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SIMULATED ANNEALING IN R
d WITH SLOWLY GROWING POTENTIALS

NICOLAS FOURNIER, PIERRE MONMARCHÉ AND CAMILLE TARDIF

Abstract. We use a localization procedure to weaken the growth assumptions of Royer [8], Miclo
[4] and Zitt [9] concerning the continuous-time simulated annealing in R

d. We show that a transition
occurs for potentials growing like a log log |x| at infinity. We also study a class of potentials with
possibly unbounded sets of local minima.

1. Introduction and results

1.1. Notation and main result. We adopt, in the whole paper, the following setting.

Assumption (A). We work in dimension d ≥ 2. The function U : Rd → R+ is of class C∞, satisfies
lim|x|→∞ U(x) = ∞, minx∈Rd U(x) = 0. For x, y ∈ R

d, we set

E(x, y) = inf
{

max
t∈[0,1]

U(γ(t))− U(x)− U(y) : γ ∈ C([0, 1],Rd), γ(0) = x, γ(1) = y
}

and we suppose that c∗ = sup{E(x, y) : x, y ∈ R
d} < ∞.

Actually, c∗ = sup{E(x, y) : x local minimum of U , y global minimum of U} and represents the
maximum energy required to reach a global minimum y when starting from anywhere else.

We fix x0 ∈ R
d, c > 0 and β0 ≥ 0 and consider the time-inhomogeneous S.D.E.

(1) Xt = x0 +Bt −
1

2

∫ t

0

βs∇U(Xs)ds where βt = β0 +
log(1 + t)

c
.

Here (Bt)t≥0 is a d-dimensional Brownian motion. For R > 0, we set B(R) = {x ∈ R
d : |x| < R}. We

will work under one of the three following conditions.

Assumption (H1(a)). There is A0 ≥ 2 such that x · ∇U(x) ≥ a/ log |x| for all x ∈ R
d \B(A0).

Assumption (H2(α)). There are δ0 > 0 and three sequences (ai)i≥1, (bi)i≥1 and (δi)i≥1 such that
0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . and, for all i ≥ 1, δi ≥ δ0, bi ≥ ai + αδi, and

|x| ∈ [ai, bi] =⇒ x

|x| · ∇U(x) ≥ 1

δi
.

We say that a set Z ⊂ R
d is a ring if it is C∞-diffeomorphic to C = {x ∈ R

d : |x| ∈ (1, 2)}. A
ring Z is connected, open, bounded and R

d \ Z has precisely two connected components, one begin
bounded (denoted by Z−), the other one being unbounded (denoted by Z+).

Assumption (H3(α, β)). There are ǫ > 0, three sequences (ui)i≥1, (vi)i≥1 and (κi)i≥1 and a family

of rings {Zi : i ≥ 1} such that ∪i≥1Z−
i = R

d and for all i ≥ 1, (Z+
i )c ⊂ Z−

i+1, vi ≥ ui+αmax{1, ǫκi},
∂Z−

i ⊂ {x ∈ R
d : U(x) = ui}, ∂Z+

i ⊂ {x ∈ R
d : U(x) = vi} and

x ∈ Z̄i =⇒ |∇U(x)| ∈ (0, κi] and
∆U(x)

|∇U(x)|2 ∈ (−∞, β].
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Our main result is as follows.

Theorem 1. Assume (A) and fix c > c∗ and β0 ≥ 0. Assume either (H1(a)) for some a > c(d− 2)/2
or (H2(α)) for some α > c or (H3(α, β0)) for some α > c. The S.D.E. (1) has a pathwise unique
solution (Xt)t≥0 and U(Xt) tends to 0, in probability, as t → ∞.

It is well-known that, even with a fast growing potential, the condition c > c∗ is necessary, see
Holley-Kusuoka-Stroock [1, Corollary 3.11] for the case where R

d is replaced by a compact manifold.
The following example shows that in some sense, (H1(a)) is sharp.

Proposition 2. Assume that d ≥ 3. Fix β0 = 0, c > 0 and a ∈ (0, c(d−2)/2). For α ∈ (a, c(d−2)/2),
set U(x) = α log(1+ log(1+ |x|2)), which satisfies (A) with c∗ = 0 and (H1(a)). For any x0 ∈ R

d, the
solution (Xt)t≥0 to (1) satisfies P(limt→∞ U(Xt) = ∞) > 0.

The next example shows that one can build some oscillating potentials, growing more or less as slow
as one wants, such that Theorem 1 applies. Hence in some sense, (H1(a)) is far from being satisfying.

Proposition 3. Fix d ≥ 2 and p ≥ 1. We can find U satisfying (A) with c∗ = 1 and (H2(2)) such
that log◦p |x| ≤ U(x) ≤ 3 log◦p |x| outside a compact. Theorem 1 applies when c ∈ (1, 2).

1.2. Motivation and bibliography. The problem under consideration, called simulated annealing,
has a long history, see the introduction of Zitt [9]. The goal is to find numerically a global minimum
of a given function U : Rd → R, by using a gradient approach, perturbed by a stochastic noise. One
thus considers the S.D.E. dYt =

√
σtdBt − 1

2∇U(Yt)dt. The noise intensity σt has to be small, so
that there is some hope to spend most of the time close to a global minimum, but large enough so
that one is sure not to remain stuck close to a local minimum. Changing time, one can equivalently
study (Yt)t≥0 or the solution (Xt = Yρt

)t≥0 to (1) with βt = 1/σρt
, where (ρt)t≥0 is the inverse of

(
∫ t

0 σsds)t≥0. The important point is that for c > 0 fixed, as t → ∞, βt ∼ c−1 log t if and only if

σt ∼ c(log t)−1. In each of the the references cited below, one choice or the other is used.

After a first partial result by Chiang-Hwang-Sheu [3], this question has been solved by Royer [8]
and Miclo [4] when assuming that U grows sufficiently fast at infinity, always assuming at least that

(2) lim
|x|→∞

U(x) = lim
|x|→∞

|∇U(x)| = ∞ and ∀ x ∈ R
d, ∆U(x) ≤ C + |∇U(x)|2

for some constant C > 0. The case where R
d is replaced by a compact Riemannian manifold was

solved by Holley-Kusuoka-Stroock [2, 1]. All these studies deeply rely on some Poincaré and log-
Sobolev inequalities that require, in the non-compact case, some conditions like (2).

These conditions (2) imply that all the local minima of U are located in a compact set. Also, if
U behaves like U(x) = |x|r for some some r > 0 outside a compact, then (2) holds true if and only
if r > 1. In [9], Zitt weakens the condition (2), using similar (but more involved) functional analysis
methods, relying on some weak Poincaré inequalities. However, many technical conditions are still
assumed, which in particular imply that all the local minima of U are located in a compact set, and
that U(x) ≥ [log |x|]r outside a compact, for some r > 1.

The questions we address in this paper are thus the following. First, can one find the minimum
growth rate required for the simulated annealing to be successful ? Second, can we allow for some
potentials with unbounded set of local minima ? We give answers to these questions, thanks to a
localization procedure, using as a black box the results of [1] in the compact case.

1.3. Comments on the assumptions. We could probably treat the case where d = 1, but some local
times would appear here and there, this would change the definition of rings, etc. Also, (H1(a)) might
be weakened in dimension 2, as is rather clear from Theorem 1, since we assume that a > c(d− 2)/2.
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This is due to the fact that the Brownian motion is recurrent in dimension 2. To simplify the
presentation as much as possible, we decided not to address these problems.

