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Abstract. An original approach used for the identification of faults in fuel cell stacks is presented. It is
based on the 3D reconstruction of the current density from external magnetic field measurements which
is an ill-posed magnetostatic linear inverse problem. A suitable and original current density and magnetic
field basis are proposed in order to define both local and global faults on a fuel cell stack. The inverse
problem is regularized by truncated singular value decomposition (SVD) to ensure the uniqueness of the
solution.

1 Introduction

Fuel cell lifetime optimization remains an ambitious tech-
nological challenge for many researchers [1]. The achieve-
ment of this challenge allows a large industrialization of
fuel cell systems in embedded applications by increasing
their service life while reducing their costs.

An invasive method has previously been developed [2].
It is proposed to measure the internal magnetic field by
inserting probes on some borings on both sides (anode
and cathode) of a mono-cellular fuel cell; then the cur-
rent along the principal direction is calculated. To pre-
vent any disturbance of the fuel cell operation by invasive
instrumentation, non-invasive techniques are required.
The technique of diagnosis by external magnetic field mea-
surements has already been demonstrated. Indeed, non-
invasive methods based on measurements of the magnetic
field induced by current distribution within the stack have
been investigated for proton exchange membrane fuel cells
(PEMFC) [3] and stack diagnosis [4,5]. In reference [6],
a diagnosis bench was developed with magnetic field
sensors placed on a robotic arm in order to measure the
magnetic field around a fuel cell on several positions. The
measurements data are inverted and the current density
inside the fuel cell is calculated. It remains impossible to
install this system within vehicles due to its size, but its
major drawback is the measurement time of about 15 min.
After such a time period the diagnosis gives deferred
information about the health state of the fuel cell. Another
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work on the same subject has been made in Grenoble [7,8].
It focuses on the identification of global faults. This latter
work allowed an optimization of the placement and the
orientation of the magnetic field sensors around the fuel
cell. As made clear on the subsequent pages, the sensors
are oriented in such a way as to detect only the magnetic
field produced by a fault. This means that the sensor array
is developed and designed to be sensitive only to current
heterogeneities. This technique allows the use of a few
magnetic sensors that have a low magnetic range of mea-
surements but a high sensitivity and high dynamic range.
However, this previous technique is dedicated to identifi-
cation of global large faults. In this paper, we extend the
approach to the identification of localized faults on one or
a few cells in a stack. The term stack is henceforth used to
designate an assembly of many cells connected in series.

This paper presents a modeling of faults and their
impacts on the current density distribution and the
changes in magnetic signature. First two approaches which
define faults as a linear combination of current loops are
proposed. Then, magnetic field projection matrices are
built from the current density basis.

Finally, our approaches are validated. Numerical faults
are identified by finding the current distribution from the
external magnetic field.

2 Principle of 3D current density
reconstruction

In the first step, we consider the forward approach which
consists in solving an electro-kinetic problem. From the
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electrical conductivities of each part of one cell (bipo-
lar plates, membrane electrode assembly (MEA) and end
plates) and by coupling the model with an external electri-
cal circuit representation, we get the current density dis-
tribution inside the fuel cell. The key point is the current
solenoidality; therefore a finite volume approach has been
selected [9]. In the second step, thanks to the Biot-Savart
law (1) numerically integrated, we calculate the magnetic
field on magnetic sensors located around the stack:

B(r) =
μ0

4π

∫
Ωs

(rs − r)
|rs − r|3 j(rs)dΩs, (1)

where B is the magnetic induction generated by the
current source J at point r, Ωs is the stack volume and
μ0 is the magnetic permeability of the vacuum.

The magnetic field generated by a healthy fuel cell has
previously been studied with the purpose of defining suit-
able magnetic sensor positions optimizing the measure-
ment ranges [7,8].

Let us suppose that the fuel cell is meshed into ele-
ments carrying uniform current density J. Equation (1)
can be discretized and a linear relation between magnetic
field on sensors and current density can be obtained:

B = SJ, (2)

where S is the discretized Biot and Savart operator,
B is the measurement vector and J is the current den-
sity vector.

