal with each
other so the blocks representing different points of expansion
are orthonormal.

The following algorithm allows us to construct the Krylov
subspace in (11) for the expansion point s0, . . . ,sr [14]. Recall
that the Krylov subspace created by an expansion point sj by
starting matrices Dj and Fj is Kj . The set of vectors of the
Krylov subspace is Ktotal .

Using Algorithm 1, we have the Krylov subspace Ktotal con-
taining several expansion points. The linearly dependent vec-
tors were deleted by deflation process [25]. Finally, we got the
Krylov subspace Um . Reduced order matrices obtained with
the congruent transformation are then:

Ê = UT
m · E · Um ;Ĝ = UT

m · G · Um ;B̂ = UT
m · B. (12)
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Fig. 3. Properties of system matrix (a) G matrix (b) E matrix with FMM
compressed.

The transfer function ZR (s) is then reduced:

ZR (s) = B̂T ·
(
Ĝ + s · Ê

)−1
· B̂. (13)

All the important properties of PRIMA method like the
preservation of passivity and the preservation of moments are
conserved. Consequently, the reduced order matrix Ĝ is then
invertible [25].

For full PEEC matrix, the most consuming time of construc-
tion Krylov subspace is to solve the linear system of (9). With-
out a compression matrix algorithm, the computational cost
(matrix–vector product) and the memory cost (for fully dense
matrix storage) are at least O(N 2) (N is the size of the matrix) for
a good implementation of iterative solver [32]. An AMLFMM
compression algorithm is presented in the next section in
order to speed-up the computation time and to reduce mem-
ory consumption.

B. Fast Multipole Algorithm in Block Arnoldi Process

The main computational cost of this method is computing
matrix–vector product (D � x in the following) in the block
Krylov method to obtain Um .

With the expansion point s = 0,D � x = v is the product
made by solving a linear system:

D · x = G−1 · E · x = v ⇔ G · v = E · x. (14)

The matrix G is a sparse matrix (which incorporates mainly
the resistance); we use a sparse direct LU solver with AMD algo-
rithm in order to conserve the sparse properties of LU decompo-
sition and to enhance the performance [26]. In the case of circuits
obtained with PEEC, the matrix E (especially LP EEC ) is com-
pressed by an algorithm of type FMM [27] so the matrix–vector
product E � x is greatly accelerated from O(N2) to O(NlogN) (N
is the size of matrix D). An example of G matrix is shown in
–Fig. 3(a). The white elements in low matrix block in Fig. 3(b)
are compressed thanks to FMM. Without FMM, this part is fully
dense matrix.

With the expansion point s � 0, we have a new linear system:

D · x = (G + s0 · E)−1 · E · x = v ⇔ (G + s0 · E) · v
= E · x. (15)

Note that (G + s0 � E) is compressed by FMM, so that the
system of (15) is no more sparse. To solve (15), we need a solver

compatible with FMM (only require product matrix-vector). In
this case, iterative solver like GMRES is chosen by its efficiency.
However, even if this technique is applied, we may not be able to
obtain the solution because of the nonconvergence of GMRES
algorithm. Therefore, we need to apply a preconditioning tech-
nique in order to ensure the convergence and/or to reduce the
number of iterations. To do that, we modify the original system
to the new one as (16), where P is called the preconditioner
matrix:

P · (G + s0 · E) · v = P · E · x. (16)

The new system has a better condition number result in bet-
ter chance to converge. In theory, the matrix P should be as
similar as possible to (G + s0 � E)−1 to significantly improve
the condition number and speed-up the convergence and the
best matrix P is the matrix (G + s0 � E)−1 . However, to build
a preconditioner matrix compatible with the FMM is somewhat
different than an explicit matrix solver, because many of the
matrix elements are no longer explicitly available. Therefore,
the preconditioner has to be built from the near-matrix elements
only. We decompose the matrix E into a near-field component
and a far-field one thanks to FMM:

E = Enear + Efar . (17)

The preconditioned matrix P is built from the total matrix
G, s0 , and Enear as (18), where only largest elements in each
row of Enear are contributed to the preconditioned matrix (se-
lected thanks to a coefficient (coeff) range from 0 to 1):

P = [G + s0 · Enear (coeff)]−1 . (18)

A value in the ith row of the matrix Enear is retained if this
value is bigger than the maximum value of this line (typically
diagonal) multiplied by coeff. If coeff equals 0, the entire matrix
Enear is retained, if the coeff equals 1, only the diagonal of
matrix Enear is retained. The usage of coeff parameter allows
us control the sparsity of matrix P. The sparsity of this matrix is
in between matrix G and Enear (see Fig. 3) so the direct sparse
solver could be used effectively.

