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Abstract

When approximating an integral by a weighted sum of function evaluations, de-
terminantal point processes (DPPs) provide a way to enforce repulsion between
the evaluation points. This negative dependence is encoded by a kernel. Fifteen
years before the discovery of DPPs, Ermakov & Zolotukhin (EZ, 1960) had the
intuition of sampling a DPP and solving a linear system to compute an unbiased
Monte Carlo estimator of the integral. In the absence of DPP machinery to derive
an efficient sampler and analyze their estimator, the idea of Monte Carlo integration
with DPPs was stored in the cellar of numerical integration. Recently, Bardenet &
Hardy (BH, 2019) came up with a more natural estimator with a fast central limit
theorem (CLT). In this paper, we first take the EZ estimator out of the cellar, and an-
alyze it using modern arguments. Second, we provide an efficient implementation1

to sample exactly a particular multidimensional DPP called multivariate Jacobi
ensemble. The latter satisfies the assumptions of the aforementioned CLT. Third,
our new implementation lets us investigate the behavior of the two unbiased Monte
Carlo estimators in yet unexplored regimes. We demonstrate experimentally good
properties when the kernel is adapted to basis of functions in which the integrand is
sparse or has fast-decaying coefficients. If such a basis and the level of sparsity are
known (e.g., we integrate a linear combination of kernel eigenfunctions), the EZ
estimator can be the right choice, but otherwise it can display an erratic behavior.

1 Introduction

Numerical integration is a core task of many machine learning applications, including most Bayesian
methods (Robert, 2007). Both deterministic (Davis & Rabinowitz, 1984; Dick & Pillichshammer,
2010) and random (Robert & Casella, 2004) algorithms have been proposed; see also (Evans &
Swartz, 2000) for a survey. All methods require evaluating the integrand at carefully chosen points,
called quadrature nodes, and combining these evaluations to minimize the approximation error.

Recently, a stream of work has made use of prior knowledge on the smoothness of the integrand using
kernels. Oates et al. (2017) and Liu & Lee (2017) used kernel-based control variates, splitting the
computational budget into regressing the integrand and integrating the residual. Bach (2017) looked
for the best way to sample i.i.d. nodes and combine the resulting evaluations. Finally, Bayesian
quadrature (O’Hagan, 1991; Huszár & Duvenaud, 2012; Briol et al., 2015), herding (Chen et al.,
2010; Bach et al., 2012), or the biased importance sampling estimate of Delyon & Portier (2016) all
favor dissimilar nodes, where dissimilarity is measured by a kernel. Our work falls in this last cluster.

We build on the particular approach of Bardenet & Hardy (2019) for Monte Carlo integration based
on projection determinantal point processes (DPPs, Hough et al., 2006; Kulesza & Taskar, 2012).
DPPs are a repulsive distribution over configurations of points, where repulsion is again parametrized
by a kernel. In a sense, DPPs are the kernel machines of point processes.
1 github.com/guilgautier/DPPy
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Fifteen years before Macchi (1975) even formalized DPPs, Ermakov & Zolotukhin (EZ, 1960) had
the intuition to use a determinantal structure to sample quadrature nodes, followed by solving a
linear system to aggregate the evaluations of the integrand into an unbiased estimator. This linear
system yields a simple and interpretable characterization of the variance of their estimator. Ermakov
& Zolotukhin’s result did not diffuse much2 in the Monte Carlo community, partly because the
mathematical and computational machinery to analyze and implement it was not available. Seemingly
unaware of this previous work, Bardenet & Hardy (2019) came up with a more natural estimator of
the integral of interest, and they could build upon the thorough study of DPPs in random matrix theory
(Johansson, 2006) to obtain a fast central limit theorem (CLT). Since then, DPPs with stationary
kernels have also been used by Mazoyer et al. (2019) for Monte Carlo integration. In any case,
these DPP-based Monte Carlo estimators crucially depend on efficient sampling procedures for the
corresponding (potentially multidimensional) DPP.

Our contributions. First, we reveal the close link between DPPs and the approach of Ermakov &
Zolotukhin (1960). Second, we provide a simple proof of their result and survey the properties of the
EZ estimator with modern arguments. In particular, when the integrand is a linear combination of the
eigenfunctions of the kernel of the underlying DPP, the corresponding Fourier-like coefficients can
be estimated with zero variance. In other words, one sample of the corresponding DPP yields perfect
interpolation of the underlying integrand, by solving a linear system. Third, we propose an efficient
Python implementation for exact sampling of a particular DPP, called multivariate Jacobi ensemble.
The code1 is available in the DPPy toolbox of Gautier et al. (2019). This implementation allows to
numerically investigate the behavior of the two Monte Carlo estimators derived by Bardenet & Hardy
(2019) and Ermakov & Zolotukhin (1960), in regimes yet unexplored for any of the two. Fourth,
important theoretical properties of both estimators, like the CLT of (Bardenet & Hardy, 2019), are
technically involved. A CLT for EZ promises to be even more difficult to establish. The current
empirical investigation provides a motivation and guidelines for more theoretical work. Our point
is not to compare DPP-based Monte Carlo estimators to the wide choice of numerical integration
algorithms, but to get a fine understanding of their properties so as to fine-tune their design and guide
theoretical developments.

2 Quadrature, DPPs, and the multivariate Jacobi ensemble

In this section, we quickly survey classical quadrature rules. Then, we define DPPs and give the key
properties that make them useful for Monte Carlo integration. Finally, among so-called projection
DPPs, we introduce the multivariate Jacobi ensemble used by Bardenet & Hardy (2019) to generate
quadrature nodes, and on which we base our experimental work.

2.1 Standard quadrature

Following Briol et al. (2015, Section 2.1), let µ(dx) = ω(x) dx be a positive Borel measure on
X ⊂ Rd with finite mass and density ω w.r.t. the Lebesgue measure. This paper aims to compute
integrals of the form

∫
f(x)µ(dx) for some test function f : X→ R. A quadrature rule approximates

such integrals as a weighted sum of evaluations of f at some nodes {x1, . . . , xN} ⊂ X,∫
f(x)µ(dx) ≈

N∑
n=1

ωnf(xn), (1)

where the weights ωn , ωn(x1, . . . , xN ) do not need to be non-negative nor sum to one.

Among the many quadrature designs mentioned in the introduction (Evans & Swartz, 2000, Section 5),
we pay special attention to the textbook example of the (deterministic) Gauss-Jacobi rule. This scheme
applies to dimension d = 1, for X , [−1, 1] and ω(x) , (1− x)a(1 + x)b with a, b > −1. In this
case, the nodes {x1, . . . , xN} are taken to be the zeros of pN , the orthonormal Jacobi polynomial
of degree N , and the weights ωn , 1/K(xn, xn) with K(x, x) ,

∑N−1
k=0 pk(x)2. In particular, this

specific quadrature rule allows to perfectly integrate polynomials up to degree 2N − 1 (Davis &
Rabinowitz, 1984, Section 2.7). In a sense, the DPPs of Bardenet & Hardy (2019) are a random,
multivariate generalization of Gauss-Jacobi quadrature, as we shall see in Section 3.1.
2 Many thanks to Mathieu Gerber of Univ. Bristol, UK, for digging up this result from his human memory.
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Monte Carlo integration can be defined as random choices of nodes in (1). Importance sampling, for
instance, corresponds to i.i.d. nodes, while Markov chain Monte Carlo corresponds to nodes drawn
from a carefully chosen Markov chain; see, e.g., Robert & Casella (2004) for more details. Finally,
quasi-Monte Carlo (QMC, Dick & Pillichshammer, 2010) applies to µ uniform over a compact subset
of Rd, and constructs deterministic nodes that spread uniformly, as measured by their discrepancy.

2.2 Projection DPPs

DPPs can be understood as a parametric class of point processes, specified by a base measure µ and
a kernel K : X × X → C. The latter is commonly assumed to be Hermitian and trace-class. For
the resulting process to be well defined, it is necessary and sufficient that the kernel K is positive
semi-definite with eigenvalues in [0, 1], see, e.g., Soshnikov (2000, Theorem 3). When the eigenvalues
further belong to {0, 1}, we speak of a projection kernel and a projection DPP. One practical feature
of projection DPPs is that they almost surely produce samples with fixed cardinality, equal to the
rank N of the kernel. More generally, they are the building blocks of DPPs. Indeed, under general
assumptions, all DPPs are mixtures of projection DPPs (Hough et al., 2006, Theorem 7). Hereafter,
unless specifically stated, K is assumed to be a real-valued, symmetric, projection kernel.