The forward model is used to simulate electrical con-
ductivity faults on fuel cell stacks and to obtain virtual
measurements. Furthermore, the measured radiated mag-
netic field B is used to reconstruct the current density dis-
tribution J by inverting the operator S. For the ill-posed
problem [10], the pseudo inverse S+ is calculated from the
classical singular value decomposition (SVD) which can be
truncated in order to limit the influence of measurement
noise [11]:

J = S+B. (3)

3 Healthy stack

A healthy operating stack is characterized by an almost
homogeneous current distribution inside it (if we neglect
end plates effects). The current streamlines in the active
part of the stack flow on z-axis (Fig. 1). The total current
is collected by high electrical conductivity end plates and
measured by an ammeter.

An electro-kinetic model of a stack is developed [9]
using a finite volume method. The resolved conduction
equation includes an electromotive field Em which trans-
ports charges through the membrane electrode assembly
(MEA) of the fuel cell. This parameter characterizes only
the MEA and it is set to zero otherwise:

div σgradV − div σEm = 0, (4)

where σ is the electrical conductivity, and V is the elec-
trical potential.

(A/m2)

z

x

y

Fig. 1. Current stramlines in case of healthy stack.

4 Faulty stack

A fuel cell stack is controlled by a large number of para-
meters. A non-optimal parameter induces some operating
anomalies such as water flooding and membrane drying.
Failures on a stack are categorized by many kinds [12] and
they have as a consequence the increasing or decreasing of
the MEA resistance. According to the size of these faults,
in this paper two names are adopted: two dimensional
(2D) faults and three dimensional (3D) faults.

As cited above, the flowing current from the input
collector to the output collector is measured by an
ammeter and its value stays unchanged for cases of both a
healthy and a faulty stack; we are therefore unable to mea-
sure the faulty current. From this hypothesis we deduce
that the faulty current constitutes a loop around the
affected part (Fig. 2c), and it is not necessary to search the
total conduction; that is why we search only the current
loops on spaces defined below.

Figure 2 can be expressed by the following equation:

Jtot = J0 + J, (5)

where Jtot is the total current, J0 is the current of a
healthy stack and J is the current loop induced by a fault.

4.1 2D faults

The 2D faults can result from a flooded or dried part of
a stack. The flooding is characterized by an increasing
of the water concentration on the active zone caused by a
non-optimal gas flow which normally evacuates the
water outside the stack. Conversely, the membrane drying
might occurred because of the non-uniform fuel cell stack
cooling. In both cases, the electrical conductivity in the
concerned part changes, which leads to a heterogeneous
distribution of current.

The 2D designation is adopted because the current is
consistent in its main direction (the z-axis).

The 2D faults are modeled by internal current loops
throughout the stack’s length (Fig. 3c).
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Fig. 2. Decomposition of (a) a heterogeneous current into a sum of (b) a homogeneous current and (c) a current loop induced
by a fault.
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Fig. 3. Decomposition of heterogenous current in case of 2D fault: (a) total current, (b) homogeneous current, (c) current loop.

The faulty current in this case generates a strong
modification of the radiated magnetic field.

4.2 3D faults

MEA ageing of one cell in a stack makes the current flow-
ing through the healthy part which modifies locally the
current density. As the current density is modified on the
z-axis, we choose to name this kind of fault a 3D fault.

3D faults are modeled by local current loops around
the fault (Fig. 4c). We observe a high concentration of
current streamlines in the healthy part of the cell (Fig. 4a).

As the current loop is highly localized, the external
magnetic field seems weakly modified. This modification
is observed only nearby the fault.

5 Current basis parametrization

A key point is the choice of a basis for J which has to
be sufficiently compact in order to limit the number of
degrees of freedom but also sufficiently large to cover the
space of all possible faults configurations.

In our approach the current density J to rebuild is a
linear combination of N functions Φp:

J =
∑

N
p=1αp · Φp, (6)

where Φp is the vector p of the current basis, αp is a scaling
coefficient which represents the contribution of each vector
p to the fault current J.