In the next section, we will present an algorithm for automated
selection of expansion point for a fixed moment matching (q-
order) at each point.

IV. ADAPTIVE MULTIPOINT SELECTION SCHEME

Up to now, IRKA algorithm [19], [20] or CURE framework
[21], [22] give the best approximation of optimal ||H||2-norm
reduced model with a fixed q-order moment matching, among
all reduced systems sharing the same set of poles [20].

In this section, we present the basic idea of this algorithm
and then we propose our new algorithm for adaptive selection
of interpolation point based on IRKA algorithm.

In theory, for a dynamic system of classic form as (19), the
optimal reduced model might be expected to approximate the
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eigenvalues of the original system as (20):

dx (t)
dt

= − Ax (t) + Bu (t)

y (t) = BT x (t) (19)

error =
∥
∥
∥eig (A) − eig

(
Â

)∥
∥
∥ < tol. (20)

As in IRKA algorithm for r expansion points, the author pro-
pose using r initial shifts randomly distributed within a region
containing the mirror image of the numerical range of original
system A as starting expansion point and use r eigenvalue of re-
duced system as a next expansion point in an iterative processes.
The algorithm will stop if it reaches the condition as (21) for r
values:

error =
∥
∥
∥eig

(
Âi+1

)
− eig

(
Âi

)∥
∥
∥ < tol. (21)

It was shown that this algorithm always converges after a few
number of step and the resulted model is optimal in ||H||2–norm
sense [19], [28].

However, the value of r (number of expansion point) is not
known. The r initial point impact on the iteration process and the
choice of these values is important. It could be expensive if we
use the eigenvalues of original system. For each refinement step,
we need to compute Krylov subspace again and the subspace
of previous steps is deleted. At each sample vector of Krylov
subspace, we need to solve a large linear system of (16), which
is expensive. From the computation point of view, the cost of
refinement step is very high.

We should avoid computing the new vectors of Krylov sub-
space unless it is strictly necessary. For treating the problem of
selecting initial points and limiting the number of these points,
we propose a novel approach.

To choose a set that covers our space of interest, and because
we do not know system frequency response, we select only two
initial points fmin and fmax as expansion points. As the proper-
ties of Arnoldi process for q-order, it is easy to approximate the
largest (dominant) eigenvalues of original system within a very
small number of iteration. We expect that with these two points
we have some information to compute (approximately) all the
eigenvalues in the range [fmin , fmax] thanks to the properties
of multipoint expansion.

To do that, we generate the orthonormalized Krylov sub-
space at two points Um = spanfmin , fmax , then we compute
the eigenvalues of reduced system:

λR = eig
(
Ĝ−1 · Ê

)
. (22)

In [29], for classic dynamic system in (19), the poles or peak
points will be the imaginary value of eigenvalues:

poles = imag [eig (A)] . (23)

For our dynamic system of the form as (4), the poles are
computed as follows:

poles = imag
[
eig

(
E−1 · G)]

= imag
(

1
eig (G−1 · E)

)
.

(24)

Because the eigenvalue computation of original system is
expensive, in the same fashion as IRKA algorithm, we compute
the poles of reduced system:

polesR = imag

⎛

⎝ 1

eig
(
Ĝ−1 · Ê

)

⎞

⎠ . (25)

In [31], the authors indicated that we could find the largest
eigenvalues of large scale matrix by Arnoldi method. The more
difficulty is to find the smallest eigenvalues, so if we have a
reduced system satisfy the condition in (26) for maximal and
minimal eigenvalues, our reduced system is nearly optimal as
||H||2-norm sense

error = max

{‖min (poles) − min (polesR )‖ ,

‖max (poles) − max (polesR )‖

}

< tol.