One way to define a projection DPP with N points is to take N functions φ0, . . . , φN−1 orthonormal
w.r.t.µ, i.e., 〈φk, φ`〉 ,

∫
φk(x)φ`(x)µ(dx) = δk`, and consider the kernel KN associated to the

orthogonal projector ontoHN , span{φk, 0 ≤ k ≤ N − 1}, i.e.,

KN (x, y) ,
N−1∑
k=0

φk(x)φk(y). (2)

We say that the set {x1, . . . ,xN} ⊂ X is drawn from the projection DPP with base measure µ and
kernel KN , denoted by {x1, . . . ,xN} ∼ DPP(µ,KN ), when (x1, . . . ,xN ) has joint distribution

1

N !
det(KN (xp, xn))

N
p,n=1 µ

⊗N (dx). (3)

DPP(µ,KN ) indeed defines a probability measure over sets since (3) is invariant by permutation
and the orthonormality of the φks yields the normalization. See also Appendix A.1 for more details
on the construction of projection DPPs from sets of linearly independent functions.

The repulsion of projection DPPs may be understood geometrically by considering the Gram formu-
lation of the kernel (2), namely

KN (x, y) = Φ(x)TΦ(y), where Φ(x) , (φ0(x), . . . , φN−1(x))
T
. (4)

This allows to rewrite the joint distribution (3) as

1

N !
det Φ(x1:N )Φ(x1:N )T︸ ︷︷ ︸

=(detΦ(x1:N ))2

µ⊗N (dx), where Φ(x1:N ) ,

φ0(x1) . . . φN−1(x1)
...

...
φ0(xN ) . . . φN−1(xN )

. (5)

Thus, the larger the determinant of the feature matrix Φ(x1:N ), i.e., the larger the volume of the
parallelotope spanned by the feature vectors Φ(x1), . . . ,Φ(xN ), the more likely x1, . . . , xN co-occur.

2.3 The multivariate Jacobi ensemble

In this part, we specify a projection kernel. We follow Bardenet & Hardy (2019) and take its
eigenfunctions to be multivariate orthonormal polynomials. In dimension d = 1, letting (φk)k≥0 in (2)
be the orthonormal polynomials w.r.t.µ results in a projection DPP called an orthogonal polynomial
ensemble (OPE, König, 2004). When d > 1, orthonormal polynomials can still be uniquely defined
by applying the Gram-Schmidt procedure to a set of monomials, provided the base measure is not
pathological. However, there is no natural order on multivariate monomials: an ordering b : Nd → N
must be picked before we apply Gram-Schmidt to the monomials in L2(µ). We follow Bardenet
& Hardy (2019, Section 2.1.3) and consider multi-indices k , (k1, . . . , kd) ∈ Nd ordered by their
maximum degree maxi k

i, and for constant maximum degree, by the usual lexicographic order. We
still denote the corresponding multivariate orthonormal polynomials by (φk)k∈Nd .
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By multivariate OPE we mean the projection DPP with base measure µ(dx) , ω(x) dx and orthogo-
nal projection kernel KN (x, y) ,

∑N−1
b(k)=0 φk(x)φk(y). When the base measure is separable, i.e.,

ω(x) = ω1(x1) × · · · × ωd(xd), multivariate orthonormal polynomials are products of univariate
ones, and the kernel (2) reads

KN (x, y) =

N−1∑
b(k)=0

d∏
i=1

φiki(x
i)φiki(y

i), (6)

where (φi`)`≥0 are the orthonormal polynomials w.r.t.ωi(z) dz. For X = [−1, 1]d and ωi(z) =

(1− z)ai(1 + z)b
i

, with ai, bi > −1, the resulting DPP is called a multivariate Jacobi ensemble.

3 Monte Carlo integration with projection DPPs

Our goal is to design random quadrature rules (1) on X , [−1, 1]d with desirable properties. We
focus on computing

∫
f(x)µ(dx) with the two unbiased DPP-based Monte Carlo estimators of

Bardenet & Hardy (BH, 2019) and Ermakov & Zolotukhin (EZ, 1960). We start by presenting the
natural BH estimator which, when associated to the multivariate Jacobi ensemble, comes with a CLT
with a faster rate than classical Monte Carlo. Then, we survey the properties of the less obvious EZ
estimator. Using a generalization of the Cauchy-Binet formula we provide a slight improvement of
the key result of EZ. Despite the lack of result illustrating a fast convergence rate, the EZ estimator
has a practical and interpretable variance. In particular, this estimator turns a single DPP sample
into a perfect integrator as well as a perfect interpolator of functions that are linear combinations
of eigenfunctions of the associated kernel. Finally, we detail our exact sampling procedure for
multivariate Jacobi ensemble, which allows to exploit the best of both the BH and EZ estimators.

3.1 A natural estimator

For f ∈ L1(µ), Bardenet & Hardy (2019) consider

Î BH
N (f) ,

N∑
n=1

f(xn)

KN (xn,xn)
, (7)

as an unbiased estimator of
∫
f(x)µ(dx), with variance (see, e.g., Lavancier et al., 2012, Section 2.1)

Var
[
Î BH
N (f)

]
=

1

2

∫ (
f(x)

KN (x, x)
− f(y)

KN (y, y)

)2

KN (x, y)
2
µ(dx)µ(dy), (8)

which clearly captures a notion of smoothness of f w.r.t.KN but its interpretation is not obvious.

For X = [−1, 1]d, the interest in multivariate Jacobi ensemble among DPPs comes from the fact that
(7) can be understood as a (randomized) multivariate counterpart of the Gauss-Jacobi quadrature
introduced in Section 2.1. Moreover, for f essentially C1, Bardenet & Hardy (2019, Theorem 2.7)
proved a CLT with faster-than-classical-Monte-Carlo decay,√

N1+1/d

(
Î BH
N (f)−

∫
f(x)µ(dx)

)
law−−−−→

N→∞
N
(
0,Ω2

f,ω

)
, (9)

with Ω2
f,ω , 1

2

∑
k∈Nd(k1 + · · ·+ kd)F fω

ωeq
(k)2, where Fg denotes the Fourier transform of g, and

ωeq(x) , 1/
∏d
i=1 π

√
1− (xi)2. In the fast CLT (9), the asymptotic variance is governed by the

smoothness of f since Ωf,ω is a measure of the decay of the Fourier coefficients of the integrand.

3.2 The Ermakov-Zolotukhin estimator

We start by stating the main finding of Ermakov & Zolotukhin (1960), see also Evans & Swartz (2000,
Section 6.4.3) and references therein. To the best of our knowledge, we are the first to make the con-
nection with projection DPPs, as defined in Section 2.2. This allows us to give a slight improvement
and provide a simpler proof of the original result, based on a generalization of the Cauchy-Binet
formula (Johansson, 2006). Finally, we apply Ermakov & Zolotukhin’s (1960) technique to build an
unbiased estimator of

∫
f(x)µ(dx), which comes with a practical and interpretable variance.
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Theorem 1. Consider f ∈ L2(µ) and N functions φ0, . . . , φN−1 ∈ L2(µ) orthonormal w.r.t.µ. Let
{x1, . . . ,xN} ∼ DPP(µ,KN ), with KN (x, y) =

∑N−1
k=0 φk(x)φk(y). Consider the linear systemφ0(x1) . . . φN−1(x1)

...
...

φ0(xN ) . . . φN−1(xN )


 y1

...
yN

 =

 f(x1)
...

f(xN )

. (10)

Then, the solution of (10) is unique, µ-almost surely, with coordinates yk =
detΦφk−1,f

(x1:N )

detΦ(x1:N )
,

where Φφk−1,f (x1:N ) is the matrix obtained by replacing the k-th column of Φ(x1:N ) by f(x1:N ).
Moreover, for all 1 ≤ k ≤ N , the coordinate yk of the solution vector satisfies

E[yk] = 〈f, φk−1〉, and Var[yk] = ‖f‖2 −
N−1∑
`=0

〈f, φ`〉2. (11)

We improved the original result by showing that Cov[yj , yk] = 0, for all 1 ≤ j 6= k ≤ N .

