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LOGARITHMIC CARTAN GEOMETRY ON COMPLEX MANIFOLDS

INDRANIL BISWAS, SORIN DUMITRESCU, AND BENJAMIN MCKAY

Abstract. We pursue the study of holomorphic Cartan geometry with singularities. We
introduce the notion of logarithmic Cartan geometry on a complex manifold, with polar
part supported on a normal crossing divisor. In particular, we show that the push-forward
of a Cartan geometry constructed using a finite Galois ramified covering is a logarithmic
Cartan geometry (the polar part is supported on the ramification locus). We also study the
specific case of the logarithmic Cartan geometry with the model being the complex affine
space.
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1. Introduction

In a vast generalization of Riemannian geometry, É. Cartan introduced and studied Cartan

geometries (or Cartan connections) which are geometric structures infinitesimally modelled

on homogeneous spaces (see, for example, the excellent survey [Sh]). In particular, Cartan’s

theory encapsulates the study of affine and projective connections on manifolds. It may

be recalled that, historically, the study of complex projective structures (i.e., (flat) Cartan

geometries modelled on the complex projective line) on Riemann surfaces had played a crucial

rôle in the understanding of the uniformization theorem for Riemann surfaces [Gu, St].
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2 I. BISWAS, S. DUMITRESCU, AND B. MCKAY

In higher dimension, it is a very stringent condition for a compact complex manifold to

admit a holomorphic Cartan geometry. In this direction, several authors proved classifica-

tions results for compact complex manifolds bearing holomorphic Cartan geometries (see,

for example, [BD1, BD2, BM, Du, IKO, JR1, KO1, KO2, KO3, JR2]).

The notion of a (nonsingular) holomorphic Cartan geometry on a compact complex mani-

fold being too rigid, it seems natural to allow mild singularities of the geometric structure. In

this direction the first two authors introduced and studied in [BD1] the more flexible concept

of branched Cartan geometry which is stable by pull-back through any holomorphic ramified

map (see also [BD2]). In particular, any compact complex projective manifold admits (flat)

branched complex projective structures (locally modelled on the complex projective space

of the same dimension) [BD1, BD2].

We pursue here the study of Cartan geometries with singularities and the aim of this

article is to introduce the notion of logarithmic Cartan geometry. To explain with more de-

tails, we define logarithmic Cartan geometries (on complex manifolds) with model (G, H),

where G is a complex affine Lie group (e.g. admitting linear holomorphic representations

with discrete kernel) and H is a closed complex subgroup in it. On the complement of the

support of the singular (polar) part (which is allowed to be a normal crossing divisor) we

recover the classical definition of a holomorphic Cartan geometry with model (G, H). The

extension of the Cartan geometry across the polar part is realized by an extension of a linear

bundle associated to the holomorphic principal G-bundle of the Cartan geometry through

a linear representation (with discrete kernel) of the group G together with an extension on

it of the natural connection inherited by the Cartan geometry as a logarithmic connection.

This is worked out with details in Section 2 and Section 3. Our definition generalizes the

notions of logarithmic affine and projective connections on complex manifolds introduced

and studied by Kato in [Ka]. In particular, [Ka] constructs interesting examples of compact

complex simply connected non-Kähler manifolds admitting logarithmic holomorphic projec-

tive connections, that admit no holomorphic projective connections (with empty singular

part).

In Section 3 we also prove Theorem 3.4 which asserts that the push-forward of a holomor-

phic Cartan geometry through a finite Galois ramified cover is a logarithmic Cartan geometry

in our sense. In this case the support of the polar part coincides with the ramification locus.

It may be recalled that the related topics of Cartan geometries on orbifolds was studied in

[Zh].

Section 4 is focused on a specific study of the logarithmic Cartan geometry whose model

is the complex affine space.

2. Logarithmic connection

LetM be a connected complex manifold of complex dimension d. The holomorphic tangent

bundle of M will be denoted by TM , while its holomorphic cotangent bundle of it will be

denoted by Ω1
M .
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A reduced effective divisor D ⊂ M is said to be a normal crossing divisor if for every

point x ∈ D there are holomorphic coordinate functions z1, · · · , zd defined on an Euclidean

open neighborhood U ⊂ M of x with z1(x) = · · · = zd(x) = 0, and there is an integer

1 ≤ k ≤ d, such that

D ∩ U = {y ∈ U | z1(y) · · · · · zk(y) = 0} (2.1)

(cf. [Co]). Note that it is not assumed here that the irreducible components of the divisor

D are smooth.

Take a normal crossing divisor D on M . Let

TM(− logD) ⊂ TM

be the coherent analytic subsheaf generated by all locally defined holomorphic vector fields

v on M such that v(OM(−D)) ⊂ OM(−D). In other words, if v is a holomorphic vector

field defined over U ⊂ M , then v is a section of TM(− logD)|U if and only if v(f)|U∩D = 0

for all holomorphic functions f on U that vanish on U ∩ D. It is straightforward to check

that the stalk of sections of TM(− logD) at the point x in (2.1) is generated by

z1
∂

∂z1

, · · · , zk
∂

∂zk
,

∂

∂zk+1

, · · · , ∂

∂zd
.

