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This paper presents a hybrid approach coupling natural element method (NEM) and boundary element method (BEM) for the 

treatment of unbounded problems. The goal is to combine the accuracy of the NEM and the ability of the BEM in modeling linear and 
deformable domains without a mesh. The performance of the proposed scheme is compared to a FEM-BEM coupling in terms of 
accuracy. Results show that for a given number of degrees of freedom the proposed approach (NEM-BEM) is able to provide more 
accurate solutions. 
 

Index Terms— boundary element method, coupled numerical methods, natural element method. 
 

I. INTRODUCTION 

he Natural Element Method (NEM) is a numerical method 
based on the discretization by Voronoi diagram and on the 

concept of natural neighbors [1].  This method presents some 
characteristics of meshfree methods [2], like the highly 
accurate approximations and the shape functions with quasi-
spherical influence zones. However, unlike most of the 
meshless methods, the NEM shape functions are interpolants, 
allowing the easy handling of the interface between materials 
and the direct imposition of essential boundary conditions. In 
terms of performance, the NEM has been proved to be more 
efficient (lower computational cost for a given accuracy) than 
the 1st order finite element method (FEM) [3]. 

In this work, in order to model unbounded regions, we use 
an integral method known as the Boundary Element Method 
(BEM) [4]. Using this approach, the degrees of freedom are 
located on the interface between the domains (bounded and 
unbounded). 

By combining the accuracy of the natural element method 
and the ability of the boundary element method in modeling 
linear and deformable domains without a mesh, the quality of 
interpolation on the magnetic material and of the field 
reconstitution in the unbounded region will be improved. 

The developed approach is validated in the case of two 2D 
magnetostatic problems. The results are compared with 
analytical solution in the first case and with the classical finite 
element method for the second one. 

II. MAGNETOSTATIC PROBLEM 

The 2D magnetostatic problem is defined by the Maxwell's 
equations: 

 
jh =×∇ , (1) 

0=⋅∇ b . (2) 
 
The representation of the modeled domains is showed in 

Fig. 1. Ωm is the magnetic region (which can contain currents 

and magnets), Ω0 is the unbounded region (may optionally 
contain non-meshed coils) and Γm is the interface between 
magnetic and unbounded domains. 

 

 
Fig. 1. Magnetostatic problem: bounded and unbounded regions. 

 
In order to introduce the non-meshed coil a reduced 

magnetic scalar potential φm is defined, as follow: 
 

0hhh += red , (3) 

mred ϕ−∇=h , (4) 
 

where h0 is the source field generated by the non-meshed coil 
and hred  is the reduced magnetic field. 

III.  NATURAL ELEMENT METHOD 

 The natural element method uses the concept of natural 
neighbors. It is based on the construction of Voronoï diagram 
on a cloud of nodes. For a set of nodes N = {n1, n2, n3 … nN} 
distributed in a given 2-D domain, the Voronoï diagram is a 
subdivision of the domain into cells, where each cell Ci 
associated to node ni is such that any point in Ci is closer to 
node ni than to any other node nj for i ≠ j. In mathematical 
terms, a Voronoï cell is defined as: 

 

( ) ( ){ }ij , ,d,dC n
i ≠∀<ℜ∈= ji xxxxx , , (5) 

 

where d is the distance between two points in Euclidean 
metric. 

Fig. 2 illustrates a Voronoï cell related to a node ni in a 2-D 
space. The Delaunay triangulation, which is the dual of the 
Voronoï diagram, is constructed by connecting the nodes 
whose Voronoï cells have common boundaries. These nodes 
are called natural neighbors. Alternatively, the vertices of the 
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Voronoï cell are the center of the circumcircles of the 
Delaunay triangles. 

 

Fig. 2. Voronoï diagram in blue, its associated Delaunay triangulation in red 
and the circumcircles associated to the Delaunay triangles in grey. Around 
its Voronoï cell and its 6 natural neighbors, from n1 to 

 

A. Sibson interpolation 

Data interpolation based on Voronoï diagrams 
obtained through different techniques [5]
will describe the scheme proposed by Sibson 
sake of simplicity, we will consider a cloud
known nodal values in a 2-D domain
interpolated value at an evaluation point x

Initially, the evaluation point x is added to the 
Voronoï diagram and a new Voronoï cell is created around
(Fig. 3). The natural neighbors of x (i.e. the closest nodes) a
the nodes that share a Voronoï edge with the Voronoï cell of 
These will be the nodes used for the interpolation 
evaluation point. 