Assumption (H1) is rather clear and allows for very slowly growing potentials. Any potential
U : Rd → R satisfying, outside a compact, U(x) = |x|r or U(x) = (log |x|)r , with r > 0, satisfies
(H1(a)) for all a > 0. And, of course, if U(x) = a log log |x| outside a compact, (H1(a)) is satisfied.
Proposition 2 shows that in some loose sense, the condition (H1(a)) with a > c(d − 2)/2 is optimal.
Observe also, and this is rather surprising, that (H1(a)) does not guarantee at all that the invariant

measure exp(−βU(x))dx of the S.D.E. dXβ
t = dBt − β

2∇U(Xβ
t )dt with β > 0 fixed, even large, can

be normalized as a probability measure.

We tried a lot to replace (H1(a)) by its integrated version U(x) ≥ a log log |x| outside a compact,
and we did not succeed at all, even with the idea to get a much less sharp condition. This integrated
condition would be much more satisfactory, in particular since it would allow for potentials with
unbounded sets of local minima.

Assumption (H2) is less clear, and might be improved, although we tried to be as optimal as
possible. The main idea is that a potential U satisfies (H2(α)) if there are infinitely many annuli
on which U increases at least of α, sufficiently uniformly. Between these annuli, the potential can
behave as it wants, and in particular it may have many local minima. Observe that (H2(α)) does not
imply that lim|x|→∞U(x) = ∞. However, one easily gets convinced that (H2(α)), together with the
condition α > c∗, implies that lim|x|→∞ U(x) = ∞.

Assumption (H3) resembles much (H2). It is less general in that some conditions on ∆U are
imposed, but more general in that a ring allows for much more general shapes than an annulus. Much
less radial symmetry is assumed.

Finally, (H2) and (H3) are not strictly more general than (H1). They are more intricate and thus
harder to optimize. The following examples, that illustrate this fact, are not very interesting from the
point of view of (H2) and (H3), since the potentials below are radially symmetric and increasing, but
they give an idea of the possibilities.

• If U(x) = (log |x|)r , outside a compact, with r ∈ (0, 1), then U satisfies (H1(a)) for all a > 0. But it
does not satisfy (H2(α)) for any α > 0, because we would have, for i large enough, δi ≥ bi(log bi)

1−r/r,
whence bi ≥ ai + bi(log bi)

1−r/r. This is not possible, since bi must increase to ∞ as i → ∞. If d ≥ 3,
neither does it satisfy (H3(α, β)) for any α > 0 and β > 0, since lim|x|→∞ |∇U(x)|−2∆U(x) = ∞.

• If U(x) = κ log |x|, outside a compact, with κ > 0, then (H1(a)) is satisfied for all a > 0. Next,
(H2(α)) is fulfilled if κ > α: choose, for i large enough, ai = qi, bi = ai+1, δi = qi+1/κ, with q > 1
such that q ≥ 1 + αq/κ. Finally, (H3(α, β)) is met if α > 0 and β ≥ (d − 2)/κ: choose, for i large
enough, Zi = B(exp(vi/κ)) \B(exp(ui/κ)) with ui = iα and vi = ui+1 and κi = 1.

• If U(x) = (log |x|)r, outside a compact, with r > 1, then U satisfies (H1(a)), (H2(α)) and
(H3(α, β)) for all a > 0, α > 0, β > 0. For example, (H2(α)) is satisfied with, for i large enough,
ai = 2i, bi = ai+1 and δi = bi/(2α).

As a conclusion, although we found some new results, the situation remains rather unclear.

1.4. Main ideas of the proof. Assume (A) and fix c > c∗. First, it is rather natural to deduce the
two following points from the compact case [1].

(a) Under the condition, to be verified, that supt≥0 |Xt| < ∞ a.s., then U(Xt) → 0 in probability.

(b) If G is an open connected set containing x0 and the global minima of U and such that ∂G ⊂
{x ∈ R

d : U(x) ≥ α} for some α > c, then P(∀ t ≥ 0, Xt ∈ G) > 0.
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The proof under (H1) then follows from two main arguments. First, a careful comparison of
(|Xt|)t≥0 with some Bessel process shows that X cannot tend to infinity, and thus visits infinitely
often a compact set. Second, each time it visits this compact set, it may remain stuck forever in
it with positive probability by point (b). With some work, we bound from below uniformly this
probability. Hence the process is eventually stuck in this compact set, so that we can apply (a).

The proof under (H2) or (H3) is rather easier. On the event where supt≥0 |Xt| = ∞, the process
must cross all the annuli (or rings) in which U is supposed to be sufficiently increasing. But using
some comparison arguments and point (b) above, there is a positive probability that the process does
not manage to cross a given annulus. Here again, there is some work to get some uniform lowerbound.
At the end, the process can cross only a finite number of annuli (or rings), so that we can apply (a).

1.5. Plan of the paper. In the next section, we recall some results of Holley-Kusuoka-Stroock [1]
and deduce points (a) and (b) mentioned in the previous subsection. We finally recall some classical
facts about Bessel processes. The other sections can be read independently. Sections 3, 4 and 5 are
respectively devoted to the proofs of Theorem 1 under (H1), (H2) and (H3). We conclude the paper
with Section 6 which contains the proofs of Propositions 2 and 3.

As a final comment, let us mention that we use many similar comparison arguments. We gave up
producing a unified lemma, because it rather complicates the presentation, since the time-life of the
processes vary, etc, and because each time, the proof is very quick.

2. Preliminaries

We first recall some results of Holley-Kusuoka-Stroock on which our study entirely relies. Recall
that the constant c∗, concerning U , was introduced in Assumption (A). When considering a similar
constant for another potential, we indicate it in superscript.

Theorem 4 ([1, Theorem 2.7 and Lemma 3.5]). Consider a compact connected finite-dimensional
Riemannian manifold M , as well as a C∞ function V : M → R+ satisfying minM V = 0. We
introduce cV∗ = sup{EV (x, y) : x, y ∈ M}, where

EV (x, y) = inf
{

max
t∈[0,1]

V (γ(t))− V (x)− V (y) : γ ∈ C([0, 1],M), γ(0) = x, γ(1) = y
}

.

Consider c > cV∗ and β0 ≥ 0, set βt = β0 + [log(1 + t)]/c and consider the inhomogeneous M -
valued diffusion (Yt)t≥0 with generator Ltφ(y) = 1

2div[∇φ(y) − βt∇V (y) · ∇φ(y)], for y ∈ M and
φ ∈ C∞(M), starting from some y0 ∈ M . We denoted by div and ∇ the Riemannian divergence and
gradient operators.

(i) It holds that V (Yt) → 0 in probability as t → ∞.

(ii) Fix α ∈ (cV∗ , c) and consider a connected open subset G of M satisfying the conditions that
{x ∈ M : V (x) = 0} ⊂ G and ∂G ⊂ {x ∈ M : V (x) ≥ α}. If y0 ∈ G, then P(∀ t ≥ 0, Yt ∈ G) > 0.

Actually, only the case where β0 = 0 is treated in [1], but this is not an issue. Under (A), ∇U is
locally lipschitz continuous, whence the following observation.

Remark 5. Assume (A). The equation (1) has a pathwise unique maximal solution (Xt)t∈[0,ζ), where
ζ takes values in (0,∞) ∪ {∞} and with P({ζ = ∞} ∪ {ζ < ∞, limt↑ζ |Xt| = ∞}) = 1.

We now show how the above results of [1] may extend to the non-compact case.