The condition that D is a normal crossing divisor implies that the coherent analytic sheaf

TM(− logD) is in fact locally free. Note that we have TM ⊗ OM(−D) ⊂ TM(− logD);

this inclusion is strict if dimM > 1.

Restricting the above inclusion homomorphism TM(− logD) ↪→ TM to the divisor D,

we obtain a homomorphism

ψ : TM(− logD)|D −→ TM |D (2.2)

Let

L := kernel(ψ) ⊂ TM(− logD)|D (2.3)

be the kernel. To describe L, let

ν : D̃ −→ D

be the normalization of the divisor D; the given condition on D implies that this D̃ is

smooth. Now L is identified with the direct image

L = ν∗OD̃ , (2.4)

where ν is the above projection. The key point in the construction of the isomorphism

in (2.4) is the following: Let Y be a Riemann surface and y0 ∈ Y a point; then for any

holomorphic coordinate function z around y0, with z(y0) = 0, the evaluation of the local

section z ∂
∂z

of TY ⊗OY (−y0) at the point y0 does not depend on the choice of the coordinate

function z.

Consider the Lie bracket operation on the locally defined holomorphic vector fields on M .

It can be shown that the holomorphic sections of TM(− logD) are closed under this Lie
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bracket operation. Indeed, if v1, v2 are holomorphic sections of TM(− logD) over U ⊂ M ,

and f is a holomorphic function on U that vanishes on U ∩D, then from the identity

[v1, v2](f) = v1(v2(f))− v2(v1(f))

we conclude that the function [v1, v2](f) also vanishes on U ∩D.

The dual vector bundle TM(− logD)∗ is denoted by Ω1
M(logD). Note that

(TM)∗ = Ω1
M ⊂ Ω1

M(logD) ;

the inclusion of Ω1
M in Ω1

M(logD) is the dual of the inclusion of TM(− logD) in TM .

For every integer i ≥ 0, define

Ωi
M(logD) :=

∧i
Ω1
M(logD) .

Let

η : D ↪→ M

be the inclusion map. Taking dual of the homomorphism ψ (see (2.2)), and using (2.4), we

get the following short exact sequence of coherent analytic sheaves on M

0 −→ Ω1
M −→ Ω1

M(logD)
R−→ (η ◦ ν)∗OD̃ −→ 0 ,

where ν is the map in (2.4) and η is the above inclusion map of D; the above homomorphism

R is known as the residue map.

We refer the reader to [Sa] for more details on logarithmic forms and logarithmic vector

fields.

Now let H be a complex Lie group. The Lie algebra of H will be denoted by h. Let

p : EH −→ M (2.5)

be a holomorphic principal H–bundle; we recall that this means that EH is a holomorphic

fiber bundle over M equipped with a holomorphic right-action of the group H

q′ : EH ×H −→ EH (2.6)

such that p(q′(z, h)) = p(z) for all (z, h) ∈ EH ×H, where p is the projection in (2.5) and,

furthermore, the resulting map to the fiber product

EH ×H −→ EH ×M EH , (z, h) −→ (z, q′(z, h))

is a biholomorphism. For notational convenience, the point q′(z, h) ∈ EH , where (z, h) ∈
EH ×H, will be denoted by zh.

Let dp : TEH −→ p∗TM be the differential of the projection p in (2.5). Let

K := kernel(dp) ⊂ TEH

be the kernel of dp. So we have the following short exact sequence of holomorphic vector

bundles on EH :

0 −→ K −→ TEH
dp−→ p∗TM −→ 0 . (2.7)
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Consider the action of H on the tangent bundle TEH given by the action of H on EH in

(2.6). The quotient (TEH)/H is a holomorphic vector bundle over EH/H = M . It is the

Atiyah bundle for EH ; let At(EH) denote this Atiyah bundle (see [At]).

The action of H on TEH evidently preserves the subbundle K in (2.7). The quotient

ad(EH) := K/H −→ EH/H = M

is called the adjoint vector bundle for EH . We note that ad(EH) is identified with the

holomorphic vector bundle EH ×H h −→ M associated to the principal H–bundle EH for

the adjoint action of H on the Lie algebra h. This isomorphism between K/H and EH×H h is

obtained from the fact that the action of H on EH identifies K with the trivial holomorphic

vector bundle EH ×h over EH with fiber h. Therefore, every fiber of ad(EH) is a Lie algebra

isomorphic to h.