 

Fig. 3. Sibson natural neighbors and natural coordinates (original Voronoï 
diagram in blue, natural neighbors in green, additional Voronoï cell due to 
in black and intersection area between Voronoï cells of

 
The influence of each natural neighbor on the evaluation 

point through Sibson’s technique is given by 
Ai(x) represents the intersection area between the Voronoï cell 
centered on x and the “original” Voronoï cell related to the 
natural neighbor ni, as illustrated by the hashed region in 
Fig. 3. 
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Voronoï cell are the center of the circumcircles of the 

 
diagram in blue, its associated Delaunay triangulation in red 

and the circumcircles associated to the Delaunay triangles in grey. Around ni, 
to n6. 

onoï diagrams can be 
[5]. In this work, we 

the scheme proposed by Sibson [6] in 1980. For 
cloud of nodes with 

domain, and look for the 
. 

added to the “original” 
Voronoï diagram and a new Voronoï cell is created around it 

(i.e. the closest nodes) are 
with the Voronoï cell of x. 

nodes used for the interpolation at the 

 
. Sibson natural neighbors and natural coordinates (original Voronoï 

ditional Voronoï cell due to x 
in black and intersection area between Voronoï cells of x and n2 in green). 

influence of each natural neighbor on the evaluation 
point through Sibson’s technique is given by (6), where each 

represents the intersection area between the Voronoï cell 
Voronoï cell related to the 

, as illustrated by the hashed region in 

(6) 

 
It is easy to verify that the 

always positive and less than 1 and that the sum of all te
equal to 1.  One can equally remark that when 
ni, the shape function tends towards 1 for node 
0 for all other nodes (therefore the

The interpolating character of the Sibson shape functions
allows the easy application of the boundary conditions. 
Furthermore, the shape functions degenerate to a simple linear 
interpolation at the borders [1]
shape function related to a node
union of all circumcircles passing through this node.

Last, Fig. 4 Erreur ! Source du renvoi introuvable.
shows the elevation of the Sibson shape function on a regular 
grid of nodes. 

 

Fig. 4. (a) Support for NEM shape function and (b) Plot of the Sibson shape 
function. 

B. Galerkin formulation 

In order to solve (2), the reduced scalar magnetic potential
is used by combine (2), (3) and (4). This potential is 
interpolated using (6). Then, 
to the resulted equation and considering 
permeability in Ωm, we get: 
 

∫∫
ΓΩ

αα+Ωϕα∇µα∇
mm

dbd njjimjji

 
where φm is the reduced magnetic potential, 
induction normal to the boundary and 
magnetic field normal to the boundary.

In order to simplify the notation, (
 

[ ] [ ] QbUS nm =⋅+ϕ⋅ , 
 
with 
 

, ∫∫
ΓΩ

αα=Ωα∇µα∇=
mm

UdS jiijjiij

IV.  BOUNDARY ELEMENT 

If no source field in the free space is taken into account, 
the problem can be represented by a Laplacian equation
term of a total scalar magnetic potential
solve Laplacian equation transforming the volume integral 
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is easy to verify that the Sibson shape functions (6) are 
always positive and less than 1 and that the sum of all terms is 

remark that when x tends towards 
tends towards 1 for node ni and towards 

refore the function is interpolant).   
interpolating character of the Sibson shape functions 

allows the easy application of the boundary conditions. 
Furthermore, the shape functions degenerate to a simple linear 

[1]. Fig. 4 (a) depicts the Sibson 
node.  Its support is given by the 

union of all circumcircles passing through this node. 
! Source du renvoi introuvable.(b) 

the elevation of the Sibson shape function on a regular 

. (a) Support for NEM shape function and (b) Plot of the Sibson shape 

the reduced scalar magnetic potential 
combine (2), (3) and (4). This potential is 

 by applying the Galerkin method 
the resulted equation and considering a constant 

∫
Γ

Γµα=Γ
m

dHd ni 0 , (7) 

is the reduced magnetic potential, bn is the magnetic 
induction normal to the boundary and H0n is the source 
magnetic field normal to the boundary. 

In order to simplify the notation, (7) can be rewritten as 

(8) 

.0∫
Γ

Γµα=Γ
m

dHQandd niijj

 
(9) 
 

LEMENT METHOD (BEM) 

in the free space is taken into account, 
the problem can be represented by a Laplacian equation in 
term of a total scalar magnetic potential. The main idea is to 

equation transforming the volume integral 
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equation over Ω0 into a surface integral at the boundary Γm. 
The classical boundary integral equation is obtained by using 
the third Green’s identity [4]. 

Since we have non-meshed coil in the air, the reduced 
magnetic potential φΓ will be introduced. According to (3), we 
get: 
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 (10) 

 
where G(x0,x) is the Green’s function ln(1/r), r is the distance 
between x0 and a point x on the boundary and c(x0) is the solid 
angle subtended by the boundary Γm at x0. 