Lemma 6. Assume (A), fix c > c∗ and β0 ≥ 0, and consider (Xt)t∈[0,ζ) as in Remark 5.

(i) Fix α ∈ (c∗, c) and consider a bounded connected open subset G of R
d such that x0 ∈ G,

{x ∈ R
d : U(x) = 0} ⊂ G and ∂G ⊂ {x ∈ R

d : U(x) ≥ α}. Then P(ζ = ∞ and ∀ t ≥ 0, Xt ∈ G) > 0.
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(ii) Assume that P(ζ = ∞ and supt≥0 |Xt| < ∞) = 1. Then U(Xt) → 0 in probability as t → ∞.

Proof. For R > 0, we introduce the flat torus MR = [−R,R)d, i.e. R
d quotiented by the equivalence

relation x ∼ y if and only if (xi − yi)/(2R) ∈ Z for all i = 1, . . . , d.

We also fix c > c∗ and α ∈ (c∗, c) for the whole proof.

Step 1. For all A ≥ 1, there exist RA > A and a C∞ function VA : MRA
→ R+ such that cVA

∗ < α,
minMRA

VA = 0, {x ∈ MRA
: VA(x) = 0} = {x ∈ R

d : U(x) = 0} and U(x) = VA(x) for all x ∈ B(A).

Indeed, let mA = maxB(A) U + 1, and DA = {x ∈ R
d : U(x) ≤ mA}, which is compact, since U

is continuous and satisfies lim|x|→∞ U(x) = ∞. Hence there is RA > A such that DA ⊂ [−(RA −
1), (RA − 1)]d. We then introduce the continuous map ṼA : MRA

→ R+ defined by

ṼA(x) = min{U(x),mA} = U(x)1{x∈DA} +mA1{x∈MRA
\DA}.

Since ṼA is constant outside DA and since ṼA = U on DA, one easily checks that cṼA
∗ ≤ c∗.

We next consider VA : MRA
→ R+ of class C∞ such that VA(x) = ṼA(x) = U(x) for x ∈ DA and

such that supx∈MRA
|VA(x) − ṼA(x)| ≤ ǫ, where ǫ = min{α− c∗, 1}/4. We thus have minMRA

VA = 0

and {x ∈ MRA
: VA(x) = 0} = {x ∈ R

d : U(x) = 0}, because minU = 0, because U = VA on DA and

because U ≥ mA > 0 and VA ≥ ṼA − ǫ = mA − ǫ ≥ 1 − 1/4 > 0 outside DA. Finally, we also have

cVA
∗ ≤ cṼA

∗ + 3ǫ ≤ c∗ + 3ǫ < α, since ǫ ≤ (α − c∗)/4. This ends the step.

Step 2. For each A > max{1, |x0|}, we consider the inhomogeneous MRA
-valued diffusion

Y A
t = x0 +Bt −

1

2

∫ t

0

βs∇VA(Y
A
s )ds modulo 2RA,(3)

where, for x = (x1, . . . , xd) ∈ R
d,

x modulo 2RA =
(

xi − 2RA

⌊xi +RA

2RA

⌋)

i=1,...,d
∈ [−RA, RA)

d.

This is a MRA
-valued time-inhomogeneous diffusion, starting from x0 ∈ MRA

, with time-dependent
generator Ltφ(y) =

1
2div[∇φ(y)− βt∇VA(y) · ∇φ(y)]. By Theorem 4 and since c > cVA

∗ by Step 1,

(a) VA(Y
A
t ) → 0 in probability as t → ∞;

(b) if α ∈ (cVA
∗ , c) and if G is an open connected subset of MRA

such that {x ∈ MRA
: VA(x) =

0} ⊂ G, ∂G ⊂ {x ∈ MRA
: VA(x) ≥ α} and x0 ∈ G, then P(∀ t ≥ 0, Y A

t ∈ G) > 0.

Step 3. For each A > max{1, |x0|} set ΩA = {ζ = ∞, supt≥0 |Xt| < A}. It holds that ΩA =

{supt≥0 |Y A
t | < A} and ΩA ⊂ {∀ t ≥ 0, Xt = Y A

t }.
Indeed, let τA = inf{t ≥ 0 : |Xt| ∨ |Y A

t | > A}. Since RA > A, the modulo 2RA is not active in
(3) during [0, τA]. Then a simple computation, using that VA = U on B(A) and that ∇U is lipschitz
continuous on B(A), with Lipschitz constant CA, shows that a.s., for all t ≥ 0,

|Xt∧τA − Y A
t∧τA | ≤ CA

∫ t

0

βs|Xs∧τA − Y A
s∧τA |ds.

Since (βt)t≥0 is locally bounded, supt≥0 |Xt∧τA − Y A
t∧τA | = 0 a.s. by the Gronwall lemma. Hence X

and Y A coincide until one of them (and thus both of them) reaches A. The conclusion follows.

Proof of (ii). We fix ǫ > 0. For A > max{1, |x0|}, by Step 3 and since VA = U on B(A),

P(U(Xt) ≥ ǫ) ≤ P(Ωc
A) + P(U(Xt) ≥ ǫ,ΩA) ≤ P(Ωc

A) + P(VA(Y
A
t ) ≥ ǫ).
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By Step 2-(a), we conclude that lim supt→∞ P(U(Xt) ≥ ǫ) ≤ P(Ωc
A) for each A ≥ max{1, |x0|}. But

by assumption, P(Ωc
A) → 0 as A → ∞, whence the conclusion.

Proof of (i). We fix G as in the statement. Consider A > max{1, |x0|} such that G ⊂ B(A). We
thus have G ⊂ MRA

, {VA = 0} = {U = 0} ⊂ G, and ∂G ⊂ {U ≥ α} ∩B(A) = {VA ≥ α} ∩B(A). We
then know by Step 2-(b) that the event Ω′

A = {∀ t ≥ 0, Y A
t ∈ G} has a positive probability. Using

now that Ω′
A ⊂ {supt≥0 |Y A

t | < A} = ΩA ⊂ {∀ t ≥ 0, Xt = Y A
t } by Step 3, we deduce that we also

have Ω′
A ⊂ {ζ = ∞ and ∀ t ≥ 0, Xt ∈ G}. Thus P(ζ = ∞ and ∀ t ≥ 0, Xt ∈ G) > 0 as desired. �

We next recall some well-known facts concerning Bessel processes.

Proposition 7. Fix δ > 0, r > 0 and let (Wt)t≥0 be a 1-dimensional Brownian motion. Consider
the pathwise unique solution (Rt)t≥0, killed when it reaches 0, to

Rt = r +Wt +
δ − 1

2

∫ t

0

ds

Rs
.

Such a process is called a (killed) Bessel process with dimension δ starting from r.

(a) If δ ∈ (0, 2), (Rt)t≥0 a.s. reaches 0.

(b) If δ ≥ 2, (Rt)t≥0 does a.s. never reach 0.

(c) If δ ≥ 2, we a.s. have lim supt→∞(t log t)−1/2Rt = 0 a.s.

(d) If δ > 2, we a.s. have lim inft→∞ t−1/2(log t)νRt = ∞, where ν = 4/(δ − 2).