Taking quotient of the vector bundles in (2.7) by the actions of H, from (2.7) we get a

short exact sequence of holomorphic vector bundles over M

0 −→ ad(EH) := K/H −→ (TEH)/H =: At(EH)
β′−→ (p∗TM)/H = TM −→ 0 ,

(2.8)

which is known as the Atiyah exact sequence for EH (see [At]); the differential dp descends

to the surjective homomorphism β′ in (2.8).

A holomorphic connection on EH is a holomorphic homomorphism of vector bundles

ϕ′ : TM −→ At(EH)

such that β′ ◦ ϕ′ = IdTM [At].

As before, let D ⊂ M be a normal crossing divisor. Since p in (2.5) is a holomorphic

submersion, the inverse image

D̂ := p−1(D) ⊂ EH

is also a normal crossing divisor. The action of H on the tangent bundle TEH , given by the

holomorphic action of H on EH in (2.6), clearly preserves the subsheaf TEH(− log D̂) ⊂
TEH . The corresponding quotient

At(EH)(− logD) := TEH(− log D̂)/H −→ M

is evidently a holomorphic vector bundle over M ; it is called the logarithmic Atiyah bundle.

Note that we have K ⊂ TEH(− log D̂), and also dp(TEH(− log D̂)) = p∗(TM(− logD)).

Therefore, the short exact sequence in (2.7) gives the following short exact sequence of

holomorphic vector bundles over EH

0 −→ K −→ TEH(− log D̂)
d′p−→ p∗(TM(− logD)) −→ 0 ; (2.9)

the restriction of the homomorphism dp in (2.7) to TEH(− log D̂) is denoted by d′p.

Exactly as done in (2.8), take quotient of the vector bundles in (2.9) by the actions of H.

From (2.9) we get a short exact sequence of holomorphic vector bundles over M

0 −→ ad(EH) := K/H ι0−→ (TEH(− log D̂))/H =: At(EH)(− logD) (2.10)
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β−→ (p∗(TM(− logD)))/H = TM(− logD) −→ 0 ;

it is called the logarithmic Atiyah exact sequence for EH . The homomorphism β in (2.10) is

the restriction β′ in (2.8).

A logarithmic connection on EH singular over D is a holomorphic homomorphism of vector

bundles

ϕ : TM(− logD) −→ At(EH)(− logD)

such that

β ◦ ϕ = IdTM(− logD) , (2.11)

where β is the projection in (2.10). In other words, giving a logarithmic connection on EH
singular over D is equivalent to giving a holomorphic splitting of the short exact sequence

in (2.10). See [De] for logarithmic connections (see also [BHH]).

2.1. Curvature. As noted before, the locally defined holomorphic sections of the loga-

rithmic tangent bundles TM(− logD) and TEH(− log D̂) are closed under the Lie bracket

operation of vector fields. The locally defined holomorphic sections of the subbundle K in

(2.7) are clearly closed under the Lie bracket operation. The homomorphisms in the exact

sequence (2.7) are all compatible with the Lie bracket operation. Since the Lie bracket op-

eration commutes with diffeomorphisms, for any two H–invariant holomorphic vector fields

v, w defined on an H–invariant open subset of EH , their Lie bracket [v, w] is again holo-

morphic and H–invariant. Therefore, the sheaves of sections of the three vector bundles in

(2.10) are all equipped with a Lie bracket operation. Moreover, all the homomorphisms in

(2.10) commute with these operations.

Take a homomorphism

ϕ : TM(− logD) −→ At(EH)(− logD)

satisfying the condition stated in (2.11). Then for any two holomorphic sections v1, v2 of

TM(− logD) over U ⊂ M , consider

K(v1, v2) := [ϕ(v1), ϕ(v2)]− ϕ([v1, v2]) .

The projection β in (2.10) intertwines the Lie bracket operations on the sheaves of sections

of At(EH)(− logD) and TM(− logD), and hence we have β(K(v1, v2)) = 0. Consequently,

from (2.10) it follows that K(v1, v2) is a holomorphic section of ad(EH) over U . From the

identity [fv, w] = f [v, w]− w(f) · v, where f is a holomorphic function while v and w are

holomorphic vector fields, it follows that

K(fv1, v2) = fK(v1, v2) .

Also, we have K(v1, v2) = −K(v2, v1). Therefore, the mapping (v1, v2) 7−→ K(v1, v2)

defines a holomorphic section

K(ϕ) ∈ H0(M, Ω2
M(logD)⊗ ad(EH)) . (2.12)

The section K(ϕ) in (2.12) is called the curvature of the logarithmic connection ϕ.
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2.2. Residue. Restricting to D the exact sequences in (2.10) and (2.8), we get the following

commutative diagram

0 −→ ad(EH)|D
ι̂0−→ At(EH)(− logD)|D

β̂−→ TM(− logD)|D −→ 0

‖
yµ yψ

0 −→ ad(EH)|D
ι1−→ At(EH)|D

β̂′−→ TM |D −→ 0

(2.13)

whose rows are exact; the map ψ is the one in (2.2) and µ is the homomorphism given by the

natural homomorphism At(EH)(− logD) −→ At(EH). In (2.13) the following convention is

employed: the restriction to D of a map on M is denoted by the same symbol after adding

a hat. From (2.3) we know that the kernel of ψ is L = ν∗OD̃ (see (2.4)). Let

ιL : L −→ TM(− logD)|D
be the inclusion map.

