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This paper presents a hybrid approach coupling nattal element method (NEM) and boundary element methd (BEM) for the
treatment of unbounded problems. The goal is to cohine the accuracy of the NEM and the ability of theBEM in modeling linear and
deformable domains without a mesh. The performancef the proposed scheme is compared to a FEM-BEM cpling in terms of
accuracy. Results show that for a given number ofafjrees of freedom the proposed approach (NEM-BEM}iable to provide more

accurate solutions.

Index Terms— boundary element method, coupled numerical methag natural element method.

I. INTRODUCTION

he Natural Element Method (NEM) is a numerical meth

based on the discretization by Voronoi diagram amdhe
concept of natural neighbors [1]. This method enés some
characteristics ofmeshfree method$2], like the highly
accurate approximations and the shape functionls gugsi-
spherical influence zones. However, unlike most tbé
meshless methods, the NEM shape functions arepuiterts,
allowing the easy handling of the interface betweeterials
and the direct imposition of essential boundarydétions. In
terms of performance, the NEM has been proved tmbee
efficient (lower computational cost for a given acy) than
the ' order finite element method (FEM) [3].

In this work, in order to model unbounded regions, use
an integral method known as the Boundary Elementhdte
(BEM) [4]. Using this approach, the degrees of diaa are
located on the interface between the domains (bedirathd
unbounded).

By combining the accuracy of the natural elementhio
and the ability of the boundary element method wdeting
linear and deformable domains without a mesh, tradity of
interpolation on the magnetic material and of theldf
reconstitution in the unbounded region will be ioyed.

The developed approach is validated in the case@f2D

and magnets)(), is the unbounded region (may optionally
contain non-meshed coils) ardg, is the interface between
magnetic and unbounded domains.

Fig. 1. Magnetostatic problem: bounded and unbodimeigions.

In order to introduce the non-meshed coil a reduced
magnetic scalar potentia), is defined, as follow:

h= hred + hO
hred = _Dq)m ’

©)
4)

wherehy is the source field generated by the non-mesh#d co
andh,eq is the reduced magnetic field.

The natural element method uses the concept afralat
neighbors. It is based on the construction of Voratiagram
on a cloud of nodes. For a set of notles {n;, n,, Nz ... n\}
distributed in a given 2-D domain, the Voronoi d&g is a

NATURAL ELEMENT METHOD

magnetostatic problems. The results are compareth wpubdivision of the domain into cells, where eacti &

analytical solution in the first case and with thassical finite
element method for the second one.

Il. MAGNETOSTATICPROBLEM

The 2D magnetostatic problem is defined by the Melksv
equations:

Oxh=j,
Ob=0.

(1)

2
The representation of the modeled domains is shawe

Fig. 1.Q,, is the magnetic region (which can contain curre
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associated to nodg is such that any point i is closer to
noden; than to any other node for i # j. In mathematical
terms, a Voronoi cell is defined as:
Ci:{XDD“,d(x,xi)<d(x,xj),Dj¢i}, (5)
where d is the distance between two points in Euclidean
metric.
Fig. 2 illustrates a Voronoi cell related to a nodm a 2-D
space. The Delaunay triangulation, which is thel ddigthe
dVoronoT diagram, is constructed by connecting tlosles

1.)é/hose Voronoi cells have common boundaries. Theses
are calledhatural neighborsAlternatively, the vertices of the

n



Voronoi cell are the center of the circumcircles tbe

Delaunay triangles.

Fig. 2. Voronoidiagram in blue, its associated Delaunay triangrah red
and the circumcircles associated to the Delaunaygtes in grey. Arounn;,
its Voronoi cell and its 6 natural neighbors, fropto ne.

A. Sibson interpolation

Data interpolation based on \roi diagramscan be
obtained through different techniqugs. In this work, we
will describethe scheme proposed by Sibg6] in 1980. For
sake of simplicity, we will consider elouc of nodes with
known nodal values in a 2-lomair, and look for the
interpolated value at an evaluation point

Initially, the evaluation poink is added to the‘original”
Voronoi diagram and a new Voronoi cell is createmliac it
(Fig. 3). The natural neighbors »f(i.e. the closest nodesre
the nodes that share a Voronoi edggh the VVoronoi cell ox.
These will be thenodes used for the interpolaticat the
evaluation point.

Fig. 3 Sibson natural neighbors and natural coordinéteiginal Voronoi
diagram in blue, natural neighbors in greergiiehal Voronoi cell due tx
in black and intersection area between Voronosa# x andn; in green).

The influence of each natural neighbor on the evalue
point through Sibson’s technique is given (6), where each
Ai(X) represents the intersection area between the Voot
centered orx and the “original”’Voronoi cell related to th
natural neighbom;, as illustrated by the hashed region
Fig. 3.

(6)

It is easy to verify that thSibson shape functions (6) are
always positive and less than 1 and that the suatl tdrms is
equal to 1. One can equatlymark that wheix tends towards
n;,, the shape functiotends towards 1 for nocn; and towards
0 for all other nodes (thefore th« function is interpolant).

The interpolating character of the Sibson shape fune
allows the easy application of the boundary coodgi
Furthermore, the shape functions degenerate tmplesiinear
interpolation at the bordef4]. Fig. 4 (a) depicts the Sibson
shape function related torede. Its support is given by the
union of all circumcircles passing through this e.

Last, Fig. 4Erreur ! Source du renvoi introuvable(b)
showsthe elevation of the Sibson shape function on ales
grid of nodes.

RTINS i e wlt
Fig. 4. (a) Support for NEM shape function and (b) Plbthe Sibson shag
function.