Before we provide the proof, also detailed in Appendix A.2, several remarks are in order. We start by
considering a function f ,

∑M−1
k=0 〈f, φk〉φk, 1 ≤M ≤ ∞, where (φk)k≥0 forms an orthonormal

basis of L2(µ), e.g., the Fourier basis or wavelet bases (Mallat & Peyré, 2009). Next, we build the
orthogonal projection kernel KN onto HN , span{φ0, . . . , φN−1} as in (2). Then, Theorem 1
shows that solving (10), with points {x1, . . . ,xN} ∼ DPP(µ,KN ), provides unbiased estimates of
the N Fourier-like coefficients (〈f, φk〉)N−1k=0 . Remarkably, these estimates are uncorrelated and have
the same variance (11) equal to the residual

∑∞
k=N 〈f, φk〉

2. The faster the decay of the coefficients,
the smaller the variance. In particular, for M ≤ N , i.e., f ∈ HN , the estimators have zero variance.
Put differently, f can be reconstructed perfectly from only one sample of DPP(µ,KN ).

Proof. First, the joint distribution (5) of (x1, . . . ,xN ) is proportional to (det Φ(x1:N ))
2
µ⊗N (x).

Thus, the matrix Φ(x1:N ) defining the linear system (10) is invertible, µ-almost surely, and the
expression of the coordinates follows from Cramer’s rule. Then, we treat the case k = 1, the others
follow the same lines. The proof relies on the orthonormality of the φks and a generalization of the
Cauchy-Binet formula (A.1), cf. Lemma A. The expectation in (11) reads

E
[

det Φφ0,f (x1:N )

det Φ(x1:N )

]
(5)
=

1

N !

∫
det Φφ0,f (x1:N ) det Φ(x1:N )µ⊗N (dx)

(A.1)
= det

(
〈f,φ0〉 (〈f,φ`〉)N−1

`=1

0N−1,1 IN−1

)
= 〈f, φ0〉. (12)

Similarly, the second moment reads

E

[(
det Φφ0,f (x1:N )

det Φ(x1:N )

)2
]

(5)
=

1

N !

∫
det Φφ0,f (x1:N ) det Φφ0,f (x1:N )µ⊗N (dx)

(A.1)
= det

(
‖f‖2 (〈f,φ`〉)N−1

`=1

(〈f,φk〉)N−1
k=1 IN−1

)
= ‖f‖2 −

N−1∑
k=1

〈f, φk〉2. (13)

Finally, the variance in (11) = (13) - (12)2. The covariance is treated in Appendix A.2.

In the setting of the multivariate Jacobi ensemble described in Section 2.3, the first orthonormal
polynomial φ0 is constant, equal to µ

(
[−1, 1]

d)−1/2. Hence, a direct application of Theorem 1 yields

Î EZ
N (f) ,

y1
φ0

= µ
(
[−1, 1]

d)1/2 det Φφ0,f (x1:N )

det Φ(x1:N )
, (14)

as an unbiased estimator of
∫
[−1,1]d f(x)µ(dx), see Appendix A.3. We also show that (14) can be

viewed as a quadrature rule (1) with weights summing to µ([−1, 1]
d
). Unlike the variance of Î BH

N (f)

in (8), the variance of Î EZ
N (f) clearly reflects the accuracy of the approximation of f by its projection

ontoHN . In particular, it allows to integrate and interpolate polynomials up to “degree” b−1(N − 1),
perfectly. Nonetheless, its limiting theoretical properties, like a CLT, look hard to establish. In
particular, the dependence of each quadrature weight on all quadrature nodes makes the estimator a
peculiar object that doesn’t fit the assumptions of traditional CLTs for DPPs (Soshnikov, 2000).
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3.3 How to sample from projection DPPs and the multivariate Jacobi ensemble

To perform Monte Carlo integration with DPPs, it is crucial to sample the points and evaluate the
weights efficiently. However, sampling from continuous DPPs remains a challenge. In this part, we
review briefly the main technique for projection DPP sampling before we develop our method to
generate samples from the multivariate Jacobi ensemble. The code1 is available in the DPPy toolbox
of Gautier et al. (2019), the associated documentation3 contains a lot more details on DPP sampling.

In both finite and continuous cases, except for some specific instances, exact DPP sampling usually
requires the spectral decomposition of the underlying kernel (Lavancier et al., 2012, Section 2.4).
However, for projection DPPs, prior knowledge of the eigenfunctions is not necessary, only an oracle
to evaluate the kernel is required. Next, we describe the generic exact sampler of Hough et al. (2006,
Algorithm 18). It is based on the chain rule and valid exclusively for projection DPPs.

For simplicity, consider a projection DPP(µ,KN ) with µ(dx) = ω(x) dx and KN as in (2). This
DPP has exactly N points, µ-almost surely (Hough et al., 2006, Lemma 17). To get a valid sample
{x1, . . . ,xN}, it is enough to apply the chain rule to sample (x1, . . . ,xN ) and forget the order the
points were selected. The chain rule scheme can be derived from two different perspectives. Either
using Schur complements to express the determinant in the joint distribution (3),

KN (x1, x1)

N
ω(x1) dx1

N∏
n=2

KN (xn, xn)−Kn−1(xn)TK−1n−1Kn−1(xn)

N − (n− 1)
ω(xn) dxn, (15)

where Kn−1(·) = (KN (x1, ·), . . . ,KN (xn−1, ·))T, and Kn−1 = (KN (xp, xq))
n−1
p,q=1. Or geometri-

cally using the base×height formula to express the squared volume in the joint distribution (5),

‖Φ(x1)‖2

N
ω(x1) dx1

N∏
n=2

distance2
(
Φ(xn), span{Φ(xp)}n−1p=1

)
N − (n− 1)

ω(xn) dxn. (16)

Note that the numerators in (15) correspond to the incremental posterior variances of a noise-free
Gaussian process model with kernel KN (Rasmussen & Williams, 2006), giving yet another intuition
for repulsion. When using the chain rule, the practical challenge is twofold: find efficient ways to (i)
evaluate the conditional densities, (ii) sample exactly from the conditionals.

In this work, we take X = [−1, 1]d and focus on sampling the multivariate Jacobi ensemble with
parameters

∣∣ai∣∣, ∣∣bi∣∣ ≤ 1/2, cf. Section 2.3. We remodeled the original implementation4 of the
multivariate Jacobi ensemble sampler accompanying the work of Bardenet & Hardy (BH, 2019) in a
more Pythonic way. In particular, we address the previous challenges in the following way:

(i) contrary to BH, we leverage the Gram structure to vectorize the computations and consider (16)
instead of (15), and evaluate KN (x, y) via (4) instead of (6). The overall procedure is akin to a
sequential Gram-Schmidt orthogonalization of the feature vectors Φ(x1), . . . ,Φ(xN ). Moreover we
pay special attention to avoiding unnecessary evaluations of orthogonal polynomials (OP) when com-
puting a feature vector Φ(x). This is done by coupling the slicing feature of the Python language with
the dedicated method scipy.special.eval_jacobi, used to evaluate the three-term recurrence
relations satisfied by each of the univariate Jacobi polynomials. Given the chosen ordering b, the
computation of Φ(x) requires the evaluation of d recurrence relations up to depth d

√
N .

(ii) like BH, we sample each conditional in turn using a rejection sampling mechanism with the same
proposal distribution. But BH take as proposal ωeq(x) dx, which corresponds to the limiting marginal
of the multivariate Jacobi ensemble as N goes to infinity; see (Simon, 2011, Section 3.11). On our
side, we use a two-layer rejection sampling scheme. We rather sample from the n-th conditional using
the marginal distributionN−1KN (x, x)ω(x) dx as proposal and rejection constantN/(N− (n−1)).
This allows us to reduce the number of (costly) evaluations of the acceptance ratio. The marginal
distribution itself is sampled using the same proposal ωeq(x) dx and rejection constant as BH. The
rejection constant, of order 2d, is derived from Chow et al. (1994) and Gautschi (2009). We further
reduced the number of OP evaluations by considering N−1KN (x, x)ω(x) dx as a mixture, where
each component in (6) involves only one OP. In the end, the expected total number of rejections
is of order 2dN logN . Finally, we implemented a specific rejection free method for the univariate
Jacobi ensemble; a special continuous projection DPP which can be sampled exactly in O(N2), by
computing the eigenvalues of a random tridiagonal matrix (Killip & Nenciu, 2004, Theorem 2).
3 dppy.readthedocs.io 4 github.com/rbardenet/dppmc
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All these improvements resulted in dramatic speedups. For example, on a modern laptop, sampling a
2D Jacobi ensemble with N = 1000 points, see Figure 1(a), takes less than a minute, compared to
hours previously. For more details on the sampling procedure, we refer to Appendix A.4.