The interpolation of the potential and the magnetic 
induction normal to the boundary are given by: 

 

( ) ( ) j

N

j
jw ΓΓ ϕ=ϕ ∑

Γ
xx , ( ) ( ) jn

N

j
jn bwb xx ∑

Γ
= , (11) 

 
where NΓ the number of facets of the boundary and wj(x) = 1 if 
x belongs to the boundary element j and wj(x) = 0 otherwise 
(0-order). Equation (11) can be rewritten, as follow: 
 
[ ] [ ] [ ] nnΓ

hTbTH 01=+ϕ . (12) 
 

T, T1 and H matrices are defined as follows: 
 

( ) Γ= ∫
Γ

dG
µ

T

jm

ij ji xx ,
1

0

, ( ) Γ= ∫
Γ

dGT

jm

ij ji xx ,1 , 

( ) Γ∇−= ∫
Γ

dGcH

jm

niiij ji xx , , 
(13) 

 
where cii is equals π, since the collocation point is located on 
the centroid of each boundary element.  

There are many ways to perform integration of (13). In this 
work the well-known analytical expression found in [7] has 
been used. 
 

V. COUPLING BOTH METHODS 

By considering conservation of the normal component of 
the magnetic induction and the unicity of the reduced 
magnetic potential on boundary, we get [8]: 

 
 

S  
0     mϕ     

Q  
    

 U     
Γ

ϕ   =   .  (14) 

 0  H  T     nb     n1 hT 0⋅      

 
It's important to remark that the BEM portion of the matrix 

is fully populated and the NEM portion is banded. Moreover 
the equation (14) leads to a linear system which will be solved 
directly. 

By solving the system above, we get the reduced scalar 
magnetic potential on all nodes and bn on the boundary [9].  

VI.  RESULTS 

The validation of the presented scheme was performed 
through the simulation of two test cases.  

A. Results on a test case with analytical solution 

Fig. 5 shows a homogeneous infinite cylinder under the 
influence of a constant magnetic field (H0 = 1 A/m). The 
magnetic domain (cylinder) is modeled using NEM and the 
unbounded domain (air) using BEM.  

 

 

Fig. 5. Infinite cylinder with a constant permeability immersed in a constant 
field H0. The total field is evaluated on the path. 
 

 

Fig. 6. Magnitude of the total magnetic field on path (Fig. 5) using the 
cylinder problem for both analytical and NEM-BEM approach. 

 
The problem was solved with a relatively coarse 

discretization, generating 232 degrees of freedom (which 80 
were on the boundary).Once the problem is solved, the 
integral equation (11) is used to evaluate the reduced scalar 
magnetic potential at the path showed in Fig. 5. Then, since 
the source field is known, by (3) and (4) the total magnetic 
field is evaluated. More details on the evaluating of the total 
magnetic field can be found in [10]. 

Fig. 6 shows the comparison between the analytical result 
and the NEM-BEM one. A good agreement between the 
solutions is verified. 

B. Results on a real case 

Fig.7 shows a magnetic circuit with a non-meshed coil. In 
order to test the robustness of the proposed scheme the 
magnetic induction was computed on two paths: the first one 
in the gap between the parts of the device and the second one 
crossing the magnetic circuit. 

Once there is no exact analytical solution to this problem, a 
2nd order FEM solution was used as reference. This solution 
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was computed with a very fine mesh. 
 

 

Fig. 7. U shaped contactor. Material with linear permeability and a non-
meshed coil. Two different paths have been considered. 

 
Three different levels of discretization where tested in order 

to test the convergence of the proposed method. Table 1 shows 
the number of degrees of freedom (DoF) for each case. 

Fig. 8 presents the comparison between the tested cases and 
the reference. 

 

 

Fig. 8. Comparison between FEM and the approach presented. Vertical 
component of the magnetic field on path 1. 
 

Results show a fast convergence to the reference value as 
the number of DoF increases. One can remark that the number 
of DoF required to get an accurate result is much lower than 
the one of the reference as shown in table I. 

 

TABLE 1 
DEGREES OF FREEDOM 

 
FEM 2nd 
Reference 

NEM-BEM 
Dense 

NEM-BEM 
Medium 

NEM-BEM 
Coarse 

DOF 129,751  3,745 265 77 
 

Fig. 9 illustrates the magnetic induction on the path 2 
obtained by NEM-BEM and FEM-BEM. Let us notice that 
both solutions use the same number of DoF (4,512) and 
exactly the same node distribution. 

A good agreement between the two methods and the 
reference is achieved. However, one can observe that the 
NEM-BEM provides a much smoother approximation when 
compared to FEM-BEM. 

 

 

Fig. 9. Comparison between FEM and the approach presented. Vertical 
component of the magnetic field on path 2. 

VII.  CONCLUSION 

In this paper, an original hybrid natural element method – 
boundary element method formulation has been presented. 
This scheme is very useful, once the flux linkage is 
automatically taken into account and the mesh dependency is 
drastically reduced. 

The NEM-BEM was able to provide accurate solutions 
even with very coarse discretizations. Besides that, this new 
formulation is attractive because of the easiness on the 
treatment of the unbounded regions and the smoothness of the 
interpolation inside magnetic regions. 
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