Let ϕ : TM(− logD) −→ At(EH)(− logD) be a logarithmic connection on EH singular

over D. Consider the composition

ϕ̂ ◦ ιL : L −→ At(EH)(− logD)|D
(the restriction of ϕ to D is denoted by ϕ̂). From the commutativity of the diagram in (2.13)

it follows that

β̂′ ◦ µ ◦ ϕ̂ ◦ ιL = ψ ◦ β̂ ◦ ϕ̂ ◦ ιL . (2.14)

But β̂ ◦ ϕ̂ = IdTM(− logD)|D by (2.11), while ψ ◦ ιL = 0 by (2.3), so these two together imply

that ψ ◦ β̂ ◦ ϕ̂ ◦ ιL = 0. Hence from (2.14) we conclude that

β̂′ ◦ µ ◦ ϕ̂ ◦ ιL = 0 .

Now from the exactness of the bottom row in (2.13) it follows that the image of µ ◦ ϕ̂ ◦ ιL is

contained in the image of the injective map ι1 in (2.13). Therefore, µ ◦ ϕ̂ ◦ ιL defines a map

Rϕ : L −→ ad(EH)|D . (2.15)

The homomorphism Rϕ in (2.15) is called the residue of the logarithmic connection ϕ [De].

3. Logarithmic Cartan geometry

3.1. Definition. Let G be a complex connected Lie group and H ⊂ G a complex Lie

subgroup. The Lie algebras of G and H will be denoted by g and h respectively. We recall

that a holomorphic Cartan geometry of type (G, H) on a complex manifold M is a pair of

the form (E ′H , θ
′), where E ′H is a holomorphic principal H–bundle over M , and

θ′ : TE ′H −→ E ′H × g

is a holomorphic homomorphism of vector bundles over E ′H such that

(1) θ′ is an isomorphism,

(2) θ′ is H–equivariant (the action of H on TE ′H is given by the action of H on E ′H ,

while the action of H on g is given by conjugation), and
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(3) the restriction of θ′ to the fiber (E ′H)m coincides with the Maurer–Cartan form of H

for every point m ∈ M .

(see [Sh] for more details).

Let E ′G := E ′H(G) = E ′H×HG be the holomorphic principal G–bundle on M obtained by

extending the structure group of the holomorphic principal H–bundle E ′H using the inclusion

of H in G. The adjoint bundle of E ′G will be denoted by ad(E ′G). The inclusion of h in g

produces an injective homomorphism of holomorphic Lie algebra bundles

ad(E ′H) −→ ad(E ′G) .

Giving a homomorphism θ′ satisfying the above three conditions is equivalent to giving a

holomorphic isomorphism

θ′′ : At(E ′H) −→ ad(E ′G) ,

where At(E ′H) is the Atiyah bundle for E ′H , such that the following diagram is commutative

0 −→ ad(E ′H) −→ At(E ′H) −→ TM −→ 0

‖
yθ′′ y

0 −→ ad(E ′H) −→ ad(E ′G) −→ ad(E ′G)/ad(E ′H) −→ 0

(3.1)

with the top row being the Atiyah exact sequence for E ′H (see (2.8)) (see, for example,

[BD1, BD2]).

Fix a pair (V, χ), where V is a finite dimensional complex vector space, and

χ : G −→ GL(V )

is a holomorphic homomorphism satisfying the condition that the corresponding homomor-

phism of Lie algebras

dχ : g −→ Lie(GL(V )) = End(V ) (3.2)

is injective. Notice that such a homomorphism always exists for G simply connected (by

Ado’s Theorem) and for G semi-simple (see Theorem 3.2, Chapter XVII in [Ho]). Complex

Lie groups G admitting holomorphic linear representations with discrete kernel are called

complex affine. A complex Lie group with finitely many connected components is complex

affine exactly when it admits a holomorphic finite dimensional faithful representation, which

occurs just when its identity component is a holomorphic semidirect product of a connected

and simply connected solvable complex Lie group and a connected reductive complex linear

algebraic group [HiNe, p. 601, Theorem 16.3.7].

Let E ′H be a holomorphic principal H–bundle over M and

θ′ : TE ′H −→ E ′H × g

a holomorphic homomorphism of vector bundles such that

(1) θ′ is H–equivariant, and

(2) the restriction of θ′ to the fiber (E ′H)m coincides with the Maurer–Cartan form of H

for every point m ∈ M .
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The holomorphic principal GL(V )–bundle

E ′H(GL(V )) = E ′H ×χ GL(V )

over M , obtained by extending the structure group of E ′H using the homomorphism χ|H ,

will be denoted by E ′H(V ).