(a) ∝ ω1, ∝ ω2, ωeq

50 100 150 200 250 300N
0

1

2

3
<t>(s)

1 wo tri
1 w tri
2
3
4

(b) 〈time〉 to get one sample

50 100 150 200 250 300N
0

5000

10000

15000

20000
<#rej>

1 wo tri
1 w tri
2
3
4

(c) 〈#rejections〉 to get one sample

Figure 1: (a) A sample from a 2D Jacobi ensemble with N = 1000 points. (b)-(c) ai, bi = −1/2,
the colors and numbers correspond to the dimension. For d = 1, the tridiagonal model (tri) of Killip
& Nenciu offers tremendous time savings. (c) The total number of rejections grows as 2dN log(N).

4 Empirical investigation

We perform three main sets of experiments to investigate the properties of the BH (7) and EZ (14)
estimators of the integral

∫
f(x)µ(dx). We add the baseline vanilla Monte Carlo, where points are

drawn i.i.d. proportionally to µ. The two estimators are built from the multivariate Jacobi ensemble,
cf. Section 2.3. First, we extend, for largerN , the experiments of Bardenet & Hardy (2019) illustrating
their fast CLT (9) on a smooth function. Then, we illustrate Theorem 1 by considering polynomial
functions that can be either fully or partially decomposed in the eigenbasis of the DPP kernel. Finally,
we compare the potential of both estimators on various non smooth functions.
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Figure 2: (a)-(d) cf. Section 4.1, the numbers in the legend are the slope andR2 (e)-(h) cf. Section 4.2.

4.1 The bump experiment

Bardenet & Hardy (2019, Section 3) illustrate the behavior of Î BH
N and its CLT (9) on a unimodal,

smooth bump function; see Appendix B.1. The expected variance decay is of order 1/N1+1/d. We
reproduce their experiment in Figure 2 for larger N , and compare with the behavior of Î EZ

N . In
short, Î EZ

N dramatically outperforms Î BH
N in d ≤ 2, with surprisingly fast empirical convergence rates.

When d ≥ 3, performance decreases, and Î BH
N shows both faster and more regular variance decay.

To know whether we can hope for a CLT for Î EZ
N , we performed Kolmogorov-Smirnov tests for

N = 300, which yielded small p-values across dimensions, from 0.03 to 0.24. This is compared to
the same p-values for Î BH

N , which range from 0.60 to 0.99. The results are presented in Appendix B.1.
The lack of normality of Î EZ

N is partly due to a few outliers. Where these outliers come from is left
for future work; ill-conditioning of the linear system (10) is an obvious candidate. Besides, contrary
to Î BH

N , the estimator Î EZ
N has no guarantee to preserve the sign of integrands having constant sign.
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4.2 Integrating sums of eigenfunctions

In the next series of experiments, we are mainly interested in testing the variance decay of Î EZ
N (f)

prescribed by Theorem 1. To that end, we consider functions of the form

f(x) =
∑M−1

b(k)=0

1

b(k) + 1
φk(x), (17)

whose integral w.r.t.µ is to be estimated based on realizations of the multivariate Jacobi ensemble with
kernel KN (x, y) =

∑N−1
b(k)=0 φk(x)φk(y), where N 6= M a priori. This means that the function f

can be either fully (M ≤ N ) or partially (M > N ) decomposed in the eigenbasis of the kernel. In
both cases, we let the number of points N used to build the two estimators vary from 10 to 100 in
dimensions d = 1 to 4. In the first setting, we set M = 70. Thus, N eventually reaches the number
of functions used to build f in (17), after what Î EZ

N is an exact estimator, see Figure 2(e)-(h). The
second setting has M = N + 1, so that the number of points N is never enough for the variance in
(11) to be zero. The results of both settings are to be found in Appendix B.2.

In the first case, for each dimension d, we indeed observe a drop in the variance of Î EZ
N once the

number of points of the DPP hits the threshold N = M . This is in perfect agreement with Theorem 1:
once f ∈ HM ⊆ HN , the variance in (11) is zero. In the second setting, as N increases the
contribution of the extra mode φb−1(N) in (17) decreases as 1

N . Hence, from Theorem 1 we expect a
variance decay of order 1

N2 , which we observe in practice.

4.3 Further experiments

In Appendices B.3-B.6 we test the robustness of both BH and EZ estimators, when applied to functions
presenting discontinuities or which do not belong to the span of the eigenfunctions of the kernel.
Although the conditions of the CLT (9) associated to Î BH are violated, the corresponding variance
decay is smooth but not as fast. For Î EZ, the performance deteriorates with the dimension. Indeed,
the cross terms arising from the Taylor expansion of the different functions introduce monomials,
associated to large coefficients, that do not belong toHN . Sampling more points would reduce the
variance (11). But more importantly, for EZ to excel, this suggests to adapt the kernel to the basis
where the integrand is known to be sparse or to have fast-decaying coefficients. In regimes where BH
and EZ do not shine, vanilla Monte Carlo becomes competitive for small values of N .

5 Conclusion

Ermakov & Zolotukhin (EZ, 1960) proposed a non-obvious unbiased Monte Carlo estimator using
projection DPPs. It requires solving a linear system, which in turn involves evaluating both the N
eigenfunctions of the corresponding kernel and the integrand at the N points of the DPP sample.
This is yet another connection between DPPs and linear algebra. In fact, solving this linear system
provides unbiased estimates of the Fourier-like coefficients of the integrand f with each of the N
eigenfunctions of the DPP kernel. Remarkably, these estimators have identical variance, and this
variance measures the accuracy of the approximation of f by its projection onto these eigenfunctions.
With modern arguments, we have provided a much shorter proof of these properties than in the
original work of (Ermakov & Zolotukhin, 1960). Beyond this, little is known on the EZ estimator.
While coming with a less interpretable variance, the more direct estimator proposed by Bardenet &
Hardy (BH, 2019) has an intrinsic connection with the classical Gauss quadrature and further enjoys
stronger theoretical properties when using multivariate Jacobi ensemble.

Our experiments highlight the key features of both estimators when the underlying DPP is a multi-
variate Jacobi ensemble, and further demonstrate the known properties of the BH estimator in yet
unexplored regimes. Although EZ shows a surprisingly fast empirical convergence rate for d ≤ 2,
its behavior is more erratic for d ≥ 3. Ill-conditioning of the linear system is a potential source of
outliers in the distribution of the estimator. Regularization may help but would introduce a stabil-
ity/bias trade-off. More generally, EZ seems worth investigating for integration or even interpolation
tasks where the function is known to be decomposable in the eigenbasis of the kernel, i.e., in a
setting similar to the one of Bach (2017). Finally, the new implementation of an exact sampler for
multivariate Jacobi ensemble unlocks more large-scale empirical investigations and asks for more
theoretical work. The associated code1 is available in the DPPy toolbox of Gautier et al. (2019).

8



References
Bach, F. On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions.

Journal of Machine Learning Research, 2017. arXiv:1502.06800.

Bach, F., Lacoste-Julien, S., and Obozinski, G. On the Equivalence between Herding and Condi-
tional Gradient Algorithms. In International Conference on Machine Learning (ICML), 2012.
arXiv:1203.4523.

Bardenet, R. and Hardy, A. Monte Carlo with Determinantal Point Processes. Annals of Applied
Probability, in press, 2019. arXiv:1605.00361.

Briol, F.-X., Oates, C. J., Girolami, M., and Osborne, M. A. Frank-Wolfe Bayesian Quadrature: Prob-
abilistic Integration with Theoretical Guarantees. In Advances in Neural Information Processing
Systems (NeurIPS), 2015. arXiv:1506.02681.

Chen, Y., Welling, M., and Smola, A. Super-Samples from Kernel Herding. In Conference on
Uncertainty in Artificial Intelligence (UAI), 2010. arXiv:1203.3472.

Chow, Y., Gatteschi, L., and Wong, R. A Bernstein-type inequality for the Jacobi polynomial.
Proceedings of the American Mathematical Society, 1994.

Davis, P. J. and Rabinowitz, P. Methods of numerical integration. Academic Press. 1984.