We refer to Revuz-Yor [7, Chapter XI] for (a) and (b). For (c), we actually have the more
precise estimate lim supt→∞(2t log log t)−1/2Rt = 1 a.s., see [7, Chapter XI, Exercise 1.20]. Fi-
nally, (d) is proved in Motoo [5], when δ ≥ 3 is an integer, as a corollary of a general result
about diffusion processes that also applies to the case where δ > 2 is not an integer. More pre-
cisely, we have lim inft→∞ t−1/2f(t)Rt = ∞ a.s. if f : R+ → [1,∞) is increasing and satisfies
∫∞

0 (1 + t)−1[f(t)](2−δ)/2dt < ∞. See also Pardo-Rivero [6, Subsection 2.3], where this result is stated
in terms of squared Bessel processes.

3. Proof under (H1)

First, we verify that the solution to (1) is global and that it always comes back in B(A0), where
A0 ≥ 2 was introduced in (H1(a)). This lemma really uses that a is large enough.

Lemma 8. Assume (A), fix c > 0 and β0 ≥ 0, and suppose (H1(a)) for some a > 0. Consider the
unique maximal solution (Xt)t∈[0,ζ) to (1), see Remark 5.

(i) The solution is global, i.e. P(ζ = ∞) = 1.

(ii) If a > c(d− 2)/2, for all r ≥ 0, all x ∈ R
d \B(A0), P(inf{t ≥ r : |Xt| = A0} < ∞|Xr = x) = 1.

Proof. By (A) and (H1(a)), there is C > 0 such that x · ∇U(x) ≥ −C for all x ∈ R
d. For n ∈ N, we

define τn = inf{t > 0 : |Xt| ≥ n}. By Itô’s formula, we have, for any T > 0,

E[|XT∧τn |2] ≤ |x0|2 + dT + C

∫ T

0

βsds =: CT .

Consequently, P(τn ≤ T ) ≤ P(|XT∧τn | ≥ n) ≤ CT /n
2, so that ζ = limn τn = ∞ a.s., which proves (i).

Concerning (ii), we fix |x| > A0 ≥ 2 and r ≥ 0 and we split the proof into several parts.

Step 1. Conditionally on Xr = x, the process (X̃t)t≥0 := (Xt+r)t≥0 solves (1) with x0, (βt)t≥0 and

(Bt)t≥0 replaced by x, (βr+t)t≥0 and (B̃t)t≥0 := (Bt+r −Br)t≥0. Observe that (X̃t)t≥0 does never hit
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0 by the Girsanov theorem and since d ≥ 2. We thus may use Itô’s formula to compute

|X̃t| = |x|+Wt +

∫ t

0

( d− 1

2|X̃s|
− βr+sX̃s · ∇U(X̃s)

2|X̃s|
)

ds,

where Wt :=
∫ t

0
X̃s·dB̃s

|X̃s|
is a 1-dimensional Brownian motion. We define ρ = inf{t ≥ 0 : |X̃t| = A0}

and recall that our goal is to prove that ρ < ∞ a.s. We next introduce (St)t∈[0,σ] solving

St = |x|+Wt +

∫ t

0

(d− 1

2Ss
− aβs

2Ss logSs

)

ds killed at σ = inf{t ≥ 0 : St = A0}.

We claim that {ρ = ∞} ⊂ {σ = ∞}. Indeed, using (H1(a)) and that βr+s ≥ βs, one checks

that [βr+sX̃s · ∇U(X̃s)]/[2|X̃s|] ≥ [aβs]/[2|X̃s| log |X̃s|] for all s ∈ [0, ρ]. Hence, setting b(s, r) =
(d− 1)/(2r)− [aβs]/[2r log r] for s ≥ 0 and r ≥ A0, we have

d

dt
(|X̃t| − St) ≤ (b(t, |X̃t|)− b(t, St))

for all t ∈ [0, ρ ∧ σ). Hence, setting z+ = max{z, 0},
d

dt
(|X̃t| − St)

2
+ ≤ 2(|X̃t| − St)+(b(t, |X̃t|)− b(t, St)) ≤ 2Ct(|X̃t| − St)+

∣

∣|X̃t| − St

∣

∣ = 2Ct(|X̃t| − St)
2
+,

Ct being the global Lipschitz constant of r 7→ b(t, r) on [A0,∞). Since S0 = |X̃0| and since t 7→ Ct

is locally bounded on [0,∞), we conclude that (|X̃t| − St)
2
+ = 0 for all t ∈ [0, ρ ∧ σ) a.s. Hence, on

the event {ρ = ∞} ∩ {σ < ∞}, we have St ≥ |X̃t| > A0 for all t ∈ [0, σ], whence σ = ∞. Thus
{ρ = ∞} ⊂ {σ = ∞}, so that our goal is from now on to verify that σ < ∞ a.s.

Step 2. We next introduce the Bessel process (Rt)t≥0

Rt = |x|+Wt +
d− 1

2

∫ t

0

ds

Rs
.

Since d ≥ 2, we know from Proposition 7-(b) that Rt does never reach 0. It holds that a.s., St ≤ Rt

for all t ∈ [0, σ)1: it is sufficient to use that S0 = R0 and that for t ∈ [0, σ), since aβt/[2St logSt] ≥ 0,

d

dt
(St −Rt)

2
+ ≤ (d− 1)(St −Rt)+

( 1

St
− 1

Rt

)

≤ 0.

By Proposition 7-(c), lim supt→∞(t log t)−1/2Rt = 0 a.s., so that lim inft→∞ log t/ logRt ≥ 2, whence

{σ = ∞} ⊂ {lim inf
t→∞

log t/ logSt ≥ 2} ⊂ {lim inf
t→∞

βt/ logSt ≥ 2/c}.

We fix η ∈ (0, 1) such that δ := d− 2a(1− η)/c ∈ (0, 2), which is possible because a > c(d− 2)/2. We
then know that τ = inf{t > 0 : ∀ s ≥ t, βs/ logSs ≥ 2(1− η)/c} is a.s. finite on {σ = ∞}.

Step 3. We now fix K ≥ 1 and L > A0 and we introduce ΩK,L = {σ = ∞, τ ≤ K,SK ≤ L}, as well
as the Bessel process (SK,L

t )t≥L with dimension δ ∈ (0, 2), issued from L at time K: for all t ≥ K,

SK,L
t = L+ (Wt −WK) +

δ − 1

2

∫ t

K

ds

SK,L
s

killed at σK,L = inf{t ≥ K : SK,L
t = A0}.

We claim that ΩK,L ⊂ {σK,L = ∞}. By definition of τ and since δ = d− 2a(1− η)/c, we see that on
ΩK,L, for all t ∈ [K,σK,L), we have

d

dt
(St − SK,L

t ) =
d− 1

2St
− aβt

2St logSt
− δ − 1

2SK,L
t

≤ δ − 1

2

( 1

St
− 1

SK,L
t

)

,

1If d = 2, one may conclude here, since R is then recurrent.
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whence, for all t ≥ K,

d

dt
(St − SK,L

t )2+ ≤ (δ − 1)(St − SK,L
t )+

( 1

St
− 1

SK,L
t

)

≤ 0.

Since furthermore SK ≤ L on ΩK,L, we have (SK−SK,L
K )+ = 0, so that, still on ΩK,L, S

K,L
t ≥ St > A0

for all t ∈ [K,σK,L), whence σK,L = ∞ (else, we would have A0 = SK,L
σK,L

≥ SσK,L
> A0).