B. Galerkin formulation

In order to solve (2)the reduced scalar magnetic pote
is used bycombine (2), (3) and (4). This potential
interpolated using (6). Theby applying the Galerkin method
to the resulted equation and considerira constant
permeability inQ,,,, we get:

IDO‘iHDO(j(ijdQ*' J.O‘i a; b, d = J.Ui HUHp, T,

(7)
whereg,, is the reduced magnetic potentib, is the magnetic
induction normal to the boundary arHg, is the source

magnetic field normal to the boundz
In order to simplify the notation7) can be rewritten as

()@, +u]m, =Q, ®

with

§ = [FouCio 0, Uy = oo and Q= fayuHo, ™. (9)
O

Im Im

IV. BOUNDARY ELEMENT METHOD (BEM)

If no source fieldin the free space is taken into accol
the problem can be represented by a Laplacian ieq in
term of a total scalar magnetic poter. The main idea is to
solve Laplacianequation transforming the volume intec



equation ovelQ), into a surface integral at the boundary.
The classical boundary integral equation is obthing using
the third Green’s identity [4].

Since we have non-meshed coil in the air, the reduc

VI. RESULTS

The validation of the presented scheme was perfdrme
through the simulation of two test cases.

magnetic potentiapr will be introduced. According to (3), we A. Results on a test case with analytical solution

get:

C(Xo )¢r (Xo) =
| (DnG(XOvXN’ Glx, X )(—b ho)tm]dr

Im

(10)

whereG(X,X) is the Green’s function In(@), r is the distance
betweenxgand a poink on the boundary ant(xo) is the solid
angle subtended by the bound&pyat Xo.

The interpolation of the potential and the magnetic

induction normal to the boundary are given by:

Nr

ZWJ- (x)bnj ,

j

(11)

or ()= 3w, (x)or . by ()=

whereN, the number of facets of the boundary an@) = 1 if
X belongs to the boundary elemgrandw;(x) = O otherwise
(0-order). Equation (11) can be rewritten, as follo

[H 1o, +[T]by =[Te]hn - (12)
T, T, andH matrices are defined as follows:
1
..:_o_[ ( j)dl’,Th.j: jG(xi,xj)dF,
m I—mj (13)

Hy =¢ - [ 0,6(x.x; )dr .

ij

wherec; is equalsr, since the collocation point is located on

the centroid of each boundary element.

There are many ways to perform integration of (18}his
work the well-known analytical expression found[#} has
been used.

V. COUPLING BOTHMETHODS

By considering conservation of the normal comporant
the magnetic induction and the unicity of the restlic
magnetic potential on boundary, we get [8]:

0 O
S e | i Q
Y by | = (14)
0 H T bn Tl |:mOn

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

It's important to remark that the BEM portion o timatrix
is fully populated and the NEM portion is bandedorbver
the equation (14) leads to a linear system whidhbeisolved
directly.

By solving the system above, we get the reducethrsca

magnetic potential on all nodes dngdon the boundary [9].

Fig. 5 shows a homogeneous infinite cylinder unther
influence of a constant magnetic fieltio(= 1 A/m). The
magnetic domain (cylinder) is modeled using NEM dhe
unbounded domain (air) using BEM.

1o Hy path
Hy
4 ’ "
X

Fig. 5. Infinite cylinder with a constant permeﬂ}zilrﬁmersed in a constant
field Ho. The total field is evaluated on tpath

1.45
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Fig. 6. Magnitude of the total magnetic field onttpgFig. 5) using the

cylinder problem for both analytical and NEM-BEMpapach.

0 500 1000 3000

The problem was solved with a relatively coarse
discretization, generating 232 degrees of freedamch 80
were on the boundary).Once the problem is solvee, t
integral equation (11) is used to evaluate the eceduscalar
magnetic potential at the path showed in Fig. Senftsince
the source field is known, by (3) and (4) the tategnetic
field is evaluated. More details on the evaluatirighe total
magnetic field can be found in [10].

Fig. 6 shows the comparison between the analytesallt
and the NEM-BEM one. A good agreement between the
solutions is verified.

B. Results on a real case

Fig.7 shows a magnetic circuit with a non-mesheitl to
order to test the robustness of the proposed schime
magnetic induction was computed on two paths: st éne
in the gap between the parts of the device ande¢kend one
crossing the magnetic circuit.

Once there is no exact analytical solution to fhizblem, a
2" order FEM solution was used as reference. Thistisol



was computed with a very fine mesh.

100

20

40

20

=50

20

50

magnetic induction [T]

& A& AFEM Reference
0.07 4 FEM-BEM I

NEM-BEM

0.06

0.05

0.04

0.03

=1

(=3

¥}
|

YL
0 X

z
Fig. 7. U shaped contactor. Material with linearrmpeability and a non-
meshed coil. Two different paths have been consitler

Three different levels of discretization where éesin order
to test the convergence of the proposed methode Tlaghows
the number of degrees of freedom (DoF) for each.cas

Fig. 8 presents the comparison between the testsss@and
the reference.
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Fig. 8. Comparison between FEM and the approaclsepted. Vertical

component of the magnetic field on path 1.

Results show a fast convergence to the referenice e
the number of DoF increases. One can remark teattimber
of DoF required to get an accurate result is mwetel than
the one of the reference as shown in table I.
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Fig. 9. Comparison between FEM and the
component of the magnetic field on path 2.

approacisepted. Vertical

VIl. CONCLUSION

In this paper, an original hybrid natural elemergtimod —
boundary element method formulation has been pteden
This scheme is very useful, once the flux linkage i
automatically taken into account and the mesh digreey is
drastically reduced.

The NEM-BEM was able to provide accurate solutions
even with very coarse discretizations. Besides, g new
formulation is attractive because of the easiness tlze
treatment of the unbounded regions and the smosshofethe
interpolation inside magnetic regions.
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