These Φp functions are obtained by using two
methods: either by imposing a current density on each

meshing element and on resolving an electro-kinetic
problem [9], or using the solenoidality property of the
current density to define a vector potential function which
is interpolated by edge shape functions.

The two methods are inspired from a spatial harmonic
decomposition of continuous signals. 2D and 3D fourier
series are used.

5.1 2D duplicated method: imposed current density

To get a complete current basis, the source term Em in
the conduction equation (4) is replaced by current den-
sities, which are defined as a 2D fourier series (8). The
finite volume model is resolved to get the current density
distribution:

div σgradV − div Jm = 0, (7)

where σ is the electrical conductivity, V is the electrical
potential and Jm is the imposed current density:

Φ2D
uvw (xs, ys) =

⎧⎪⎨
⎪⎩

cos (ukxxs) · cos (vkyys) if w = 1
cos (ukxxs) · sin (vkyys) if w = 2
sin (ukxxs) · cos (vkyys) if w = 3
sin (ukxxs) · sin (vkyys) if w = 4

(8)
where kx = 2π

Lx
and ky = 2π

Ly
are the spatial periods, u and

v are the decomposition orders, Lx and Ly are the stack
section dimensions.

To properly define the 3D current, the proposed
approach is reproduced several times along the main cur-
rent direction. As the stack is composed of 10 cells, we
choose to split the stack domain into four sections, each
section covering about two cells (Fig. 5).
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Fig. 4. Decomposition of heterogenous current in case of 3D fault: (a) total current, (b) homogeneous current, (c) current loop.
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Fig. 5. Stack divided into four parts with an imposed current
density.

The decomposition orders vary from umin = vmin = 1
to umax = vmax = 4. The maximum order is chosen to
define faults covering about 6% of the whole surface
of a cell. Thus, 16 vectors are obtained for each section.
The first vector represents a healthy stack; the vector is
not taken in account in the final basis. Finally we have
60 vectors for all four sections. Twelve current vectors are
presented in Figure 6; each row defines elementary anom-
alies on one part.

5.2 Purely 3D method: vector potential imposed

In Section 5.1, the stack is divided onto four parts in
order to establish the current density basis. This method
is precisely limited to identify faults in each part taken
separately. A complete description allowing different dis-
cretization and a three dimensional current variation is
needed. To define another approach with respect to the
current solenoidality property (9), we take a vector poten-
tial T as a sine 3D fourier function (10). This function
ensures a null current density on the mesh borders and it
is interpolated by edge shape functions (Fig. 7). The curl
operator is applied (11) to get the J vectors (Fig. 8):

div J = 0, (9)
Ti = sin (πkxx) · sin (πkyy) · sin (πkzz) , (10)
J = curlT, (11)

where i = x, y, and kx, ky, kz are the decomposition orders
on the x, y and z-axis.

As the main current is along the z-axis, the faults
generally occur on the x-plane and the y-plane.

With different decomposition orders (from kxmin =
kymin = kzmin = 1 to kxmax = kymax = kzmax = 5) and a
vector potential T along the x-axis and y-axis, a current
basis with 125 × 2 vectors is built. Nine current vectors
are presented in Figure 8.

6 Magnetic field basis parametrization

The magnetic sensors are placed around the stack along
a rectangular shape. For this application we plan to use
fluxgate technology sensors to measure the radial Bu and
the axial Bw components of the magnetic field which are
very sensitive to the faults (less than 10 μT). The number
of sensors is chosen in order to limit the signal to noise
ratio and they are placed 3.5 cm from the border of the
stack. In our application, 24 sensors are defined for each
array which generates 144 measurements (24 sensors ×
3 arrays × 2 components). The sensors are oriented in
order to remain insensitive to the tangential Bv compo-
nent generated by a healthy stack [7,8].

Contrary to what has been done in [7,8] with a single
sensor array in the middle of the stack, it is proposed
to use three sensors arrays to improve the observation
of the heterogeneous current distribution along its length
(Fig. 9).