(26)
The eigenvalues of reduced system might be expected to ap-

proximate the eigenvalues of original system if the target error
tolerance satisfies. In our practical applications, the maximum
relative errors are found at the peak points, where the domi-
nant resonance peaks appear, so the choice of expansion points
near these peak points will reduce overall error [9]. The only
difficulty is how to compute these points precisely.

The IRKA algorithm is suitable for large-scale systems and
it has always converged after a small number of steps while
using eigenvalues as expansion points [19]. Based on this idea,
if we use the points min(polesR ) and max(polesR ) as expan-
sions points, we will obtain a good approximation of original
eigenvalues after few iteration steps. Since poles closest to the
expansion point converge fastest, this idea is called thick-restart
process in [24].

We propose an original adaptive three points selection scheme
to construct reduced order model with automated selection of
expansion points.

The main idea of the proposed algorithm is to keep building
the projection basis by adding more expansion points in the
range of interest until the reduced-order model becomes accurate
enough in the neighborhood of the maximum, minimum, and
the middle range eigenvalues (three values). The next expansion
point is added based on the value of eigenvalue of reduced-order
model. The accuracy of the model is assessed by computing error
estimators at three points.

In this algorithm at each step, we add the previous subspace
in the new subspace because the information from last step
remains relevant from cycle to cycle. The reuse of Krylov sub-
space reduces the computation cost at each refinement step. The
middle expansion point (emid ) is used not only for testing the
precision of our subspace at this point (which may be the maxi-
mum error), but also helps to enlarge subspace in order to make
the computation of minimal and maximal eigenvalue is more
accurate.

If three tolerances of low, high, and middle points are bigger
than the target error tolerance (tol), the Algorithm 2 will start
by adding more expansion points. First, it adds two expansion
points at the step 2(a). In the case the tolerances of the new low
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Algorithm 2: Adaptive three points selection algorithm
(A3PSA).

1. Initialization: given tol, q, smin = 2π × fmin , smax
= 2π × fmax , tolh = 1, toll = 1, tolmid = 1;
el = smin , eh = smax , emid = 10(log (el)+ log (eh))/2 ;

Krylov subspace Um = Ø
2. While (tolh> tol || toll> tol || tolmid> tol) do

(a) Um = Um ∪ spanel, eh → compute Ĝ, Ê, λ

= eig(Ĝ−1 · Ê)

(b)

elnew = min
(
imag

(1
λ

))
; ehnew = max

(
imag

(1
λ

))

emidnew = 10
lo g ( e l n e w )+ lo g ( e h n e w )

2

toll = |elnew − el

elnew
|; tolh = |ehnew − eh

ehnew
|;

tolmid = |emidnew − emid

emidnew
|;

emid = emidnew ; el = elnew ; eh = ehnew

(c) If (toll < tol || tolh < tol)
• Um = Um ∪ spanemid → compute Ĝ, Ê, λ

= eig(Ĝ−1 · Ê)
• Computation as 2(b)

and high points are still bigger than the target error tolerance
(tol), the new middle point will be added in the step 2(b).

The expansion point is automatically added at each step: 2
points for minimal and maximal eigenvalues and then 1 middle
point if it is necessary. If the last three expansion points converge
within the target error tolerance, the algorithm will stop and
we have a nearly optimal reduced model in the sense of ||H||2
minimization. As in [24], this technique makes a smaller reduced
model as PRIMA in the same accuracy.

As in [11], the two frequencies [fmin , fmax] have been chosen
for initial expansion points. Ideally, the optimal choice of new
expansion point would be the point that causes the largest error
but the authors in [11] point out that the choice of new expansion
point as the midpoint of others two old expansion points in
linear scale cannot warranty the largest errors at this point. In
our experience in PEEC modeling, the next expansion point or
midpoint should be chosen in logarithmic scale to minimize
large error overall. The approach in [11] presents an adaptive
scheme of choosing moments but many computation efforts are
needed to compute the original model at new expansion point.
In our case, the usage of compression algorithm (FMM) cause
the exact value of original model even does not exist. In order to
reduce the computation time and because of matrix compression
property (FMM), in A3PSA algorithm, we use eigenvalues as
the stopping criterion and error estimator.

Because of the properties of Krylov subspace and Taylor
expansion, it is probable that all the eigenvalues in this range
are converged within a target tolerance. This algorithm has the
same property of IRKA such as: it converges fast after a few
steps so the number of expansion points is small. The number of
expansion point depends on the size of q-order. We will discuss
about this value in the result section.