Step 4. But we know from Proposition 7-(a), since δ ∈ (0, 2), that σK,L < ∞ a.s. We conclude
that for all K ≥ 1, all L > A0, P(ΩK,L) = 0, i.e. P(σ = ∞, τ ≤ K,SK ≤ L) = 0. Letting L → ∞, we
find that P(σ = ∞, τ ≤ K) = 0, since SK < ∞ a.s. on {σ = ∞}. Letting K → ∞, we deduce that
P(σ = ∞) = 0, since τ < ∞ a.s. on {σ = ∞} by Step 2. The proof is complete. �

We now bound from below the probability to remain stuck forever in a certain ball when starting
from the circle with radius A0.

Lemma 9. Assume (A), fix c > 0 and β0 ≥ 0, and suppose (H1(a)) for some a > 0. Consider the
unique (global by Lemma 8) solution (Xt)t≥0 to (1). There is B > A0 such that

p := inf
r≥0,|x|=A0

P

(

sup
t≥r

|Xt| < B
∣

∣

∣
Xr = x

)

> 0.

Proof. In view of Lemma 6-(i), the only difficulty is get the uniformity in r ≥ 0 and |x| = A0 ≥ 2.

Step 1. We fix r ≥ 0 and x ∈ R
d such that |x| = A0 and we set (X̃t)t≥0 = (Xr+t)t≥0. Exactly as

in the first step of the previous proof, we can write, conditionally on Xr = x,

|X̃t| = A0 +Wt +

∫ t

0

(d− 1

2|X̃s|
− βr+sX̃s · ∇U(X̃s)

2|X̃s|
)

ds.

We claim that a.s., |X̃t| ≤ A0 +Rt for all t ≥ 0, where Rt is (0,∞)-valued and solves

Rt = 1 +Wt +

∫ t

0

(d− 1

2Rs
− βsb(Rs)

)

ds,

with b(r) = ar/[4(A2
0 + r2) log(A2

0 + r2)]. The fact that R does never reach 0 follows from Proposition
7-(b), since d ≥ 2, and from the Girsanov theorem, since b is bounded.

To check this claim, we first observe that, thanks to (H1(a)),

|x| ≥ A0 =⇒ βr+tx · ∇U(x)

2|x| ≥ aβs

2|x| log |x| ≥ βsb(|x| −A0),

the last inequality following from the fact that b(r) ≤ a/[2(A0 + r) log(A0 + r)] for all r ≥ 0, because
log(A2

0 + r2) ≥ log(A0 + 1 + r2) ≥ log(A0 + r) and 4(A2
0 + r2)/r ≥ 2(A0 + r)2/(A0 + r) = 2(A0 + r).

Consequently, using that (|X̃t| −A0 −Rt)+ > 0 implies that |X̃t| ≥ A0 +Rt ≥ A0, we see that

d

dt
(|X̃t| −A0 −Rt)

2
+ =2(|X̃t| −A0 −Rt)+

[d− 1

2|X̃t|
− βr+tX̃t · ∇U(X̃t)

2|X̃t|
− d− 1

2Rt
+ βtb(Rt)

]

≤2(|X̃t| −A0 −Rt)+

[d− 1

2

( 1

|X̃t|
− 1

Rt

)

− βt[b(|X̃t| −A0)− b(Rt)]
]

≤− 2βt(|X̃t| −A0 −Rt)+[b(|X̃t| −A0)− b(Rt)]

≤2Cβt(|X̃t| −A0 − Rt)+
∣

∣|X̃t| −A0 −Rt

∣

∣

≤2Cβt(|X̃t| −A0 − Rt)
2
+,

where C is the (global) Lipschitz constant of b. The claim follows, since |X̃0| −A0 −R0 = −1 ≤ 0.
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Step 2. Since the law of (Rt)t≥0 does not depend on x such that |x| = A0 nor on r ≥ 0, it suffices
to check that there is K > 0 such that P(supt≥0 Rt ≤ K) > 0. By Step 1, the conclusion, with
B = A0 +K, will follow.

Set V (y) = a log log(A2
0 + |y|2)/4 − a log log(A2

0)/4 for all y ∈ R
d, consider y0 ∈ R

d such that
|y0| = 1, as well as the diffusion process

Yt = y0 +Bt −
1

2

∫ t

0

βs∇V (Ys)ds.

Observe that V satisfies (A) with c∗ = 0. We consider now the bounded connected open setG = B(K),
where K > 1 is large enough so that for y ∈ ∂G, V (y) = a log log(A2

0 +K2)/4 − a log log(A2
0)/4 > c.

We also have {y ∈ R
d : V (y) = 0} = {0} ⊂ G. By Lemma 6-(i), since y0 ∈ G, we conclude that

P(∀ t ≥ 0, |Yt| < K) > 0. Finally, one can check that (|Yt|)t≥0 = (Rt)t≥0 in law, by applying the Itô
formula, using that y

2|y| · ∇V (y) = b(|y|). All in all, P(supt≥0 Rt ≤ K) > 0 as desired. �

We can now give the

Proof of Theorem 1 under (A) and (H1(a)) with a > c(d− 2)/2. We consider the solution (Xt)t≥0 to
(1), which is global by Lemma 8-(i), denote by Ft = σ({Xs, s ∈ [0, t]}), and recall that B > A0

and p > 0 were introduced in Lemma 9. We introduce the sequence of stopping times S0 ≤ T1 ≤
S1 ≤ T2 ≤ S2 ≤ ..., with S0 = 0 and, for all n ≥ 0, Tn+1 = inf{t > Sn : |Xt| ≥ B} and Sn+1 =
inf{t > Tn+1 : |Xt| ≤ A0}, with the convention that inf ∅ = ∞. In particular, Tn = ∞ implies that
Sk = Tk = ∞ for all k ≥ n. Our goal is to verify that a.s., there is N ≥ 1 such that TN = ∞, implying
that lim supt→∞ |Xt| ≤ B, so that supt≥0 |Xt| < ∞ a.s., whence the conclusion by Lemma 6-(ii).

Using the strong Markov property, one deduces that for all n ≥ 1, {Tn < ∞} ⊂ {Sn < ∞} by
Lemma 8-(ii), while P(Tn+1 = ∞|FSn

) ≥ p on the event {Sn < ∞} by Lemma 9. Hence for all n ≥ 1,

P(Tn+1 < ∞) = E[1{Sn<∞}P(Tn+1 < ∞|FSn
)] ≤ (1− p)P(Sn < ∞) = (1− p)P(Tn < ∞).

Hence P(∩k≥1{Tk < ∞}) = limn→∞ P(∩n
k=1{Tk < ∞}) = limn→∞ P(Tn < ∞) = 0 as desired. �

4. Proof under (H2)

Under (H2), the proof is rather simpler. It entirely relies on the following lemma.

Lemma 10. Consider a 1-dimensional Brownian motion (Wt)t≥0. For c > 0 and δ > 0, consider the
(0,∞)-valued pathwise unique solution (Sδ

t )t≥0 to

Sδ
t = cδ +Wt +

d− 1

2

∫ t

0

ds

Sδ
s

− 1

2cδ

∫ t

0

log(1 + s)ds.

For any δ0 > 0 and η > 0, it holds that

p(δ0, η) = inf
δ≥δ0

P

(

sup
t≥0

Sδ
t ≤ cδ(1 + η)

)

> 0.