Delyon, B. and Portier, F. Integral approximation by kernel smoothing. Bernoulli, 2016.
arXiv:1409.0733.

Dick, J. and Pillichshammer, F. Digital nets and sequences : discrepancy and quasi-Monte Carlo
integration. Cambridge University Press. 2010.

Ermakov, S. M. and Zolotukhin, V. G. Polynomial Approximations and the Monte-Carlo Method.
Theory of Probability & Its Applications, 1960.

Evans, M. and Swartz, T. Approximating integrals via Monte Carlo and deterministic methods.
Oxford University Press. 2000.

Gautier, G., Polito, G., Bardenet, R., and Valko, M. DPPy: DPP Sampling with Python. Journal of
Machine Learning Research - Machine Learning Open Source Software (JMLR-MLOSS), in press,
2019. arXiv:1809.07258.

Gautschi, W. How sharp is Bernstein’s Inequality for Jacobi polynomials? Electronic Transactions
on Numerical Analysis, 2009.

Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B. Determinantal Processes and Independence. In
Probability Surveys. 2006. arXiv:math/0503110.

Huszár, F. and Duvenaud, D. Optimally-Weighted Herding is Bayesian Quadrature. In Conference
on Uncertainty in Artificial Intelligence (UAI), 2012. arXiv:1204.1664.

Johansson, K. Random matrices and determinantal processes. Les Houches Summer School Proceed-
ings, 2006.

Killip, R. and Nenciu, I. Matrix models for circular ensembles. International Mathematics Research
Notices, 2004. arXiv:math/0410034.

König, W. Orthogonal polynomial ensembles in probability theory. Probability Surveys, 2004.
arXiv:math/0403090.

Kulesza, A. and Taskar, B. Determinantal Point Processes for Machine Learning. Foundations and
Trends in Machine Learning, 2012. arXiv:1207.6083.

Lavancier, F., Møller, J., and Rubak, E. Determinantal point process models and statistical inference :
Extended version. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 2012.
arXiv:1205.4818.

9

http://jmlr.org/papers/v18/15-178.html
http://arxiv.org/abs/1502.06800
https://icml.cc/2012/papers/683.pdf
https://icml.cc/2012/papers/683.pdf
http://arxiv.org/abs/1203.4523
http://arxiv.org/abs/1605.00361
http://arxiv.org/abs/1605.00361
https://papers.nips.cc/paper/5749-frank-wolfe-bayesian-quadrature-probabilistic-integration-with-theoretical-guarantees
https://papers.nips.cc/paper/5749-frank-wolfe-bayesian-quadrature-probabilistic-integration-with-theoretical-guarantees
http://arxiv.org/abs/1506.02681
https://dl.acm.org/citation.cfm?id=3023562
http://arxiv.org/abs/1203.3472
http://dx.doi.org/10.1090/S0002-9939-1994-1209419-X
https://doi.org/10.1016/C2013-0-10566-1
http://dx.doi.org/10.3150/15-BEJ725
http://arxiv.org/abs/1409.0733
https://www.cambridge.org/vi/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/digital-nets-and-sequences-discrepancy-theory-and-quasimonte-carlo-integration?format=HB
https://www.cambridge.org/vi/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/digital-nets-and-sequences-discrepancy-theory-and-quasimonte-carlo-integration?format=HB
http://dx.doi.org/10.1137/1105046
https://global.oup.com/academic/product/approximating-integrals-via-monte-carlo-and-deterministic-methods-9780198502784
http://arxiv.org/abs/1809.07258
http://arxiv.org/abs/1809.07258
http://emis.ams.org/journals/ETNA/vol.36.2009-2010/pp1-8.dir/pp1-8.pdf
http://dx.doi.org/10.1214/154957806000000078
http://arxiv.org/abs/math/0503110
https://dl.acm.org/citation.cfm?id=3020694
http://arxiv.org/abs/1204.1664
http://dx.doi.org/10.1016/S0924-8099(06)80038-7
http://dx.doi.org/10.1155/S1073792804141597
http://arxiv.org/abs/math/0410034
http://dx.doi.org/10.1214/154957805100000177
http://arxiv.org/abs/math/0403090
http://dx.doi.org/10.1561/2200000044
http://arxiv.org/abs/1207.6083
http://dx.doi.org/10.1111/rssb.12096
http://dx.doi.org/10.1111/rssb.12096
http://arxiv.org/abs/1205.4818


Liu, Q. and Lee, J. D. Black-Box Importance Sampling. In Internation Conference on Artificial
Intelligence and Statistics (AISTATS), 2017. arXiv:1610.05247.

Macchi, O. The coincidence approach to stochastic point processes. Advances in Applied Probability,
1975.

Mallat, S. and Peyré, G. A wavelet tour of signal processing : the sparse way. Elsevier/Academic
Press. 2009.

Mazoyer, A., Coeurjolly, J.-F., and Amblard, P.-O. Projections of determinantal point processes.
ArXiv e-prints, 2019. arXiv:1901.02099v3.

Oates, C. J., Girolami, M., and Chopin, N. Control functionals for Monte Carlo integration. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 2017. arXiv:1410.2392.

O’Hagan, A. Bayes–Hermite quadrature. Journal of Statistical Planning and Inference, 1991.

Rasmussen, C. E. and Williams, C. K. I. Gaussian processes for machine learning. MIT Press. 2006.

Robert, C. P. The Bayesian choice : from decision-theoretic foundations to computational implemen-
tation. Springer. 2007.

Robert, C. P. and Casella, G. Monte Carlo statistical methods. Springer-Verlag New York. 2004.
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A Methodology

A.1 The generalized Cauchy-Binet formula: a modern argument

Johansson (2006, Section 2.2) developed a natural way to build DPPs associated to projection
(potentially non-Hermitian) kernels. In this part, we focus on the generalization of the Cauchy-Binet
formula (Johansson, 2006, Proposition 2.10). Its usefulness is twofold for our purpose. First, it serves
to justify the fact that the normalization constant of the joint distribution (3) is one, i.e., it is indeed
a probability distribution. Second, we use it as a modern and simple argument to prove a slight
improvement of the result of Ermakov & Zolotukhin (1960), cf. Theorem 1. An extended version of
the proof is given in Appendix A.2.
Lemma A. (Johansson, 2006, Proposition 2.10) Let (X,B, µ) be a measurable space and consider
measurable functions φ0, . . . , φN−1 and ψ0, . . . , ψN−1, such that φkψ` ∈ L1(µ). Then,

det(〈φk, ψ`〉)N−1k,`=0 =
1

N !

∫
det Φ(x1:N ) det Ψ(x1:N )µ⊗N (dx), (A.1)

where

Φ(x1:N ) =

φ0(x1) . . . φN−1(x1)
...

...
φ0(xN ) . . . φN−1(xN )

 and Ψ(x1:N ) =

ψ0(x1) . . . ψN−1(x1)
...

...
ψ0(xN ) . . . ψN−1(xN )


A.2 Proof of Theorem 1

First, we recall the result of Ermakov & Zolotukhin (1960), cf. Theorem 1. Then, we provide a
modern proof based on the generalization of the Cauchy-Binet formula, cf. Lemma A, where we
exploit the orthonormality of the eigenfunctions of the kernel.
Theorem B. Consider f ∈ L2(µ) and N functions φ0, . . . , φN−1 ∈ L2(µ) orthonormal w.r.t.µ,
i.e.,

〈φk, φ`〉 ,
∫
φk(x)φ`(x)µ(dx) = δk`, ∀0 ≤ k, ` ≤ N − 1. (A.2)

Let {x1, . . . ,xN} ∼ DPP(µ,KN ), with projection kernel KN (x, y) =
∑N−1
k=0 φk(x)φk(y). That is

to say (x1, . . . ,xN ) has joint distribution

1

N !
det(KN (xp, xq))

N
p,q=1 µ

⊗N (dx) =
1

N !
(det Φ(x1:N ))

2
µ⊗N (dx). (A.3)

Consider the linear system Φ(x1:N )y = f(x1:N ), that is,φ0(x1) . . . φN−1(x1)
...