Fig. 4. EMC filter structure in InCa3D software.

Fig. 5. Comparison of impedances calculated by InCa3D without FMM and
FMM version (left) and relative error (right).

We employ real expansion point s0 for two reasons. First,
the matrices in (15), E and G, to which the Krylov subspace
method is applied, are real, thus avoiding the usage of complex
arithmetic, which is four times as costly as real arithmetic. Sec-
ond, when passive reduced-order models are constructed via the
projection approach described in Section III-A, the projection
matrix Um needs to be real in order to obtain real reduced-
order matrices (12). On the other hand, the usage of complex
expansion points s0 typically results in a significantly smaller
state-space dimension of the reduced-order models, since s0 can
be placed closer to the frequency range of interest than any real
s0 [25].

In the next section, we will present the result for our test
problem.

V. NUMERICAL RESULTS

We modeled an EMC filter in the software InCa3D [30] (see
Fig. 4) to determine the equivalent impedance.

The state space equation of PEEC discretization gives us
an RLMC circuit consisting of 711 nodes, 4767 resistors, five
capacitors, 4765 inductors, 4762 × 4762 inductive couplings.
The frequency range of interest is from 1 Hz to 100 MHz.

The equivalent impedance is calculated by the InCa3D soft-
ware and with the compression algorithm AMLFMM. Two re-
sults are compared in the Fig. 5, the maximal error relative is
1.3%.

In comparison in time and memory of computation with the
InCa3D version without FMM, we have the Table I. Let us notice
that we use a server with 16-GB memory and four processors
Intel Xeon @3.0 GHz for InCa3D version (direct solver) while
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TABLE I
TIME FOR IMPEDANCE COMPUTATION

InCa3D AMLFMM

Time(s) 22 601 3 500
Memory (MB) 4900 900

TABLE II
Q-ORDER AND EXPANSION POINTS

q MOR size Time (s) Expansion points (frequency)

10 32 491 (fm in = 1, fm a x = 108 ), f1 = 2.36 × 106

8 26 411 (fm in = 1, fm a x = 108 ), f1 = 2.37 × 106

7 39 609 (fm in = 1, fm a x = 108 ), f1 = 2.57 × 106 , (f2 =
7.03 × 104 , f3 = 7.96 × 107 )

5 29 465 (fm in = 1, fm a x = 108 ), f1 = 2.34 × 106 , (f2 =
7.00 × 104 , f3 = 7.91 × 107 )

4 24 398 (fm in = 1, fm a x = 108 ), f1 = 2.06 × 106 , (f2 =
7.06 × 104 , f3 = 7.94 × 107 )

3 35 582 (fm in = 1, fm a x = 108 ), f1 = 4.309 × 105 , (f2 =
7.02 × 104 , f3 = 7.16 × 107 ), f4 =
2.28 × 106 , (f5 = 7.03 × 104 , f6 =

8.08 × 107 ), f7 = 2.35 × 106

our reduction method with FMM was computed on Intel Core
2 Duo @2.66 Ghz with 2-GB memory. Matrix–vector products
were computed by a parallel version of FMM developed in Java.
Despite of using FMM, the computation time for this range is
still too high (see Table I). The memories used is reduced by 5.4
times from 4900 MB (non-FMM) to 900 MB (with FMM), the
runtime decreased from 22 601 s (direct solver LU) to 3500 s
(iterative solver GMRES).

To eliminate the error caused by AMLFMM, we take the
result by using compression algorithm as a new reference to
compare with our algorithm A3PSA (see Algorithm 2). The
accuracy of GMRES will be chosen at 10-12 for resolution of
linear systems with point expansion s0 �= 0. We chose the coeff
equals 0.05 to sparse the matrix Enear .

We run our algorithm with different number of moment
matching (q-order) at each expansion point, the tolerance 1% is
chosen. The results later (see Table II) show the size of reduced
model, the expansion points created for each Krylov subspace
generated, the runtime for generating reduced model.