Proof. The strict positivity of Sδ follows from Proposition 7-(ii) and the Girsanov theorem, since
d ≥ 2 and since the additional drift is bounded (locally in time). First, Rδ

t = (δ0/δ)S
δ
(δ/δ0)2t

solves

(4) Rδ
t = cδ0 +W δ

t +
d− 1

2

∫ t

0

ds

Rδ
s

− 1

2cδ0

∫ t

0

log(1 + (δ/δ0)
2s)ds,

where W δ
t = (δ0/δ)W(δ/δ0)2t is a Brownian motion. We introduce Hδ solving (4) with W δ replaced

by W . We claim that for any δ ≥ δ0, H
δ
t ≤ Mt for all t ≥ 0 a.s., where M solves

Mt = cδ0 +Wt +
d− 1

2

∫ t

0

ds

Ms
− 1

2cδ0

∫ t

0

log(1 + s)b(Ms)ds,
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where b(r) = (ǫ2 + r2)−1/2r, with ǫ = cδ0[(1 + η)2 − (1 + η/2)2]/(2 + η). Indeed, we write as usual

d

dt
(Hδ

t −Mt)
2
+ = (Hδ

t −Mt)+

(

(d− 1)
[ 1

Hδ
t

− 1

Mt

]

+
1

cδ0

[

log(1 + t)b(Mt)− log(1 + (δ/δ0)
2t)

])

≤ 0.

Hence for all δ ≥ δ0, we have

P

(

sup
t≥0

Sδ
t < cδ(1+η)

)

= P

(

sup
t≥0

Rδ
t < cδ0(1+η)

)

= P

(

sup
t≥0

Hδ
t < cδ0(1+η)

)

≥ P

(

sup
t≥0

Mt < cδ0(1+η)
)

and it suffices to prove that p := P(supt≥0 Mt < cδ0(1 + η)) > 0.

We introduce V (y) = (ǫ2 + |y|2)1/2 − ǫ, which satisfies (A) with c∗ = 0. We consider y0 ∈ R
d such

that |y0| = cδ0, as well as the diffusion process

Yt = y0 +Bt −
1

2

∫ t

0

log(1 + s)

cδ0
∇V (Ys)ds.

One can check that (|Yt|)t≥0 = (Mt)t≥0 in law, using the Itô formula and that y
|y| · ∇V (y) = b(|y|).

We then observe that V satisfies (A) with c∗ = 0 and we consider the the bounded connected open
set G = B(cδ0(1 + η)). We have y0 ∈ G, {y ∈ R

d : V (y) = 0} = {0} ⊂ G and, by definition of ǫ,
∂G ⊂ {y ∈ R

d : V (y) = cδ0(1 + η/2)}. Applying Lemma 6-(i) (with c replaced by cδ0 > 0 = c∗), we
conclude that P(∀ t ≥ 0, |Yt| < cδ0(1 + η)) = P(∀ t ≥ 0, Yt ∈ G) > 0 as desired. �

Once this is seen, we can give the

Proof of Theorem 1 under (A) and (H2(α)) with α > c. We consider the solution (Xt)t∈[0,ζ) to (1) as
in Remark 5. By Lemma 6-(ii), we only have to verify that a.s., ζ = ∞ and supt≥0 |Xt| < ∞.

Step 1. In Assumption (H2(α)), we have limi→∞ ai = ∞, because ai+1 ≥ bi ≥ ai +αδi ≥ ai +αδ0.
We thus may consider i0 ≥ 1 such that ai0 > |x0|. We introduce Ft = σ(Xs1{ζ>s}, s ∈ [0, t]), as well
as the sequence of stopping times Ti = inf{t ≥ 0 : |Xt| = ai} and Si = inf{t ≥ 0 : |Xt| = bi}, for
i ≥ i0, with the usual convention that inf ∅ = ∞. We have 0 < Ti0 ≤ Si0 ≤ Ti0+1 ≤ Si0+1 . . . . It
suffices to prove that limi→∞ P(Si < ∞) = 0.

Indeed, this will imply that P(∩k≥1{Sk < ∞}) = limi→∞ P(Si < ∞) = 0, so that there will a.s.
exist I such that SI = ∞. Consequently, we will a.s. have ζ = ∞ and supt≥0 |Xt| ≤ bI < ∞.

Step 2. We fix η > 0 such that α > c(1 + η). It suffices to verify that for all i ≥ i0, we have
P(Si = ∞|FTi

) ≥ p(δ0, η) on {Ti < ∞}, where p(δ0, η) was defined in Lemma 10.

Indeed, this will imply that limi→∞ P(Si < ∞) = 0, because for all i ≥ i0 + 1,

P(Si < ∞) = E[1{Ti<∞}P(Si < ∞|FTi
)] ≤ (1− p(δ0, η))P(Ti < ∞) ≤ (1− p(δ0, η))P(Si−1 < ∞).

Step 3. To conclude, we fix i ≥ i0 and apply the Itô formula: on {Ti < ∞}, for t ∈ [0, ζ − Ti),

|XTi+t| = ai +W i
t +

d− 1

2

∫ t

0

ds

|XTi+s|
− 1

2

∫ t

0

βTi+sXTi+s · ∇U(XTi+s)

|XTi+s|
ds,

the Brownian motion W i
t =

∫ Ti+t

Ti
( Xs

|Xs|
1{s<ζ} + u1{s≥ζ}) · dBs being independent of FTi

. Here we

introduced some arbitrary deterministic unitary vector u ∈ R
d. We introduce, still on {Ti < ∞},

Ri
t = cδi +W i

t +
d− 1

2

∫ t

0

ds

Ri
s

− 1

2cδi

∫ t

0

log(1 + s)ds.

This process is well-defined, see Lemma 10. We now check that a.s. on {Ti < ∞}, it holds that
|XTi+t| ≤ ai +Ri

t for all t ∈ [0, Si − Ti). Observe that this makes sense, because ζ > Si.
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Using that t ∈ [0, Si − Ti) implies that |XTi+t| < bi, that (|XTi+t| − ai − Ri
t)+ > 0 implies that

|XTi+t| > ai, and that |x| ∈ [ai, bi] implies that x · ∇U(x) ≥ |x|/δi, we see that for all t ∈ [0, Si − Ti)

d

dt
(|XTi+t| − ai −Ri

t)
2
+

=(|XTi+t| − ai −Ri
t)+

(

(d− 1)
[ 1

|XTi+t|
− 1

Ri
t

]

− βTi+tXTi+t · ∇U(XTi+t)

|XTi+t|
+

log(1 + t)

cδi

)

≤(|XTi+t| − ai −Ri
t)+

(

− βTi+t

δi
+

log(1 + t)

cδi

)

≤ 0,

since finally βTi+t ≥ c−1 log(1 + t). Since |XTi
| − ai − Ri

0 = −cδi ≤ 0, we conclude that indeed, on
{Ti < ∞}, it holds that |XTi+t| ≤ ai +Ri

t for all t ∈ [0, Si − Ti).

Hence {Ti < ∞, supt≥0 R
i
t < cδi(1+η)} ⊂ {Ti < ∞, supt∈[0,Si−Ti) |X i

Ti+t| < ai + cδi(1 + η)}, which
is included in {Si = ∞} since finally ai+cδi(1+η) < ai+αδi = bi by assumption. Hence on {Ti < ∞},

P(Si = ∞|FTi
) ≥ P

(

sup
t≥0

Ri
t < cδi(1 + η)

)

≥ p(δ0, η)

by Lemma 10, since δi ≥ δ0. The proof is complete. �

5. Proof under (H3)

The proof under (H3) is very similar, in its principle, to the proof under (H2). We start with the
following variation of Lemma 10.

Lemma 11. Consider a 1-dimensional Brownian motion (Wt)t≥0. For c > 0 and κ > 0, consider the
(0,∞)-valued pathwise unique solution (Rκ

t )t≥0 to

Rκ
t = c+Wt +

d− 1

2

∫ t

0

ds

Rκ
s

− 1

2c

∫ t

0

log(1 + s/(2κ)2)ds.