...
φ0(xN ) . . . φN−1(xN )


 y1

...
yN

 =

 f(x1)
...

f(xN )

. (A.4)

Then, the solution of (A.4) is unique, µ-almost surely, with coordinates

yk =
det Φφk−1,f (x1:N )

det Φ(x1:N )
, (A.5)

where Φφk−1,f (x1:N ) is the matrix obtained by replacing the k-th column of Φ(x1:N ) by f(x1:N ).
Moreover, for all 1 ≤ k ≤ N , the coordinate yk of the solution vector satisfies

E[yk] = 〈f, φk−1〉, and Var[yk] = ‖f‖2 −
N−1∑
`=0

〈f, φ`〉2. (A.6)

We improved the original result by showing that Cov[yj , yk] = 0, for all 1 ≤ j 6= k ≤ N .

Proof of Theorem B. First, the joint distribution (A.3) of (x1, . . . ,xN ) is proportional to
(det Φ(x1:N ))

2
µ⊗N (x). Thus, det Φ(x1:N ) 6= 0, µ-almost surely. Hence, the matrix Φ(x1:N )

defining the linear system (A.4) is invertible, µ-almost surely.
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The expression of the coordinates (A.5) follows from Cramer’s rule.

Then, we treat the case k = 1, the others follow the same lines. The proof relies on Lemma A where
we exploit the orthonormality of the φks (A.2). The expectation (A.6) reads

E
[

det Φφ0,f (x1:N )

det Φ(x1:N )

]
(A.3)
=

1

N !

∫
det Φφ0,f (x1:N ) det Φ(x1:N )µ⊗N (dx)

(A.1)
= det

 〈f, φ0〉 (〈f, φ`〉)N−1`=1

(〈φk, φ0〉)N−1k=1 (〈φk, φ`〉)N−1k,`=1


(A.2)
= det

(
〈f, φ0〉 (〈f, φ`〉)N−1`=1
0N−1,1 IN−1

)
= 〈f, φ0〉. (A.7)

Similarly, the second moment reads

E
[(

det Φφ0,f (x1:N )

det Φ(x1:N )

)]
(A.3)
=

1

N !

∫
det Φφ0,f (x1:N ) det Φφ0,f (x1:N )µ⊗N (dx)

(A.1)
= det

 〈f, f〉 (〈f, φ`〉)N−1`=1

(〈φk, f〉)N−1k=1 (〈φk, φ`〉)N−1k,`=1


(A.2)
= det

(
‖f‖2 (〈f, φ`〉)N−1`=1

(〈f, φk〉)N−1k=1 IN−1

)

= ‖f‖2 −
N−1∑
k=1

〈f, φk〉2. (A.8)

Finally, the variance in (A.6) = (A.8) - (A.7)2.

With the same arguments, for j 6= k, we can compute the covariance Cov[yj , yk]. For simplicity, we
treat only the case j = 1, k = 2, the general case follows the same lines.

Cov[y1, y2] = E
[

det Φφ0,f (x1:N )

det Φ(x1:N )

det Φφ1,f (x1:N )

det Φ(x1:N )

]
− E

[
det Φφ0,f (x1:N )

det Φ(x1:N )

]
E
[

det Φφ1,f (x1:N )

det Φ(x1:N )

]
(A.3),(A.7)

=
1

N !

∫
det Φφ0,f (x1:N ) det Φφ1,f (x1:N )µ⊗N (dx)− 〈f, φ0〉〈f, φ1〉

(A.1)
= det

 〈f, φ0〉 〈f, f〉 (〈f, φ`〉)N−1`=2

(〈φk, φ0〉)N−1k=1 (〈φk, f〉)N−1k=1 (〈φk, φ`〉)N−1k=1,`=2

− 〈f, φ0〉〈f, φ1〉
(A.2)
= det


〈f, φ0〉 ‖f‖2 (〈f, φ`〉)N−1`=2

0 〈φ1, f〉 0

0N−2,1 (〈φk, f〉)N−1k=2 IN−2

− 〈f, φ0〉〈f, φ1〉
= 〈f, φ0〉〈f, φ1〉 − 〈f, φ0〉〈f, φ1〉 = 0.

A.3 The EZ estimator as a quadrature rule

In this part, we consider Theorem B in the setting where one of the eigenfunctions of the kernel,
say φ0 is constant. In this case, we show that Î EZ

N (f) defined by (14) provides an unbiased estimate
of
∫
X f(x)µ(dx) with known variance. In addition, it can be seen as a quadrature rule in the sense

of (1), with weights a priori non negative weights ωn that sum to µ(X). This is a non obvious fact,
judging from the expression (14) of the estimator.
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Proposition 1. Consider φ0 constant in Theorem B. Then, solving the corresponding linear system
(A.4) allows to construct

Î EZ
N (f) ,

y1
φ0

= µ(X)1/2
det Φφ0,f (x1:N )

det Φ(x1:N )
, (A.9)

as an unbiased estimator of
∫
X f(x)µ(dx), with variance equal to µ(X)×(A.6). In addition, it can

be seen as a random quadrature rule (1) with weights summing to µ(X).

Proof. Since φ0 is constant with unit norm we have φ0 = µ(X)−1/2, so that

E
[
Î EZ
N (f)

]
=

1

φ0
E[y1] =

1

��φ0

〈
f,��φ0

〉
=

∫
X
f(x) dx,

and

Var
[
Î EZ
N (f)

]
=

1

φ0
2 Var[y1] = µ(X)× (A.6).

In addition, (A.9) can be written

Î EZ
N (f) = µ(X)1/2

det Φφ0,f (x1:N )

φ0 det Φφ0,1(x1:N )
= µ(X)

det Φφ0,f (x1:N )

det Φφ0,1(x1:N )
,

and the expansion of the numerator w.r.t. the first column yields

Î EZ
N (f) =

N∑
n=1

f(xn)
µ(X)

det Φφ0,1(x1:N )
(−1)1+n det(φk(xp))

N−1,N
k=1,p=16=n︸ ︷︷ ︸

,ωn(x1:N )

· (A.10)

Note that there is a priori no reason for the weights to be nonnegative. Finally,
N∑
n=1

ωn(x1:N ) =
µ(X)

((((
(((det Φφ0,1(x1:N )

N∑
n=1

(−1)1+n det(φk(xp))
N−1,N
k=1,p=16=n︸ ︷︷ ︸

=((((
((detΦφ0,1

(x1:N )

= µ(X).

This concludes the proof.

A.4 Sampling from the multivariate Jacobi ensemble

We mention that the code1 and the documentation3 associated to this work are available in the DPPy
toolbox of Gautier et al. (2019).

In dimension d = 1, we implemented the random tridiagonal matrix model of Killip & Nenciu
(2004, Theorem 2) to sample from the univariate Jacobi ensemble, with base measure µ(dx) =
(1− x)a(1 + x)b dx, where a, b > −1. That is to say, this one dimensional continuous projection
DPP with N points can be sampled in O(N2), by computing the eigenvalues of random tridiagonal
matrix with i.i.d. coefficients of size N ×N .

Next, for d ≥ 2, we detail the procedure described in Section 3.3 for sampling exactly from the
multivariate Jacobi ensemble with parameters

∣∣ai∣∣, ∣∣bi∣∣ ≤ 1
2 , for all 1 ≤ i ≤ d.

More specifically, we consider sampling exactly from the projection DPP(µ,KN ) where

• µ(dx) = ω(x) dx, with

ω(x) =

d∏
i=1

ωi(xi), where ωi(z) =

d∏
i=1

(1− z)a
i

(1 + z)b
i

, and
∣∣ai∣∣, ∣∣bi∣∣ ≤ 1

2
· (A.11)

• KN (x, y) =
∑N−1

b(b)=0 φk(x)φk(y), with

φk(x) =

d∏
i=1

φiki(x
i), where

∫ 1

−1
φiu(z)φiv(z)ω

i(z) dz = δuv. (A.12)
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Figure A.1: Middle: a sample of a 2D Jacobi ensemble with N = 1000 points. The normalized
reference densities, proportional to (1−x)a

1

(1+x)b
1

and (1−y)a
2

(1+y)b
2

, are displayed in dashed
lines. The empirical marginal densities which converges to the arcsine density ωeq(x) = 1

π
√
1−x2

is
plotted in solid line. Left: we plot the same sample where the disk centered at xn now has now an
area proportional to the weight 1/KN (xn,xn) in Î BH

N (f) in (7). Observe that these weights serve as
a proxy for the reference measure, like Gaussian quadrature. Right: the weight in Î EZ

N (f) given by
(A.10); observe that they can be either positive or negative. The histogram of the absolute value of
the weights is plotted on the marginal axes