Let us notice that the bigger value of q is used, the smaller
number expansion point is obtained. For example, q = 10,
q = 8, we need three expansion points. But q = 5, we need
five points and with q = 3, nine points are needed. In Table II,
we can see the strategy of adding two points (in parenthesis) or
one point. The peak points are well calculated. For all the result
obtained, the maximal error is less than the fixed tolerance 1%.
The highest computation time is 609 s at q = 7, it reduces with
another size of expansion point, which is smaller than 3500 s
as classical computation. Our approach with high accuracy can
save not only the time of computation but also the memory
requirement.

In the case of different tolerance (no tol, tol = 1E-2 and
tol = 1E-4) and fixed q = 8, we obtained Table III and Fig. 6.

TABLE III
DIFFERENT TOLERANCE AND EXPANSION POINTS

Tol MOR size Time (s) Expansion points (frequency)

— 17 235 (fm in = 1, fm a x = 108 )
1E-2 26 411 (fm in = 1, fm a x = 108 ), f1 = 2.37 × 106

1E-4 53 841 (fm in = 1, fm a x = 108 ), f1 = 2.57 × 106 , (f2 =
7.03 × 104 , f3 = 7.97 × 107 ), f4 = 2.37 × 106

Fig. 6. Relative error of different tolerance, q = 8.

If no tolerance is chosen, our algorithm use only two expan-
sion points (fmin and fmax ), after 235 s of computation. If tol
equals 1E-4, the A3PSA algorithm stops at six expansion points.
It takes 841 s to obtain MOR size of 53.

At this value of q = 8, our algorithm is fast converged after a
few steps and the resulted model is accuracy as fixed tolerance of
choice. In general, our algorithm can generate rapidly a nearly
optimal ROM for a given q-order. In comparison with FMM
version, we reduce the runtime from 3500 to 411 s, while using
the same amount of memory (900 MB).

VI. CONCLUSION

In this paper, we have proposed a multipoint rational ap-
proximation based on IRKA method for inductive PEEC large
circuits compressed with the FMM in the frequency domain. An
original algorithm for selecting expansion point automatically
is also introduced. The size of reduced order model is nearly
optimal for a fixed q-order. The reduced-order model is more
accurate than one expansion point in PRIMA method for a wide
spectrum of frequency. There are still some open problems like
the adaptive choice of moment matching number or the choice
of complex expansion points, which we are working on it. Re-
garding the PEEC formulation, one of perspective research is to
introduce capacitive and delayed effects [14] in our approach to
extend application domain.

To reuse themodel in the time-domain circuit simulation con-
text, a method based on RLMCSYN approaches [5] is needed.
The algorithm enables the preservation of PEEC RLM blocks
structure and input and output incidence matrices. The final syn-
thesized circuit can then be exported to a SPICE-like solver for
the simulation in time domain [5].
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l’apport des méthodes intégrales dans l’étude du foudroiement des avions,”
Eur. J. Elect. Eng., vol. 16, no. 1, pp. 65–86, 2013.

[28] G. Flagg, C. Beattie, and S. Gugercin, “Convergence of the iterative ra-
tional Krylov algorithm,” Syst. Control Lett., vol. 61, no. 6, pp. 688–691,
2012.

[29] P. Kundur, Power System Stability and Control. New York, NY, USA:
McGraw-Hill, 1994.

[30] (2015). [Online] InCa3D Software Available at: www.cedrat.com
[31] E. Mark, “The Arnoldi eigenvalue iteration with exact shifts can fail,”

SIAM J. Matrix Anal. Appl., vol. 31, no. 1, pp. 1–10, 2009.
[32] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Statist.
Comput., vol. 7, no. 3, pp. 856–869, 1986.

[33] S. Clenet, T. Henneron, and N. Ida, “Reduction of a finite-element para-
metric model using adaptive POD methods—application to uncertainty
quantification,” IEEE Trans. Magn., vol. 52, no. 3, pp. 1–4, Mar. 2016.

[34] Y. Sato and H. Igarashi, “Generation of equivalent circuit from finite-
element model using model order reduction,” IEEE Trans. Magn., vol. 52,
no. 3, pp. 1–4, Mar. 2016.

[35] F. Ferranti, et al. “Interpolation-based parameterized model order reduc-
tion of delayed systems.” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3,
pp. 431–440, Mar. 2012.

Trung-Son Nguyen received the M.Sc. and Ph.D.
degrees in electrical engineering from Grenoble In-
stitute of Technology, Grenoble, France, in 2009 and
2012, respectively.

