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Two variations of a 3-D inductive coupling problem in a transmission line right-of-way are analysed with the generalized Partial
Element Equivalent Circuit (PEEC) method. This new approach does not rely on the parallelism with the transmission line and
permits the determination of the induced current density in underground objects at arbitrary positions and orientations. The
adaptions on the basic numerical procedure are presented and discussed as well. A comparison of the obtained results with 2-D and
3-D Finite Element models shows that the proposed approach is able to provide accurate solutions even when employing a coarser
discretization mesh.

Index Terms—Eddy Currents, electromagnetic coupling, generalized partial element equivalent circuit (PEEC) method, integral
equation, transmission lines.

I. INTRODUCTION

T
generalized Partial Element Equivalent Circuit (PEEC) integral
method will be presented and employed to determine the
induced current density in an object beneath the soil surface
and in the vicinities of a three-phase transmission line.

Two variants of the problem will be considered; the first is
reducible to a 2-D model, while the second is not. According
with the case, the results obtained with the PEEC procedure
will be compared either to a 2-D or to a 3-D FEM counterpart
solution, as will be discussed in the following sections.

II. GENERALIZED PEEC METHOD

The generalized PEEC approach arises from an application
of the Galerkin Residual method to the integral equation
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dΩ = −∇V, (1)

which states the frequency domain relationship between the
current density J and the electric potential V in a three
dimensional domain Ω [3]. The media in Ω are supposed to
be non-magnetic, non-dielectric and with conductivity σ.

The procedure requires a finite element approximation for
J with the use of vector facet shape functions {wi} [4]. It
leads to the assembly of the terms
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∆Vi = −
∫
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into a global system of equations with the following structure:

( [R] + jω [L] ) [If ] = [∆V ] . (3)

This system may be regarded as an equivalent electric cir-
cuit, in which each branch corresponds to a facet of the finite

HE inductive coupling between high voltage transmission
lines and other structures sharing a common right-of-

way is unavoidable. The numerical techniques used to model
this class of problems tend to take advantage whenever it is
possible of the parallelism between the transmission line and
elongated structures [1] [2]. For instance, this is the case of
buried pipelines or transportation rails placed in a right-of-way
and subjected to the influence of a transmission line.

Among the techniques employed in this context of applica-
tions is the Finite Element Method (FEM). In those situations
involving the parallel alignment of long structures with the
transmission line, the shared right-of-way may be reduced
to one of its cross-sections and 2-D implementations of this
method may be employed [2]. Such an approach leads to
numerical problems of reasonable size and complexity, even
if large inactive air regions and thin phase conductors need to
be meshed.

However, the general inductive coupling problem is given
by an object of arbitrary shape and with an arbitrary relative
position with respect to the transmission line. Hence, the
modelling of this broader class of situations cannot rely on
the parallelism between structures as a simplification. As a
consequence, larger and costlier numerical problems are ob-
tained. The 3-D FEM may be applied to this general problem
as well.

This paper proposes an alternative approach based on an
integral method that also uses a complete 3-D representation of
the right-of-way. More specifically, an adapted version of the

1

Generalized PEEC Analysis of Inductive Coupling Phenomena in a
Transmission Line Right-of-Way

L. Blattner Martinho1,2,3, J. Siau2,3,4, B. Bannwarth2,3, J.-M. Guichon2,3, O. Chadebec2,3, G. Meunier2,3, V. C. Silva1
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element mesh adopted for the discretization of J. Matrices [R]
and [L] are its equivalent resistance and inductance matrices
and vector [If ] stores facet (or branch) currents. Additionally,
it may be shown that the right-hand side vector [∆V ] contains
the differences between the averaged electric potential of two
contiguous elements sharing a common facet [3].

As a consequence of this circuit interpretation, the problem
given by (3) may be coupled to a complementary external
network and analyzed with an electric circuit solver. The
solution with a circuit solver and the use of facet elements
assure together the conservation of current, which is equivalent
to the satisfaction of the required physical condition given by
the continuity equation ∇ · J = 0 [3].

It must be noticed that the circuit relations in (3) are stated
in terms of unknown branch currents [If ]. However, it is a
well-known fact that circuit solvers are normally conceived
to employ independent loop currents or nodal tensions as un-
knowns instead of branch currents. In this way, an independent
loop search algorithm is required to convert the problem given
by (3) into a well-posed form for mesh current analysis [5].
An inverse transformation from independent loop currents
to branch currents is required as well after the solution of
the equivalent electric circuit, in order to proceed with the
evaluation of field quantities during the post-processing stage
of the analysis.

The following sections will describe the inductive coupling
problem of application considered and the required adaptions
on the basic generalized PEEC method. A discussion on the
obtained results will also be provided.

III. ANALYSIS OF INDUCTIVE COUPLING PROBLEMS IN A
RIGHT-OF-WAY

A schematic view of the right-of-way under analysis is
available in Fig. 1. The buried object under investigation has
a prismatic and elongated shape and is much more conductive
than the surrounding soil, which is supposed to have a uniform
and isotropic resistivity.