As an illustration, Figure A.1 displays a sample of a d = 2 Jacobi ensemble with N = 1000 points.
Our sampling scheme is an instance of the generic chain-rule-based procedure of Hough et al. (2006,
Algorithm 18) where the knowledge of the eigenfunctions can be leveraged, see also Lavancier
et al. (2012, Algorithm 1). In our case, sampling N points in dimension d, requires an expected
total number of rejections of order 2dN log(N). As mentioned in Section 3.3, to sample from
{x1, . . . ,xN} ∼ DPP(µ,KN ) it is enough to sample (x1, . . . ,xN ) and forget the order the points
were selected. Starting from the two formulations (3) and (5) of the joint distribution, the chain
rule scheme can be derived from two different perspectives. Either by expressing the determinant
det(KN (xp, xn))

N
p,n=1 using Schur complements

(3) =
1

N !
det(KN (xp, xn))

N
p,n=1

N∏
n=1

ω(xn) dxn (A.13)

=
KN (x1, x1)

N
ω(x1) dx1

N∏
n=2

ω(xn) dxn
KN (xn, xn)−Kn−1(xn)TK−1n−1Kn−1(xn)

N − (n− 1)
ω(xn) dxn,

where Kn−1(·) = (KN (x1, ·), . . . ,KN (xn−1, ·))T, and Kn−1 = (KN (xp, xq))
n−1
p,q=1. Or geomet-

rically using the base×height formula to express (det Φ(x1:N ))2 as the squared volume of the
parallelotope spanned by Φ(x1), . . . ,Φ(xN )

(5) =
1

N !
volume2(Φ(x1), . . . ,Φ(xN ))

N∏
n=1

ω(xn) dxn

=
‖Φ(x1)‖2

N
ω(x1) dx1

N∏
n=2

distance2
(
Φ(xn), span{Φ(xp)}n−1p=1

)
N − (n− 1)

ω(xn) dxn. (A.14)

Note that, contrary to (A.14), the formulation (A.13) does not require a priori knowledge of the
eigenfunctions of the projection kernel KN .

Like Bardenet & Hardy (2019), we sample each conditional in turn using rejection sampling with
the same proposal distribution and rejection bound. But where Bardenet & Hardy (2019) use the
formulation (A.13) of the chain rule we consider the geometrical perspective (A.14). This allows for
a implementation that is simpler (no need to update K−1n−1), fully vectorized, and more interpretable:
akin to a sequential Gram-Schmidt orthogonalization of the feature vectors Φ(x1), . . . ,Φ(xN ).

Moreover, contrary to Bardenet & Hardy (2019) who take ωeq(x) dx as proposal to sample from
the each of the conditionals, we use a two-layer rejection sampling scheme. We rather sample from
the n-th conditional using the marginal distribution N−1KN (x, x)ω(x) dx. This choice of proposal
allows us to reduce the number of (costly) evaluations of the acceptance ratio.
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The rejection constant associated to the n-th conditional in (A.13) reads

(N − (n− 1))
−1(

KN (x, x)−Kn−1(x)TK−1n−1Kn−1(x)
)
��
�ω(x)

N−1KN (x, x)��
�ω(x)

=
N

N − (n− 1)

KN (x, x)−Kn−1(x)TK−1n−1Kn−1(x)

KN (x, x)
≤ N

N − (n− 1)
. (A.15)

The marginal distribution itself is sampled using the same proposal ωeq(x) dx and rejection constant
as Bardenet & Hardy (2019). However, we further reduce the number of computations by considering
N−1KN (x, x)ω(x) dx as a mixture, see Section A.4.1

A.4.1 Generate samples from the marginal distribution

First, observe that the marginal density can be written as a mixture of N probability densities where
each component is assigned the same weight 1/N

1

N
KN (x, x)ω(x) =

1

N

N−1∑
b(k)=0

φk(x)2ω(x). (A.16)

Thus, sampling from (A.16) can be done in two steps:

(i) select a multi-index k = b−1(n) with n drawn uniformly at random in {0, . . . , N − 1}
(ii) sample from φk(x)2ω(x) dx

We perform Step (ii) using rejection sampling with proposal distribution

ωeq(x) dx =

d∏
i=1

1

π
√

1− (xi)2
dxi, (A.17)

which corresponds to the limiting marginal distribution of the multivariate Jacobi ensemble as N
goes to infinity; see (Simon, 2011, Section 3.11) and Figure A.1. The acceptance ratio writes

φk(x)2ω(x)

ωeq(x)

(A.12)(A.11)
=

(A.17)

d∏
i=1

φiki(x
i)2 × (1− xi)ai(1 + xi)b

i

π−1(1− xi)− 1
2 (1 + xi)−

1
2

=
d∏
i=1

π(1− xi)a
i+ 1

2 (1 + xi)b
i+ 1

2φiki(x
i)2. (A.18)

Each of the terms that appear in (A.18) can be bounded using the following recipe:

(a) For ki = 0, φi0 is constant and the orthonormality w.r.t. (1− x)a
i

(1 + x)b
i

dx yields

(φi0)2
∫ 1

−1
(1− x)a

i

(1 + x)b
i

dx = 1⇐⇒ (φi0)2 =
1

2ai+bi+1B(ai + 1, bi + 1)
, (A.19)

so that the corresponding term in (A.18) becomes

π(1− x)a
i+ 1

2 (1 + x)b
i+ 1

2

2ai+bi+1B(ai + 1, bi + 1)
≤ π(1−m)a

i+ 1
2 (1 +m)b

i+ 1
2

2ai+bi+1B(ai + 1, bi + 1)
, Cki=0 ≤ 2, (A.20)

where m = argmax
−1≤x≤1

(1− x)a
i+ 1

2 (1 + x)b
i+ 1

2 =

{
0, if ai = bi = − 1

2 ,
bi−ai
ai+bi+1

, otherwise.

(b) For ki ≥ 1, we use the bound Cki≥1 (A.22) provided originally by Chow et al. (1994). As
mentioned by Gautschi (2009), this bound is probably maximal for ki = 1 and parameters
ai ≈ −0.0691, bi = 1/2, with value ≈ 0.64297807π ≈ 2.02.
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Finally, the expected number of rejections to perform Step (ii) is equal to
∏d
i=1 Cki which is of order

2d, and the expected total number of rejections of the chain rule (A.13) is of order

N∑
n=1

2d
N

N − (n− 1)
= 2dN

N∑
n=1

1

n
≈ 2dN log(N). (A.21)

Proposition 2. (Gautschi, 2009, Equation 1.3) Let (φk)k≥0 be the (univariate) orthonormal polyno-
mials w.r.t. (1− x)a(1 + x)b dx with |a| ≤ 1

2 , |b| ≤
1
2 . Then, for any x ∈ [−1, 1] and k ≥ 1,

π(1− x)a+
1
2 (1 + x)b+

1
2φk(x)2 ≤ 2 Γ(k + a+ b+ 1) Γ(k + max(a, b) + 1)

k! (k + a+b+1
2 )2max(a,b) Γ(k + min(a, b) + 1)

. (A.22)

A.4.2 Empirical timing and number of rejections

In Figure A.2 we illustrate the following observations. Computing the acceptance ratio (A.15)
requires to propagate the recurrence relations up to order d

√
N . Thus, for a given number of points

N , the larger the dimension, the smaller the depth of the recurrence. This could hint that, evaluating
the kernel (6) becomes cheaper as d increases. However, the rejection rate also increases, so that in
practice, it is not cheaper to sample in larger dimensions because the number of rejections dominates.
In the particular case of dimension d = 1, samples are generated using the fast and rejection-free
tridiagonal matrix model of Killip & Nenciu (2004, Theorem 2). This grants huge time savings
compared to the acceptance-rejection method.

Finally, some remarks are in order. Sampling from the n-th conditional distribution using rejection
sampling is common practice (Lavancier et al., 2012, Section 2.4.2). However, tailored proposals with
tight rejection constants are required (Lavancier et al., 2012, Appendices E-F). Taking the marginal
distribution N−1KN (x, x)ω(x) dx as proposal yields a N/(N − (n − 1)) rejection constant and
applies in the general case. Nevertheless, it remains to sample from this marginal distribution
Rejection sampling might be a first option to sample from N−1KN (x, x)ω(x) dx, but when the
eigenfunctions are available it could be another option to see it as a mixture (cf. Section A.4.1),
where good proposals for each φk(x)2w(x) dx are required.