Lemma 3.1. The above homomorphism θ′ produces a holomorphic End(V )–valued 1–form

on the total space of E ′H(V ) that defines a holomorphic connection on the holomorphic prin-

cipal GL(V )–bundle E ′H(V ).

Proof. We recall that E ′H(V ) is a quotient of E ′H×GL(V ) where two points (y1, g1), (y2, g2) ∈
E ′H × GL(V ) are identified if there is an element h ∈ H such that y2 = y1h and g2 =

χ(h)−1g1. Now θ′ and the Maurer–Cartan form on GL(V ) (for the left–translation action of

GL(V ) on itself) together define a holomorphic 1–form ω on E ′H ×GL(V ) with values in the

Lie algebra End(V ). More precisely, for tangent vectors v ∈ TyE
′
H and w ∈ TgGL(V ),

ω(y,g)(v, w) = (dχ ◦ Ad(g−1) ◦ θ′)(v) +MCg(w) ,

where MC denotes the Maurer–Cartan form on GL(V ) for the left–translation action of

GL(V ) on itself and Ad denotes the adjoint representation of G in its Lie algebra, while dχ

is the homomorphism in (3.2). Now it is straight-forward to check that ω is H-invariant and

vanishes on the H-orbits. It follows that ω is basic: it descends to the quotient space E ′H(V )

as a holomorphic 1–form with values in End(V ). This End(V )–valued 1–form on E ′H(V )

clearly defines a holomorphic connection.

To describe the above connection on E ′H(V ) as a splitting of the Atiyah exact sequence,

we first note that the Atiyah bundle At(E ′H(V )) (see (2.8)) is the quotient

At(E ′H(V )) = (At(E ′H)⊕ ad(E ′H(V )))/ad(E ′H)

for the homomorphism

ξ : ad(E ′H) −→ At(E ′H)⊕ ad(E ′H(V )) (3.3)

which is constructed as follows. Since E ′H(V ) is the principal GL(V )–bundle on M obtained

by extending the structure group of the E ′H using χ|H , the corresponding homomorphism of

Lie algebras

dχ|H : H −→ End(V )

produce a homomorphism

α : ad(E ′H) −→ ad(E ′H(V )) .

Let ι0 be the inclusion of ad(E ′H) in At(E ′H) (see (2.8)). The homomorphism ξ in (3.3) is

defined by v 7−→ (ι0(v), −α(v)).

As noted before, the homomorphism θ′ produces a homomorphism

θ′′ : At(E ′H) −→ ad(E ′G) ;

the homomorphism θ′′ has the property that the diagram in (3.1) is commutative. Since

E ′H(V ) coincides with the principal GL(V )–bundle on M obtained by extending the structure
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group of the principal G–bundle E ′G using χ, the homomorphism of Lie algebras dχ : g −→
End(V ) produces a holomorphic homomorphism Lie algebra bundles

α′ : ad(E ′G) −→ ad(E ′H(V )) .

Now consider the homomorphism

ϕ̂′ : At(E ′H)⊕ ad(E ′H(V )) −→ ad(E ′H(V )) , (v, w) 7−→ α′ ◦ θ′′(v) + w .

Since ϕ̂′ vanishes on the image of the homomorphism ξ in (3.3), we conclude that ϕ̂′ descends

to a homomorphism

ϕ′ : At(E ′H(V )) −→ ad(E ′H(V ))

from the quotient bundle At(E ′H(V ))/ξ(ad(E ′H)) = At(E ′H(V )). It is straightforward to

check that ϕ′ gives a holomorphic splitting of the Atiyah exact sequence for E ′H(V ). There-

fore, ϕ′ defines a holomorphic connection on E ′H(V ). �

For notational convenience the quadruple (H, G, V, χ) will be denoted by H.

As before, D ⊂ M is a normal crossing divisor.

Definition 3.2. A logarithmic Cartan geometry of type H on M with polar part on D is a

triple of the form (EH , θ, ÊH(V )), where

• EH is a holomorphic principal H–bundle over the complement M \D, and

θ : TEH −→ EH × g

is a holomorphic homomorphism of vector bundles over EH , such that (EH , θ) is a

holomorphic Cartan geometry of type (G, H) on M \D, and

• q0 : ÊH(V ) −→ M is an extension of the principal GL(V )–bundle EH(V ) on M \D
to a holomorphic principal GL(V )–bundle on M such that the homomorphism

TEH(V ) −→ EH(V )× End(V ) ,

constructed in Lemma 3.1 from θ, extends to a homomorphism

TÊH(V )(− log q−1
0 (D)) −→ ÊH(V )× End(V )

(note that q−1
0 (D) ⊂ ÊH(V ) is a normal crossing divisor).