As mentioned before, the computation of the current density
distribution J induced by the high-voltage transmission line
in the buried object requires adaptations in the numerical
scheme outlined in section II. These modifications are covered
in the following subsections, together with additional relevant
information about the numerical modelling of this particular
problem.

Fig. 1. The right-of-way (a) and the conductive object underground (b).

Fig. 2. The computational domain and its connections to the external circuit.

A. Three-phase line representation and external circuit

Fig. 2 shows the delimitation of the domain Ω and its
decomposition into two sub-regions. A sufficiently large soil
volume ΩV bounded by the earth surface and containing
the embedded underground object is defined. In ΩV, J is
approximated by vector facet elements [4] associated to the
function space {vi} of vector facet functions.

The transmission line ΩL is represented by line elements, in
order to avoid the volume discretization of the very thin phase
conductors and to limit the number of additional degrees of
freedom. Each phase conductor is associated to a single, long
line element, which is supposed to carry a constant complex
current. This corresponds to the adoption of a space of zero-
order interpolation functions {ui} with a pre-defined direction
for the description of the current distribution in ΩL.

Fig. 2 also shows the required external circuit connections
to provide current excitation and to establish an underground
path for the flow of zero-sequence current components (if an
unbalanced operation condition was to be considered).

B. Block integration and assembly of the system of equations

The choice of two different function spaces for the approxi-
mation of the current density distribution in Ω = ΩV ∪ ΩL may
be formally regarded as a coupling between the generalized
PEEC method (applied to the soil and the buried object)
and the classical PEEC method (applied to the transmission
line) [6] [7]. The terms assembled to the global system of
equations are still given by (2), but with the additional remark
that now {wi} = {vi} ∪ {ui}. As a consequence, matrices
[R] and [L] in (3) acquire a 2X2 block structure.

Matrix [R] is sparse and its blocks are integrated and
stored in a rather conventional way. On the other hand, and
as suggested by (2b), [L] is densely populated. Since the
assembly time of a dense matrix and the memory required
for its storage tend to grow very quickly with the size of



the numerical problem, each of the blocks of this equivalent
inductance matrix is treated in a particular way.

The largest of these inductive blocks corresponds to the
ΩV×ΩV interaction. In order to mitigate the difficulties previ-
ously mentioned, this block is compressed using the H-matrix
representation and is treated with the HCA technique [8].

The inductive block associated to the ΩL × ΩL interaction
is a small 3X3 matrix that is equivalent to the inductance
matrix of the three-phase line. Its terms could be computed by
the numerical integration of (2b) with a Gaussian quadrature
routine. However, these computations are particularly prone to
errors linked to the evaluation of singular integrands. Alterna-
tively, this block is substituted by analytical computations of
the conductor’s self-inductances and of the mutual inductances
between phases [9].

The two remaining blocks correspond to the inductive
coupling between ΩL and ΩV. Only one of these blocks needs
to be computed since the other may be obtained by matrix
transposition.

IV. APPLICATION AND RESULTS

The application of the PEEC scheme described in the
previous sections was carried out for two variants of the
problem of Fig. 1, each one given by a different relative
position between the three-phase line and the object.

On both cases, structured meshes containing 5040 hexahe-
dra were adopted for the discretization of ΩV. Similarly, the
complete equivalent network arising from the PEEC numerical
scheme in each variant case had approximately 15000 branches
and 9500 independent current loops.

The results were compared with FEM computations per-
formed with the Flux software package [10]. A detailed
discussion on the two problems analyzed is given in what
follows.

A. Parallel alignment and 2-D FEM validation

First, the longest dimension of the object is placed in
parallel to the line. This configuration permits the validation of

Fig. 3. Spatial distribution of the induced current density.

Fig. 4. Current density in the horizontal mid-section of the buried object.

the PEEC approach by comparison with the 2-D FEM solution
of a related problem. In this latter approach the buried object
is supposed to have an infinite length and J has a single
component in the direction parallel to the transmission line.

Due to a symmetry argument, this solution may be com-
pared with the PEEC solution obtained in the mid-section
of the buried object, which is highlighted in Fig. 1(b). A
very good agreement between the two solutions is verified.
For instance, if the mean current density is computed on a
0.25δ × 0.25δ patch in the upper corner of the referred mid-
section, an error lower than 2.15% is verified between both
solutions (|JPEEC | = 17.39 A/m2, |JFEM 2-D | = 17.77 A/m2,
δ = skin depth ≈ 0.205 m).

B. Orthogonal alignment and 3-D FEM validation

In a second analysis, the object is rotated and positioned
with its largest dimension along a direction orthogonal to the
transmission line. The resulting configuration can be handled
by the PEEC technique as before, but the obtained current
density distribution inside the object is no longer comparable
with the one issued from a 2-D FEM computation.