Finally, for each vector from the current density
basis the associated magnetic field is calculated from the
Biot-Savart law (12):

Bp (r) =
μ0

4π

∫∫∫
Ωs

(rs − r)
|rs − r|3 × Φp (rs) dΩs, (12)

where Bp is the magnetic induction generated by Φp is
vector at point r, Ωs is the stack volume and μ0 is the
magnetic permeability of the vacuum.

The measured magnetic field by the sensors is the pro-
jection of Bp on the sensors axis (13):

Bkp =
∫

Ω

ΨkBp (r) dΩ, (13)

where Bkp is the measured field by the sensor k, Ψk is the
orientation of the sensor, and Ω is the whole 3D domain.
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Fig. 6. First vectors of the current density basis for each section of the stack.
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Fig. 7. The first three vectors of T developed on the x-axis.
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Fig. 8. First vectors of the current basis obtained from Tx.

The measured magnetic field Bk is a linear combina-
tion of Bkp vectors:

Bk =
∑

N
p=1αp · Bkp, (14)

where Bk is the measured vector by the sensor k expressed
as a linear combination of Bkp vectors on the magnetic
field basis.

7 Equivalence between 2D fault and 3D fault

In this part we give an illustration of a 2D elementary
fault decomposed into a sum of 3D elementary faults:

– in term of current in the Figures 10 and 12,
– in term of magnetic field in the Figures 11 and 13.

7.1 Duplicated 2D method: current density imposed

The third fourier function (5) is imposed on the whole
stack (Fig. 10a) with u = 1 and v = 0. Then the

Right 
Sensor 
array

Middle 
sensor 
array

Left 
sensor 
array

x

y

Sensor

I

I

Radial component Bu

x

y

(a) (b)

Tangantial component Bw
Axial component Bv

Fig. 9. Sensor locations: (a) array locations, (b) locations of
24 sensors around the stack section.

same function is imposed on each of the four parts
(Figs. 10c–10f). The current distribution is obtained and
illustrated in Figure 10.

The magnetic field (Fig. 11 – blue chart) generated
by the whole current distribution (Fig. 10a) and the
sum of magnetic fields (Fig. 11 – red chart) generated
by each part (Figs. 10c–10f) are identical in all sensor
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Fig. 10. Equivalence between 2D current vector and a linear combination of 3D vectors obtained by the duplicated 2D method.
(a) 2D current loop, (b) sum of 3D current loops, (c) 3D current loop on the first part, (d) 3D current loop on the second part,
(e) 3D current loop on the third part, (f) 3D current loop on the fourth part.

Fig. 11. (a) Radial and axial magnetic field for 2D current vectors and (b) its equivalence of a sum of 3D current vectors.

(a) (b) (c) (d) (e) (f)

= + + +
z y

x

Fig. 12. Equivalence between 2D current vector and a linear combination of 3D vectors obtained by the purely 3D method.
(a) 2D current loop, (b) sum of 3D current loops, (c) 3D current loop on the first part, (d) 3D current loop on the second part,
(e) 3D current loop on the third part, (f) 3D current loop on the fourth part.

positions, except the axial component (Bw) on the mid-
dle array which is too weak (10−8) compared to other
positions (10−4).

7.2 Purely 3D method: vector potential imposed

The first vector of the current basis is obtained by a purely
3D approach (Fig. 12a), with i = x, kx = 1, ky = 1 and
kz = 1. This vector can be decomposed onto 3D elemen-
tary vectors (Figs. 12c–12f).

Figure 12 shows the equivalence between 2D
current vector and a linear combination of 3D vectors
obtained by the purely 3D method. The magnetic field

(Fig. 11 – blue chart) generated by the whole current
distribution (Fig. 12a) and the sum of magnetic fields
(Fig. 11 – bed chart) generated by each part (Fig. 12c–12f)
are plotted in Figure 13. The two charts are generally
superposed in all positions. As in the previous approach
the axial component (Bw) in the middle array is differ-
ent but it seems very weak (10−17) comparing to other
positions (10−2).

From Sections 7.1 and 7.2, we notice that a sum of
magnetic fields of several 3D elementary faults is very
similar to a magnetic field generated by an equivalent
2D fault. We conclude that the two presented approaches
(the duplicated 2D method and the purely 3D method)
define both 3D and 2D faults.
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Fig. 13. Radial and axial magnetic field for 2D current vectors and its equivalence of a sum of 3D current vectors.