For any η > 0, any ǫ > 0, it holds that

q(η, ǫ) = inf
κ>0

P

(

sup
t≥0

Rκ
t ≤ cmax{ǫκ, 1}(1 + η)

)

> 0.

Proof. As in Lemma 10, Rκ does never reach zero by Proposition 7 and the Girsanov theorem.

We observe that T κ
t = (2κ)−1Rκ

(2κ)2t solves, with the brownian motion Wκ
t = (2κ)−1Wκ

(2κ)2t,

T κ
t =

c

2κ
+Wκ

t +
d− 1

2

∫ t

0

ds

T κ
s

− 2κ

2c

∫ t

0

log(1 + s)ds.

Hence T κ has the same law as Sδ, see Lemma 10, with δ = 1/(2κ). Thus for all κ ∈ (0, 1/ǫ],
P(supt≥0 R

κ
t ≤ c(1 + η)) = P(supt≥0 T

κ
t ≤ (c/2κ)(1 + η)) ≥ p(ǫ/2, η).

If now κ ∈ (1/ǫ,∞), since c/(2κ) < cǫ/2 and 2κ ≥ 2/ǫ, we see that, in law, T κ
t ≤ S

ǫ/2
t by a

comparison argument. As a consequence, P(supt≥0 R
κ
t ≤ cǫκ(1 + η)) = P(supt≥0 T

κ
t ≤ cǫ(1 + η)/2) ≥

P(supt≥0 S
ǫ/2
t ≤ cǫ(1 + η)/2) ≥ p(ǫ/2, η). The conclusion follows with q(η, ǫ) = p(ǫ/2, η) > 0 which is

positive, see Lemma 10. �

Proof of Theorem 1 under (A) and (H3(α, β0)) with α > c. We consider the solution (Xt)t∈[0,ζ) to (1)
as in Remark 5. By Lemma 6-(ii), we only have to verify that a.s., ζ = ∞ and supt≥0 |Xt| < ∞.

Step 1. Since Z−
i increases to R

d by assumption, we can find i0 ≥ 1 such that x0 belongs to the
interior of Z−

i0
. We also introduce Ft = σ(Xs1{ζ>s}, s ∈ [0, t]), as well as the sequence of stopping times

Ti = inf{t ≥ 0 : Xt ∈ ∂Z−
i } and Si = inf{t ≥ 0 : Xt ∈ ∂Z+

i }, for i ≥ i0, with the usual convention that



12 NICOLAS FOURNIER, PIERRE MONMARCHÉ AND CAMILLE TARDIF

inf ∅ = ∞. Since Z−
i0

⊂ (Z+
i0
)c ⊂ Z−

i0+1 ⊂ (Z+
i0+1)

c . . . , we have 0 < Ti0 ≤ Si0 ≤ Ti0+1 ≤ Si0+1 . . . . It
suffices to verify that limi→∞ P(Si < ∞) = 0.

Indeed, this will tell us that P(∩k≥1{Sk < ∞}) = 0. There will thus a.s. exist I such that SI = ∞,
so that Xt ∈ Z−

I+1 for all t ≥ 0, whence the conclusion, since Z−
I+1 is bounded.

Step 2. We fix η > 0 such that α > c(1 + η). As in the proof under (H2(α)), it is enough to verify
that for all i ≥ 1, we have P(Si = ∞|FTi

) ≥ q(ǫ, η) on {Ti < ∞}, where q(ǫ, η) is defined in Lemma
11 and where ǫ > 0 is the constant introduced in Assumption (H3(α, β)).

Step 3. Recall Assumption (H3(α, β)) and that for i ≥ 1, Zi is C∞-diffeomorphic to the annulus
C = {x ∈ R

d : |x| ∈ (1, 2)}. It is a tedious but classical exercise to prove that for each i ≥ i0, we can
build a smooth function Vi : R

d → [0,∞) such that Vi = U on Zi, such that Vi ≤ ui on Z−
i , Vi ≥ vi

on Z+
i , |∇Vi| ≤ 2κi on R

d, and ∇Vi(x) 6= 0 for all x ∈ R
d \ {x0}. Observe that since ∇U does not

vanish on Z̄i, it holds that Vi(x) = U(x) ∈ (ui, vi) for all x ∈ Zi because else, U would have a local
extremum inside Zi.

Step 4. In this whole step, we fix i ≥ i0 and work on {Ti < ∞}. For all t ∈ [0, ζ − Ti),

Vi(XTi+t) = ui +

∫ t

0

|∇Vi(XTi+s)|dW i
s +

1

2

∫ t

0

[

∆Vi(XTi+s)− βTi+s∇U(XTi+s) · ∇Vi(XTi+s)
]

ds,

the Brownian motion W i
t =

∫ Ti+t

Ti
( ∇Vi(Xs)
|∇Vi(Xs)|

1{s<ζ} + u1{s≥ζ}) · dBs being independent of FTi
. We

introduced some deterministic unit vector u ∈ R
d and used that a.s., Xt 6= x0 for all t ∈ (0, ζ) (by the

Girsanov theorem, recall (1) and that d ≥ 2) and thus |∇Vi(Xt)| > 0 for all t > 0. We next introduce

the time-change θit =
∫ t

0
|∇Vi(XTi+s)|2ds, which is continuous and strictly increasing on [0, ζ−Ti), as

well as its inverse τ it : [0, θiζ−Ti
) → R+. For all t ∈ [0, θiζ−Ti

), we have

Vi(XTi+τ i
t
) = ui + W̄ i

t +
1

2

∫ t

0

[ ∆Vi(XTi+τ i
s
)

|∇Vi(XTi+τ i
s
)|2 − βTi+τ i

s

∇Vi(XTi+τ i
s
) · ∇U(XTi+τ i

s
)

|∇Vi(XTi+τ i
s
)|2

]

ds,

for some Brownian motion W̄ i independent of FTi
, which can be built as follows: for a Brownian

motion Ŵ independent of everything else (this is useless if θiζ−Ti
= ∞ a.s.), set

W̄ i
t =

∫ τ i
t∧(ζ−Ti)

0

|∇Vi(XTi+s)|dW i
s +

∫ t

t∧θi
ζ−Ti

dŴs,

with the convention that τ it ∧ (ζ − Ti) = ζ − Ti for all t ≥ θiζ−Ti
. We next introduce

Y i
t = c+ W̄ i

t +
d− 1

2

∫ t

0

ds

Y i
s

− 1

2c

∫ t

0

log(1 + s/(2κi)
2)ds.

This process is well-defined and positive, see Lemma 11. We could replace the strong repulsion
term (d − 1)/(2Y i

s ) by a (weaker) reflection term, but this allows us to make Lemmas 10 and 11
more similar. We now check that a.s. on {Ti < ∞}, it holds that Vi(XTi+τ i

t
) ≤ ui + Y i

t for all

t ∈ [0, θiSi−Ti
). Using that t ∈ [0, θiSi−Ti

) implies that τ it < Si − Ti and thus that Vi(XTi+τ i
t
) < vi,

that (Vi(XTi+τ i
t
)− ui − Y i

t )+ > 0 implies that Vi(XTi+τ i
t
) > ui, and that Vi(x) ∈ (ui, vi) implies that

x ∈ Zi, whence ∆Vi(x)/|∇Vi(x)|2 = ∆U(x)/|∇U(x)|2 ≤ β0 and ∇Vi(x) · ∇U(x)/|∇Vi(x)|2 = 1, we
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see that for all t ∈ [0, θiSi−Ti
),

d

dt
(Vi(XTi+τ i

t
)− ui − Y i

t )
2
+ =(Vi(XTi+τ i

t
)− ui − Y i

t )+

×
(

− d− 1

Y i
t

+
∆Vi(XTi+τ i

t
)

|∇Vi(XTi+τ i
t
)|2 − βTi+τ i

t

∇Vi(XTi+τ i
t
) · ∇U(XTi+τ i

t
)

|∇Vi(XTi+τ i
t
)|2 +

log(1 + t/(2κi)
2)

c

)

≤(Vi(XTi+τ i
t
)− ui − Y i

t )+

(

β0 − βTi+τ i
t
+

log(1 + t/(2κi)
2)

c

)

≤ 0.