In the case of (multivariate) orthogonal polynomial ensembles (cf. Section 2.3), evaluations
of KN (x, y) (6) can be performed using the Gram representation (4), KN (x, y) = Φ(x)TΦ(y)
and one can leverage the three-term recurrence relations satisfied by each of the univariate Ja-
cobi polynomials (φi`)`. This is what we do in our special case, we use the dedicated function
scipy.special.eval_jacobi to evaluate, up to depth d

√
N , the three-term recurrence relations

satisfied by each of the univariate Jacobi. Instead of calling the recursive routine internally to evaluate
Φ(x), the corresponding d d

√
N univariate polynomials or N multivariate polynomials could be stored

in some way and evaluated pointwise on the fly. The preprocessing time and the memory required
would increase but it might accelerate the evaluation of Φ(x).

50 100 150 200 250 300N
0

1

2

3
<t>(s)

1 wo tri
1 w tri
2
3
4

(a) 〈time〉 to get one sample

50 100 150 200 250 300N
0

5000

10000

15000

20000
<#rej>

1 wo tri
1 w tri
2
3
4

(b) 〈#rejections〉 to get one sample

Figure A.2: ai, bi = −1/2, the colors and numbers correspond to the dimension. For d = 1, the
tridiagonal model (tri) of Killip & Nenciu offers tremendous time savings. (b) The total number of
rejections grows as 2dN log(N) (A.21).

16



B Experiments

B.1 Reproducing the bump example

In Section 4.1, we reproduce the experiment of Bardenet & Hardy (2019, Section 3) where they
illustrate the behavior of Î BH

N on a unimodal, smooth bump function:

f(x) =

d∏
i=1

exp

(
− 1

1− ε− (xi)2

)
1(−
√
1−ε,

√
1−ε)(x

i). (B.1)

We take ε = 0.05. For each value of N , we sample 100 times from the same multivariate Jacobi
ensemble with i.i.d. uniform parameters on [−1/2, 1/2], compute the resulting 100 values of each
estimator, and plot the two resulting sample variances. In addition, in Figure B.2 we test the potential
hope for a CLT for Î EZ

N and compare with Î BH
N for which the CLT (9) holds, in the regime N = 300.
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Figure B.1: Reproducing the bump function (ε = 0.05) experiment of Bardenet & Hardy (2019),
cf. Section 4.1. Observe the expected variance decay of order 1/N1+1/d for BH. Although vanilla
Monte Carlo becomes competitive for small N as d increases, its variance decay is of order 1/N ≥
1/N1+1/d. Thus, there will always be meeting point, for some N∗, after which the variance of BH
will be smaller. For d = 1, EZ has almost no variance for N ≥ 100: the bump function is extremely
well approximated by a polynomials of degree N ≥ 100.
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Figure B.2: Histogram of 100 independent estimates Î BH
N and Î EZ

N of the integral of the bump function
(ε = 0.05) with N = 300 and associated p-value of Kolmogorov-Smirnov test, cf. Section 4.1. The
fluctuations of BH confirm to be Gaussian (cf. CLT (9)). (a) the bump function is extremely well
approximated by a polynomial of degree 300 hence Î EZ

N has almost no variance. (b)-(c)-(d) A few
outliers seem to break the potential Gaussianity of Î EZ

N (f). (d) Î EZ
N (f) does not preserve the sign of

the integrand.
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B.2 Integrating sums of eigenfunctions

Figure B.3 gives the results of the first setting set in Section 4.2, where we integrate a sum of M = 70
kernel eigenfunctions. In this case, EZ has zero variance once N ≥M , a performance that can be
reached neither by BH nor vanilla Monte Carlo.

Figure B.4 illustrates the second setting, where the sum always has one more eigenfunction than there
are points in the DPP samples. In this case, the conditions for the CLT of BH, cf (9), are not met;
there is no 1/N1+1/d guarantee on the variance decay for BH estimator. The performance of BH and
vanilla Monte Carlo are comparable. By construction, the variance of EZ decays as 1/N2 ≤ 1/N .
Thus, there will always be meeting point, for some N∗, after which the variance of EZ will be smaller
than vanilla Monte Carlo.
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Figure B.3: Comparison of Î BH
N and Î EZ

N integrating a finite sum of 70 eigenfunctions of the DPP
kernel as in (17), cf. Section 4.2.
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Figure B.4: Comparison of Î BH
N and Î EZ

N for a linear combination of N + 1 eigenfunctions of the
DPP kernel as in (17), cf. Section 4.2.
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We now consider cases where the guarantees of BH not EZ are unknown.

B.3 Integrating absolute value

We consider estimating the integral∫
[−1,1]d

d∏
i=1

|xi|(1− xi)a
i

(1 + xi)b
i

dxi (B.2)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (14) estimators.

Results are given in Figure B.5. In dimension d = 1, the absolute value is well approximated by its
truncated Taylor series of low order and EZ performs very well, but as the dimension increases, its
performance is more erratic. For d ≤ 2, the performance of BH is smooth and better that vanilla
Monte Carlo. In particular, for d ≤ 2, the rate 1/N1+1/d seems to hold for BH while the conditions
for the CLT (9) are not satisfied. But it seems no longer true in larger dimension.
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Figure B.5: Comparison of Î BH
N and Î EZ

N for absolute value, cf. Section 4.3.
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B.4 Integrating Heaviside

Let H(x) =

{
1, if x > 0

0, otherwise
. We consider estimating the integral

∫
[−1,1]d

d∏
i=1

2

(
H(xi)− 1

2

)
(1− xi)a

i

(1 + xi)b
i

dxi (B.3)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (14) estimators.

Results are given in Figure B.6. The EZ estimator behaves in a very erratic way; it does not seem
robust to the discontinuity we have introduced. This can be explained by considering H(x) =
1
2 limε→0 1 + tanh x

ε and taking the product of the Taylor series expansions of tanh; the square of
the coefficients in front of the monomials in such expansion become very large as ε→ 0. One could
expect better behavior for very large N . The performance of BH is smooth and the rate 1/N1+1/d

seems to hold despite the conditions for the CLT (9) are not satisfied.
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Figure B.6: Comparison of Î BH
N and Î EZ

N for Heaviside function, cf. Section 4.3.
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B.5 Integrating cosine

We consider estimating the integral∫
[−1,1]d

d∏
i=1

cos(πxi)(1− xi)a
i

(1 + xi)b
i

dxi (B.4)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (14) estimators.

Results are given in Figure B.7 The EZ estimator behaves well for d ≤ 2 but its performance
deteriorates for d ≥ 3. Indeed, the cross terms arising from the Taylor expansion of the different
cos(πxi) introduce monomials, associated to large coefficients, that do not belong toHN . One could
expect better behavior for very large N . For d ≤ 2, the rate 1/N1+1/d for BH seems to hold despite
the conditions for the CLT (9) are not satisfied. For d ≥ 3, BH and vanilla Monte Carlo behave
similarly.
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Figure B.7: Comparison of Î BH
N and Î EZ

N for cosine, cf. Section 4.3.
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B.6 Integrating a mixture of smooth and non smooth functions

Let f(x) = H(x)(cos(πx) + cos(2πx) + sin(5πx)). We consider estimating the integral∫
[−1,1]d

d∏
i=1

f(xi)(1− xi)a
i

(1 + xi)b
i

dxi (B.5)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (14) estimators.
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Figure B.8: Comparison of Î BH
N and Î EZ

N , cf. Section 4.3.

24


	Introduction
	Quadrature, DPPs, and the multivariate Jacobi ensemble
	Standard quadrature
	Projection DPPs
	The multivariate Jacobi ensemble

	Monte Carlo integration with projection DPPs
	A natural estimator
	The Ermakov-Zolotukhin estimator
	How to sample from projection DPPs and the multivariate Jacobi ensemble

	Empirical investigation
	The bump experiment
	Integrating sums of eigenfunctions
	Further experiments

	Conclusion
	Methodology
	The generalized Cauchy-Binet formula: a modern argument
	Proof of Theorem 1
	The EZ estimator as a quadrature rule
	Sampling from the multivariate Jacobi ensemble
	Generate samples from the marginal distribution
	Empirical timing and number of rejections


	Experiments
	Reproducing the bump example
	Integrating sums of eigenfunctions
	Integrating absolute value
	Integrating Heaviside
	Integrating cosine
	Integrating a mixture of smooth and non smooth functions