(a) (b)

Fig. 14. Current density distribution for the studied 3D faults (A cm−2). (a) Fault on the 2nd cell, (b) fault on the 9th cell.

Table 1. Electrical conductivities of each component of the
stack [9].

Current collectors 5 × 107 S m−1

End plates 5 × 107 S m−1

Bipolar plates 5 × 103 S m−1

Electrical conductivity fault 0 S m−1

8 Virtual faults

A numerical model is used to simulate 2D and 3D faults
on a fuel cell stack. The stack is composed about 10 cells
which are the elementary voltage sources on a stack.
In this paper, two electrical conductivity faults are
studied: one on the 2nd cell (Fig. 14a) and another on the

9th cell (Fig. 14b) leading to a heterogeneous current dis-
tribution in the stack in the vicinity of the fault.

Electrical conductivities of each component of the
stack are given in Table 1.

The magnetic field is calculated on sensors positions
(Fig. 15) for the fault (Fig. 14a) and (Fig. 16) for the
fault (Fig. 14b).

In this section, the magnetic field is devoid of any
perturbation except the numerical noise. Another section
at the end of the paper deals with the sensibility of the
inversion algorithm with an added magnetic noise (11).

The sum of the magnetic field generated by the two
distinct faults is calculated (Fig. 17) in order to make a
comparison when the faults are separately identified.

Finally, we get three virtual magnetic signatures
associated with three faults. These signatures will be used
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Fig. 15. Magnetic field generated by the fault on the 2nd cell (Fig. 14a).

Fig. 16. Magnetic field generated by the fault on the 9th cell (Fig. 14b).

to identify faults in Section 10. The faults shown in
Figure 14 and the combination of the two faults (Figs. 14a
and 14b), must be identified in order to demonstrate the
effectiveness of our approach.

9 Error criterion

As shown below (Fig. 14), the maximum current is
observed around the fault. This indication can be used

to choose the maximum of the real current in comparison
with the identified one.

Besides, the error of reconstruction is estimated by
using the relative error defined as follows:

err =

√
∫Ωs

(Jreal − Jidn)T · (Jreal − Jidn)dΩs

∫Ωs
(JT

realmax
· Jrealmax)dΩs

, (15)

where Jreal is the real current, Jidn is the identified current
and Jrealmax is the maximum value of the real current.
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Fig. 17. Sum of the magnetic fields generated by the two faults.

Fig. 18. Matrix spectrum obtained for the 2D duplicated
method, the hatched part illustrates the truncation level.

10 Inversion with the two approaches

Now, three magnetic signatures of two fault configurations
and their combination are obtained. The current density
will be reconstructed using the two presented inverse
models, taking projections matrices obtained from the two
approaches presented respectively in Sections 5.1 and 5.2.

An immediate inversion taking into account the whole
matrix spectrum of S gives us a noisy solution. As with all
inverse problems we must regularize the system to inverse
in order to get a stable solution. A common regularization
technique is used by truncating the matrix spectrum.

The spectrum truncation improves the condition
number by keeping only the significant singular values on
the calculation of the pseudo inverse S#.

Fig. 19. Matrix spectrum obtained for the purely 3D method,
the hatched part illustrates the truncation level.

Figures 18 and 19 show the matrix spectrums for each
approach.

Simulations are made to get the optimal truncation
level for the two approaches in order to minimize the error
criterion. The matrix spectrum is truncated to 44 for the
duplicated 2D method and 60 for the purely 3D method.

Figure 20 represents the reconstructed current density
from the external magnetic field (Fig. 15) associated with
the fault in the 2nd cell (Fig. 14a).

Figure 21 represents the reconstructed current density
from the external magnetic field (Fig. 16) associated with
the fault in the 9th cell (Fig. 14b).

Finally, Figure 22 represents the reconstructed current
density from the sum of the two magnetic fields (Fig. 17)
generated by the two faults.
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(a) (b)x

z

y

Fig. 20. Reconstructed current density for the first fault (A m−2) (Fig. 13a). (a) With the 2D duplicated approach, (b) with
the purely 3D approach.