Consider the holomorphic vector bundle EH(V ) ×GL(V ) V on M \ D associated to the

holomorphic principal GL(V )–bundle EH(V ) for the standard action of GL(V ) on V . For

notational convenience, this vector bundle on M\D will be denoted by EV
H . We note that any

connection on the principal GL(V )–bundle EH(V ) induces a connection on the associated

vector bundle EV
H . Conversely, any connection on EV

H produces a connection on the principal

GL(V )–bundle EH(V ). More precisely, there is a natural bijection between the connections

on EV
H and the connections on the principal GL(V )–bundle EH(V ).

The following lemma produces an alternative formulation of the definition of a logarithmic

Cartan geometry of type H on M with polar part on D.
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Lemma 3.3. Take a pair (EH , θ) defining a holomorphic Cartan geometry of type (G, H)

on M \ D. Giving an extension q0 : ÊH(V ) −→ M of EH(V ) to a holomorphic principal

GL(V )–bundle on M , such that (EH , θ, ÊH(V )) is a logarithmic Cartan geometry of type H
on M , is equivalent to giving an extension of the holomorphic vector bundle EV

H on M \D
to a holomorphic vector bundle ÊV

H on M such that holomorphic connection on EV
H given by

θ in Lemma 3.1 extends to a logarithmic connection on the holomorphic vector bundle ÊV
H .

Proof. This is a consequence of the following general fact. Let F be a holomorphic vector

bundle on M whose rank coincides with the dimension of V . Let

q1 : F −→ M

denote the associated holomorphic principal GL(V )–bundle on M ; so F is the space of all

isomorphisms from V to the fibers of F . Let∇ be a holomorphic connection on the restriction

F |M\D. The End(V )–valued holomorphic 1–form on F|M\D giving the connection on F|M\D
corresponding to ∇ will be denoted by ω∇. Then ∇ is a logarithmic connection on F if and

only if ω∇ extends to a homomorphism

TF(− log q−1
1 (D)) −→ F× End(V )

over F. The lemma follows immediately from this. �

3.2. Flatness. A logarithmic Cartan geometry (EH , θ, ÊH(V )), of type H on M with polar

part on D, is called flat if the curvature of the logarithmic connection on ÊV
H given by θ

vanishes identically. Clearly, the curvature of the logarithmic connection on ÊV
H given by θ

vanishes identically if and only if the curvature of the holomorphic connection on EV
H given

by θ vanishes identically.

3.3. A construction of logarithmic Cartan geometry. As before, M is a connected

complex manifold with a normal crossing divisor D. Let N be a connected complex manifold,

and let

$ : N −→ M (3.4)

be a ramified finite Galois covering such that the ramification locus in M coincides with D.

The Galois group for $ will be denoted by Γ.

Take H = (H, G, V, χ) as above. Let p′ : E ′H −→ N be a holomorphic principal

H–bundle on N equipped with an action of Γ

ρ : Γ× E ′H −→ E ′H

satisfying the following conditions:

• the projection p′ is Γ–equivariant,

• the actions of Γ and H on E ′H commute, and

• for every g ∈ Γ, the diffeomorphism E ′H −→ E ′H defined by z 7−→ ρ(g, z) is

holomorphic.
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The action of Γ on E ′H produces an action of Γ on TE ′H . Let

θ′ : TE ′H −→ E ′H × g

be a holomorphic isomorphism of vector bundles such that

• the pair (E ′H , θ
′) defines a holomorphic Cartan geometry of type (G, H) on N , and

• the homomorphism θ′ is Γ–equivariant.

Theorem 3.4. The above pair (E ′H , θ
′) produces a logarithmic Cartan geometry of type H

on M with polar part on D.

Proof. Consider $ in (3.4). Since the restriction

$|N\$−1(D) : N \$−1(D) −→ M \D

is an étale Galois covering, the quotient

EH := (E ′H |N\$−1(D))/Γ (3.5)

is a holomorphic principal H–bundle on M \D. The homomorphism θ′, being Γ–equivariant,

descends to a homomorphism

θ : TEH −→ EH × g . (3.6)

It is evident that this pair (EH , θ) defines a holomorphic Cartan geometry of type (G, H)

on M \D.

Let

W := E ′H ×χ V −→ N

be the holomorphic vector bundle over N associated to the principal H–bundle E ′H for the

action of H on V given by χ|H . Note that the holomorphic principal GL(V )–bundle E ′H(V ),

obtained by extending the structure group of the principal H–bundle E ′H using χ|H , coincides

with the frame bundle for W (this frame bundle is the space of all isomorphisms from V

to the fibers of W). The action of Γ on E ′H induces an action of Γ on every fiber bundle

associated to E ′H . In particular, Γ acts on the vector bundle W. More explicitly, the action

of Γ on E ′H and the trivial action of Γ on V together produce an action of Γ on E ′H × V .

This action of Γ on E ′H × V descends to the quotient space W of E ′H × V .