The spatial distribution of J inside the object resulting from
the coupling with the three-phase line and computed with
the PEEC approach is shown in Fig. 3. Fig. 4 in its turn
brings a somewhat more quantitative view of the eddy current
loops established inside the object by showing the absolute
value of each component of J in its horizontal mid-section
(z = −0.3 m).

Further insight into the PEEC approach may be obtained
by its comparison with an alternative 3-D FEM model in
this case. More specifically, an implementation of this method
provided by the Flux software package and belonging to the
class of t− t0 − φ, circuit-coupled formulations [11] [12] was
adopted for this purpose.

The 3-D FEM solution of the aforementioned problem
is computationally demanding. With this method, the deter-
mination of an induced current distribution in the buried
object that remains insensitive to additional refinements in the
discretization requires a very dense mesh of hexahedra, long
computation times and a large memory capacity.



However, the maximum current density value inside the
object may be approximated by an asymptotic value of ap-
proximately 21.85 A/m2. This limiting value is obtained by
the 3-D FEM computation of the maximum current density
for a series increasingly refined meshes and by extrapolation,
as implied by Fig. 5.

If this value |Jmax | = 21.85 A/m2 is adopted as a refer-
ence, the maximum current densities computed with the PEEC
scheme and the 3-D FEM may be compared. Table I provides
this comparison of accuracy between the two procedures when
the maximum current density values developed inside the
underground object are evaluated with practical and relatively
coarse meshes, both containing a similar number of elements
(≈ 5000 hexahedra). It may be verified that for a given mesh
size the PEEC approach is able to provide a more accurate
solution than the 3-D FEM.

V. CONCLUSIONS

A PEEC approach for the analysis of an inductive coupling
problem involving a three-phase line and an underground
object was presented. Arbitrary relative positions between the
transmission line and the object could be considered, and the
method also avoids the discretization of inactive air regions.

The current density distribution obtained provides base data
for the study of AC corrosion phenomena [13], and the
computed results were validated by comparison with 2-D and
3-D FEM models. Accurate solutions (in the sense provided by
a small percent deviation from FEM-computed values) were
determined with the use of the PEEC approach.

It should be additionally remarked that the electric poten-
tial solution in the domain Ω resulting from the equivalent
circuit interpretation could also be conveniently employed
for the evaluation of dangerous induced overvoltages in the
PEEC analysis. The use of more complex external networks
could also be exploited in the investigation of other practical
problems arising in the practice of power engineering, like
the occurrence of a simultaneous fault to earth in the three-
phase line. Future works on numerical aspects like improved
integration procedures, system assembly techniques and matrix
pre-conditioning could also be envisioned.

Finally, the previously discussed applications considered
only the case of a balanced system of three-phase currents

Fig. 5. Determination of the asymptotic value of the maximum current density
inside the buried object with the 3D-FEM (orthogonal case).

TABLE I
PEEC AND 3-D FEM COMPARISON (ORTHOGONAL CASE)

Method Mesh size† |Jmax |‡ % Deviation∗

Reference∗∗ - 21.85 0
3-D FEM 5880 19.30 11.67

PEEC 5040 21.20 2.97
† Number of hexahedra in the discretization.
‡Maximum current density inside buried object (A/m2).
∗ In comparison with the reference value.
∗∗ Extrapolation of the series of 3-D FEM computations (Fig. 5).

flowing in the phase conductors of the transmission line.
Further work on this subject also intends to investigate the
case of unbalanced operation and the consequent superposition
of conductive coupling phenomena, resulting from the flow of
zero-sequence current components in the soil.
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[8] S. Börm and L. Grasedyck, “Hybrid cross approximation of integral
operators,” Numerische Mathematik, vol. 101, no. 2, pp. 221–249,
2005. [Online]. Available: http://dx.doi.org/10.1007/s00211-005-0618-1

[9] J. J. LaForest, Transmission Line Reference Book - 345 kV and Above,
2nd ed. Palo Alto, CA: Electric Power Research Institute, 1982.

[10] “Flux 12.0 - Electromagnetic and thermal finite element
analysis software package,” CEDRAT. [Online]. Available:
http://www.cedrat.com/ ; visited on 28 June 2015.

[11] G. Meunier, Y. Le Floch, and C. Guerin, “A nonlinear circuit coupled t-
t0- phi; formulation for solid conductors,” Magnetics, IEEE Transactions
on, vol. 39, no. 3, pp. 1729–1732, May 2003.

[12] Y. Le Floch, G. Meunier, C. Guerin, P. Labie, X. Brunotte, and
D. Boudaud, “Coupled problem computation of 3-d multiply connected
magnetic circuits and electrical circuits,” Magnetics, IEEE Transactions
on, vol. 39, no. 3, pp. 1725–1728, May 2003.

[13] Evaluation of AC corrosion likelihood of buried pipelines applicable
to cathodically protected pipelines, CEN - European Comittee for
Standarization. EN 15 280, Sep 2013.