(a) (b)

x

z

y

Fig. 21. Reconstructed current density for the second fault (A m−2) (Fig. 13b). (a) With the 2D duplicated approach, (b) with
the purely 3D approach.

(a) (b)

x

z

y

Fig. 22. Reconstructed current density from the sum of the magnetic field generated the two faults (A m−2) (on the 2nd and
the 9th cells). (a) With the 2D duplicated approach, (b) with the purely 3D approach.

Slices on the fault positions highlight two regions, the
red one (the healthy part of the cell) indicates a strong
current density and the blue one (the faulty part of the
cell) is flown by a low current density.

It can be observed in Figures 20–22 that ele-
mentary faults or a combined fault are well identified.
The reconstructed current density by using the 2D dupli-
cated approach and the 3D approach shows current het-
erogeneities on the 2nd cell for the first fault (Fig. 20) and
on the 9th cell for the 2nd fault (Fig. 21).

The criterion errors for each case and each method are
estimated in Table 2.

The values of the error criterion allow us to evaluate
the results. It shows an acceptable difference between the
real current and the identified one.

11 Sensibility analysis

In all experimental operations, all measurements are
subject to undesirable noise. In the case of magnetic mea-
surements, the noise results from external electrical
devices such as the fuel cell auxiliaries, the noise within
sensors, or simply from the uncertainties of the mechanical
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Table 2. Error criterion for each identified current.

Figure 20 Figure 21 Figure 22

Duplicated 2D 6% 8.48% 24%
method
3D method 27% 22 22%

Table 3. Error criterion function of the peak to peak white
magnetic noise.

Noise (µT) 1 2 3 4 5

Duplicated 2D 24.2% 37.8% 58% 39% 77%
method
3D method 40% 53% 53% 54% 57%

fittings of the measurement system (sensor or array mis-
alignments).

We thus propose to study the identification error func-
tion of a white magnetic noise added to virtual measure-
ments in the case of 3D fault with a magnitude varying
between 1 μT and 5 μT.

The results are presented in Table 3. The noise here
represents the peak to peak value of the white noise. The
truncation level is not changed in order to get only the
influence of the noise on the result.

According to the results in Table 3, we see that the
identification error is highly related to the ambient noise.
The level of truncation must be chosen for a specific
environment in order to get a physical stable solution. For
experimental applications we propose to work only with
the magnetic field generated by the fault. The magnetic
field of the healthy stack and ambient environment are
subtracted.

12 Conclusion

Two approaches which define 2D and 3D faults occurring
in a fuel cell are presented. Identification of 3D faults from
the external magnetic field measurements is shown by
using the two approaches.

The main advantage of the duplicated 2D approach
is to take into account the electrical behavior of each
component of the fuel cell for building the current basis.
However, due to the fact that the current loop returns
only on a specific defined part of the fuel cell, it make this
part invisible to our approach if a fault occurs there.

The purely 3D approach presents less convincing
results comparing to the 2D duplicated method because
it does not consider the current on the end plates of the
stack. The important advantage of this approach remains
the ability to decompose the magnetic vector potential
with high harmonic orders to define small anomalies in
the case of the stack containing a high number of cells.

Authors would like to thank the Auvergne-Rhône-Alps region
for funding this project.
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1. N. Yousfi-Steiner, P. Moçotéguy, D. Candusso, D. Hissel,
A. Hernandez, A. Aslanides, J. Power Sources 183, 260
(2008)

2. D. Candusso, J.P. Poirot-Crouvezier, B. Bador,
E. Rullière, R. Soulier, J.Y. Voyant, Eur. Phys. J. Appl.
Phys. 25, 67 (2004)

3. S. Sailler, S. Rosini, M.A. Chaib, J.-Y. Voyant, Y. Bultel,
F. Druart, P. Ozil, J. Appl. Electrochem. 37, 161 (2007)

4. K.H. Hauer, R. Potthast, T. Wüster, D. Stolten, J. Power
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