Consider the direct image $∗W on M , where $ is the map in (3.4). It is a locally free

coherent analytic sheaf, because $ is a finite map (higher direct images vanish). In other

words, $∗W is a holomorphic vector bundle on M . The action of Γ on W produces an action

of Γ on the holomorphic vector bundle $∗W. For any g ∈ Γ, let

τg : $∗W −→ $∗W (3.7)

be the automorphism of $∗W given by this action g on it. Consider the coherent analytic

sheaf on M given by the Γ–invariant part

($∗W)Γ ⊂ $∗W .
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Since Γ is a finite group, the inclusion of ($∗W)Γ in $∗W splits holomorphically. In fact the

kernel of the endomorphism ∑
g∈Γ

τg : $∗W −→ $∗W

(the homomorphism τg is defined in (3.7)) is a direct summand of the Γ–invariant part

($∗W)Γ, while the image of
∑

g∈Γ τg coincides with ($∗W)Γ. Since ($∗W)Γ is a direct

summand of the holomorphic vector bundle $∗W, we conclude that the coherent analytic

sheaf

Ŵ := ($∗W)Γ (3.8)

is also a holomorphic vector bundle on M .

The restriction Ŵ|M\D is clearly identified with the quotient (W|N\$−1(D))/Γ, and hence

Ŵ|M\D is the holomorphic vector bundle over M \D associated to the principal H–bundle

EH in (3.5) for the action of H on V given by χ|H .

From Lemma 3.1 we know that θ produces a holomorphic connection on the holomorphic

vector bundle over M \D associated to the principal H–bundle EH for the action of H on

V given by χ|H . In view of the above mentioned isomorphism of this vector bundle with

Ŵ|M\D, we conclude that θ produces a holomorphic connection on Ŵ|M\D. Let ∇V denote

this holomorphic connection on Ŵ|M\D given by θ.

We want to show that the triple (EH , θ, Ŵ) defines a logarithmic Cartan geometry of

type H on M with polar part on D. In view of Lemma 3.3, it suffices to prove that the

above holomorphic connection ∇V on Ŵ|M\D is a logarithmic connection on Ŵ.

Let

∇W : W −→ W⊗ Ω1
N

be the holomorphic connection on W constructed using θ′ in Lemma 3.1. It gives a homo-

morphism of sheaves

$∗∇W : $∗W −→ $∗(W⊗ Ω1
N) .

Since θ′ is Γ–equivariant, it follows that this homomorphism $∗∇W maps the invariant

subsheaf ($∗W)Γ to ($∗(W⊗ Ω1
N))Γ. Let

($∗∇W)Γ : Ŵ := ($∗W)Γ −→ ($∗(W⊗ Ω1
N))Γ

be this restriction of $∗∇W. We know that

($∗(W⊗ Ω1
N))Γ ⊂ ($∗W)Γ ⊗ Ω1

M(logD) = Ŵ⊗ Ω1
M(logD)

[Bi, p. 525, Lemma 4.11]. Consequently, the above homomorphism ($∗∇W)Γ defines a

logarithmic connection on the holomorphic vector bundle Ŵ.

On the other hand, the restriction of this logarithmic connection ($∗∇W)Γ to M \ D
clearly coincides with the connection ∇V on Ŵ|M\D constructed earlier from θ. Therefore,

we conclude that the above holomorphic connection ∇V on the holomorphic vector bundle

Ŵ|M\D is a logarithmic connection on Ŵ. As noted before, this completes the proof of the

theorem. �
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4. Logarithmic affine structure

In this section we study logarithmic Cartan geometries modelled on the complex affine

space.

Consider the semidirect product

G := Cd o GL(d,C)

for the standard action of GL(d,C) on Cd. Note that G is the group of affine transformations

of Cd. Also, G is realized as a closed algebraic subgroup of GL(d+1,C) in the following way.

Consider all linear automorphisms A of Cd⊕C = Cd+1 such that A(Cd) = Cd and A(0, 1) =

(v, 1), where 0, v ∈ Cd. The element (v, A|Cd) ∈ G is mapped to A ∈ GL(d+ 1,C).

Let H := GL(d,C) ⊂ G be the complex algebraic; it is the isotropy subgroup for 0 ∈ Cd

for the action of G on Cd. Set V = Cd+1, and

χ : G −→ GL(V )

to be the restriction to G of the standard action of GL(d+ 1,C) on Cd+1. As before, denote

(H, G, V, χ) by H.

A holomorphic affine structure on a complex manifold M is a holomorphic Cartan geome-

try on M of type (G, H). Let (EH , θ) be a holomorphic Cartan geometry of type (G, H) on

M . As before, the holomorphic vector bundle EH ×χ V associated to EH for the homomor-

phism χ|H will be denote by EV
H . The homomorphism θ produces a holomorphic connection

on the holomorphic vector bundle EV
H (see Lemma 3.1). The holomorphic connection on EV

H

induced by θ will be denoted by ∇V .