He held Postdoctoral position with Grenoble Elec-
trical Engineering Laboratory from 2012 to 2013. In
2015, he moved to Vietnam Fire and Rescue Police
Department, Vietnam, where he is currently a Re-
searcher of Science – Technology Research & Appa-
ratus and Equipment Inspection Division. His current
research interests include model order reduction, cir-

cuit realization method, and development of numerical tools for modeling of
electromagnetic phenomena (integral methods).

Tung Le Duc was born in 1984, Thanhhoa, Vietnam.
He received the Engineer’s degree in electrical engi-
neering from Hanoi University of Science and Tech-
nology, Hanoi, Vietnam, in 2007, and the M.Sc. and
Ph.D. degrees in electrical engineering from Greno-
ble Institute of Technology, Grenoble, France, in 2008
and 2011, respectively.

He held Postdoctoral position with Grenoble
Electrical Engineering Laboratory, Grenoble, France,
from 2011 to 2012. He is currently a Lecturer–
Researcher of electrical engineering at Hanoi Univer-

sity of Science and Technology. He has been a Visiting Scientist at the Technical
University of Catalonia, Barcelona, Spain, in 2014. His research interests are
in electromagnetic modeling, power systems computations, optimizations, and
grid-connected renewable energy systems.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NGUYEN et al.: ADAPTIVE MULTIPOINT MODEL ORDER REDUCTION SCHEME FOR LARGE-SCALE INDUCTIVE PEEC CIRCUITS 9

Thanh-Son Tran received the Engineer’s degree in
electrical engineering from Hanoi University of Sci-
ence and Technology, Hanoi, Vietnam, in 2004, the
M.Sc. degree in electrical engineering from Greno-
ble Institute of Technology, Hanoi, in 2005, and the
Ph.D. degree in electrical engineering from Joseph
Fourier University, Grenoble, France, in 2008.

He was a Postdoctoral Researcher in Greno-
ble Institute of Technology Enterprise from 2009 to
2010.He is currently the Dean of Electrical Engineer-
ing Faculty, Electric Power University, Hanoi. His

research interests are power systems computations, optimizations, electromag-
netic modeling, and numerical methods.

Jean-Michel Guichon received the Diploma degree
in electrical engineering and the Ph.D. degree from
Grenoble Institute of Technology, Grenoble, France,
in 1998 and 2001, respectively.

He is an Associate Professor at the University
Grenoble Alpes, Grenoble, France. He is has been
with the Grenoble Electrical Engineering Laboratory,
since 2003, working in the field of electromagnetic
modelization for power electronics. He is focused in
the development of numerical tools to compute the
electromagnetic field and the electrical behavior in

low frequency (without propagation).

Olivier Chadebec was born in 1973, Sens, France.
He received the Diploma in electrical engineering
and the Ph.D. degrees from the Grenoble Institute
of Technology, Grenoble, France, in 1997 and 2001,
respectively.

He is currently a CNRS Senior Researcher (di-
recteur de recherche CNRS) and leads the “Models,
Methods and Methodologies Applied to Electrical
Engineering” research group of G2ELab, University
of Grenoble Alpes, Grenoble. He has been a Visit-
ing Scientist at the Technology Centre of the Federal

University of Santa Catarina, Brasil, in 2012–2013. His research activities fo-
cus on computational electromagnetism (finite element and integral methods),
equivalent magnetic sources identification by solving inverse problems and low
magnetic fields measurements. He has coauthored more than 140 papers pub-
lished in international journals and conference proceedings.

Gérard Meunier received the Dipl.-Ing. in electrical
engineering and the Ph.D. degree from the National
Polytechnic Institute of Grenoble (INPG) Grenoble,
France, in 1977 and 1981, respectively.

He joined the CNRS and the Power Electri-
cal Engineering Laboratory of Grenoble (G2Elab),
Grenoble, in 1982, where he is currently a Se-
nior Researcher. His researches are devoted to nu-
merical modeling of electromagnetic phenomena. In
the G2Elab, he was successively responsible of the
"Modeling and CAD team" from 1990 to 1998 and

an Associate Director from 1998 to 2002. He was responsible of the Power
Electrical Engineering Doctoral Department from 2002 to 2015 and is currently
a Deputy Head of the EEATS Doctoral School of the Communauté Université
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