For the last inequality, we used that βTi+τ i
t
= β0 + c−1 log(1 + τ it ) and that τ it ≥ t/(2κi)

2 for all

t ∈ [0, θiζ−Ti
), because θit ≤ (2κi)

2t for all t ∈ [0, ζ − Ti), recall that |∇Vi| ≤ 2κi. But Vi(XTi
)− ui −

Y i
0 = −c ≤ 0, whence indeed, Vi(XTi+τ i

t
) ≤ ui + Y i

t for all t ∈ [0, θiSi−Ti
).

On {Ti < ∞, supt≥0 Y
i
t < cmax{1, ǫκi}(1+η)}, we thus have Vi(XTi+τ i

t
) < ui+cmax{1, ǫκi}(1+η)

for all t ∈ [0, θiSi−Ti
), so that Vi(XTi+t) < ui + cmax{1, ǫκi}(1 + η) for all t ∈ [0, Si − Ti), whence

Si = ∞, because Vi(x) = U(x) = vi ≥ ui +αmax{1, ǫκi} > ui + cmax{1, ǫκi}(1+ η) for all x ∈ ∂Z+
i .

Hence on {Ti < ∞},

P(Si = ∞|FTi
) ≥ P

(

sup
t≥0

Y i
t < cmax{1, ǫκi}(1 + η)

)

≥ q(ǫ, η)

by Lemma 11. �

6. Other proofs

We first verify that in (H1(a)), the condition a > c(d− 2)/2 is sharp.

Proof of Proposition 2. We assume here that ∇U(x) = 2αx
(1+|x|2)(1+log(1+|x|2)) , with 0 < α < c(d−2)/2.

Step 1. Considering the 1-dimensional Brownian motion Wt =
∫ t+1

1
Xs

|Xs|
·dBs, which is independent

from X1, and denoting St = |Xt+1|, the Itô formula reads (recall β0 = 0)

St = S0 +Wt +
d− 1

2

∫ t

0

ds

Ss
− α

c

∫ t

0

Ss log(2 + s)ds

(1 + S2
s )(1 + log(1 + S2

s ))
.

Step 2. We set δ = d− 2α/c > 2, δ′ = (δ + 2)/2 ∈ (2, δ) and consider the Bessel process

Rt = 1 +Wt +
δ′ − 1

2

∫ t

0

ds

Rs
.

By Proposition 7-(d), we know that a.s., lim inft→∞ t−1/2(log t)νRt = ∞, where ν = 4/(δ′ − 2).
Hence lim supt→∞[log(2 + t)]/[1 + log(1 + R2

t )] ≤ 1 a.s. We fix η = (δ − 2)c/(4α) > 0, which gives
(d− 1)/2− α(1 + η)/c = (δ′ − 1)/2 and we consider K ≥ 1 large enough so that P(ΩK) ≥ 3/4, where

ΩK =
{

for all t ≥ K, Rt ≥ 1 and
log(2 + t)

1 + log(1 +R2
t )

≤ 1 + η
}

.

Step 3. There is A > 0 such that, P(Ω′
K | S0 ≥ A) ≥ 3/4, where Ω′

K = {SK ≥ RK + 1}.
Indeed, SK − RK ≥ S0 + ZK , where ZK = WK − α/c

∫K

0
log(2 + s)ds − RK is independent from

S0. As a consequence, P(Ω′
K | S0 ≥ A) ≥ P(ZK ≥ 1−A), that goes to 1 as A goes to infinity.

Step 4. We show that {S0 ≥ A} ∩ ΩK ∩ Ω′
K ⊂ {∀ t ≥ K, St > Rt}. This will conclude the proof,

since limt→∞ Rt = ∞ a.s. and, ΩK being independent from S0,

P ({S0 ≥ A} ∩ ΩK ∩ Ω′
K) = P(ΩK ∩ Ω′

K | S0 ≥ A)P(S0 ≥ A) ≥ 1

2
P(S0 ≥ A),
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which is positive by Girsanov’s theorem, whatever the initial condition x0.

We thus work on {S0 ≥ A} ∩ΩK ∩Ω′
K and introduce τ = inf{t ≥ K : St ≤ Rt}. For all t ∈ [K, τ),

we have

d

dt
(St −Rt) =

d− 1

2St
− αSt log(2 + t)

c(1 + S2
t )(1 + log(1 + S2

t ))
− δ′ − 1

2Rt
≥ δ′ − 1

2

( 1

St
− 1

Rt

)

,

because St/(1+S2
t ) ≤ 1/St, because log(2+ t)/(1+ log(1+S2

t )) ≤ log(2+ t)/(1+ log(1+R2
t )) ≤ 1+ η

since t ∈ [K, τ) and since we work on ΩK , and because (d − 1)/2 − α(1 + η)/c = (δ′ − 1)/2. Hence,
still for t ∈ [K, τ),

d

dt
(St −Rt) ≥ − δ′ − 1

2RtSt
(St −Rt) ≥ −δ′ − 1

2
(St −Rt),

since St ≥ Rt ≥ 1 by definition of τ and ΩK . Finally, as SK−RK ≥ 1 by definition of Ω′
K , we conclude

that St −Rt ≥ exp(−(δ′ − 1)t/2) for all t ∈ [K, τ), and this implies that τ = ∞ as desired. �

Finally, we give the

Proof of Proposition 3. We fix p ≥ 1 and set u0 = 0, v0 = 1, and ui = exp◦p(i), vi = ui + 1 for
i ≥ 1. We define the function g : [0,∞) → [0,∞), continuous and linear by pieces, by g(ui) = 2i and
g(vi) = 2i + 3 for all i ≥ 1. We then introduce a smooth version h of g, with the very same table of
variations, such that h(r) = g(r) for all r ∈ ∪i≥0({ui}∪ [ui+0.1, vi− 0.1]∪{vi}∪ [vi+0.1, ui+1− 0.1])
and such that U : R → [0,∞) defined by U(x) = h(|x|) is C∞. Then, U satisfies (A) with c∗ = 1.
It also satisfies (H2(2)), with ai = ui + 0.1, bi = vi − 0.1, δi = 1/3. Indeed, |x| ∈ [ai, bi] implies
that x

|x| · ∇U(x) = h′(|x|) = 3, and we have bi − ai = 0.8 ≥ 2δi. Finally, for all x ∈ R
d such that

|x| ≥ exp◦p(1), we have |x| ∈ [ui, ui+1] with i = ⌊log◦p |x|⌋, whence U(x) ∈ [2i, 2i + 3]. Hence we
clearly have log◦p |x| ≤ U(x) ≤ 3 log◦p |x| as soon as |x| is large enough. �
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