As before, EG denotes the holomorphic principal G–bundle on M obtained by extending

the structure group of EH using the inclusion of H in G. It is known that θ induces

a holomorphic connection on the principal G–bundle EG (see, for example, Appendix A,

Section 3 in [Sh]). Let ∇G denote this holomorphic connection on EG given by θ. We note

that the holomorphic connection on the associated holomorphic vector bundle EG×χV = EV
H

induced by ∇G coincides with the above connection ∇V . Let

φ : G −→ GL(d,C) (4.1)

be the natural projection. The holomorphic vector bundle EG ×φ Cd of rank d on M ,

associated to EG for the action of G on Cd given by φ in (4.1), is the holomorphic tangent

bundle TM . The connection ∇G on EG induces a holomorphic connection on the associated

vector bundle EG ×φ Cd = TM . This connection on TM will be denoted by ∇T .

As before, D ⊂ M is a normal crossing divisor.

A logarithmic affine structure on M with polar part on D is a logarithmic Cartan geometry

on M of type H with polar part on D. Therefore, a logarithmic affine structure on M with

polar part on D consists of

• a holomorphic Cartan geometry (EH , θ) on M \D of type (G, H), and
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• a holomorphic extension of the holomorphic vector bundle EV
H on M \D to a holo-

morphic vector bundle ẼV
H on M such that the holomorphic connection on EV

H given

by θ is a logarithmic connection on the holomorphic vector bundle ẼV
H .

The complement M \D will be denoted by M ′. Let (EH , θ, Ẽ
V
H) be a logarithmic affine

structure on M with polar part on D. Consider the holomorphic connection on TM ′ given

by θ. Since ∇V is a logarithmic connection on ẼV
H , and TM ′ is a holomorphic subbundle

of EV
H preserved by ∇V , it follows that TM ′ generated a holomorphic subbundle T̃ ⊂ ẼV

H

such that

(1) T̃ |M ′ = TM ′ ⊂ EV
H ,

(2) T̃ is preserved by the logarithmic connection on ẼV
H given by θ, and

(3) the restriction to the subbundle T̃ , of the logarithmic connection on ẼV
H , is a loga-

rithmic connection.

Consider the standard action of

H ⊂ G ⊂ Cd o GL(d,C) ⊂ GL(d+ 1,C)

on V = Cd+1. This H–module decomposes as

Cd+1 = Cd ⊕ C , (4.2)

where the action of H = GL(d,C) on Cd it the standard one and the action of H on C is

the trivial one.

Let (EH , θ) be a holomorphic affine structure on M ′ := M \D. Using the decomposition

of the H–module in (4.2), the holomorphic vector bundle EV
H on M \ D holomorphically

decomposes as

EV
H = TM ′ ⊕OM ′ . (4.3)

Let T̃M ′ −→ M be a holomorphic vector bundle on M that extends TM ′, meaning

T̃M ′|M ′ = TM ′. Then using (4.3) it follows that

ẼV
H = T̃M ′ ⊕OM (4.4)

is an extension of EV
H to a holomorphic vector bundle over M .

As before, let ∇V be the holomorphic connections on EV
H given by θ, and let ∇T denote

the holomorphic connections on TM ′ given by the holomorphic connection on EG (given by

θ) and the homomorphism φ in (4.1).

Proposition 4.1. If the holomorphic connection ∇V is a logarithmic connection on the

holomorphic vector bundle ẼV
H in (4.4), then the holomorphic connection ∇T on TM ′ is a

logarithmic connection on T̃M ′.

Proof. Consider the holomorphic subbundle OM ′ ⊂ EV
H in (4.3). The holomorphic connec-

tion ∇V on EV
H preserves this subbundle. Hence ∇V induces a holomorphic connection on

the quotient bundle EV
H/OM ′ = TM ′. This induced connection on TM ′ coincides with the
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holomorphic connection ∇T on TM ′. From this it follows immediately that if the holomor-

phic connection ∇V is a logarithmic connection on the holomorphic vector bundle ẼV
H in

(4.4), then the holomorphic connection ∇T on TM ′ is a logarithmic connection on T̃M
′
. �

The converse of Proposition 4.1 it not true in general, meaning we can have a situation

where the holomorphic connection ∇T on TM ′ is a logarithmic connection on T̃M ′, but

the holomorphic connection ∇V is not a logarithmic connection on the holomorphic vector

bundle ẼV
H . However, the following is straightforward to prove.

Proposition 4.2. Assume that

• the holomorphic connection ∇T on TM ′ is a logarithmic connection on T̃M ′, and

• the second fundamental form of the subbundle TM ′ ⊂ EV
H in (4.3) extends to a

section of Ω2
M(logD).

Then the holomorphic connection ∇V is a logarithmic connection on the holomorphic vector

bundle ẼV
H in (4.4).

It may be mentioned that obstructions for a compact complex manifold to admit logarith-

mic affine and projective structures were found in [Ka].
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