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Abstract
This article presents a framework for algorithmic skele-
tons that aims at representing a whole algorithm, both
its sequential and possibly parallelizable parts, in order
to enable making global decisions about its implementa-
tion. With our modeling, a skeleton is described by an
algorithmic structure and a data flow graph, built from the
composition of bones and other skeletons. We introduce
this notion of bones which represents elementary sequen-
tial or parallel patterns whose implementation is available
(from the library or designed by well-aware developers),
whereas skeletons are automatically implemented from
their description. The proposed design, implemented with
Template Metaprogramming (TMP), able to operate both
at compile- and run-time, allows implementing new bones,
describing new skeletons, or simply the instantiation of a
skeleton by providing muscles in the form of sequential
functions.

Once a skeleton is instantiated, one can decide to gener-
ate either a sequential or a parallel code of the algorithm.
To optimize the parallelization process, we propose orches-
trators, in the form of C++ templates that can analyze a
skeleton at compile-time and tune its execution.

A C++ library-based solution is presented, and its
mechanisms and usage are illustrated by implementing
a GRASPxELS algorithm, a common OR metaheuristic,
that enables two levels of parallelism. Performance results
are shown to assert that this approach presents negligible
run-time overhead.

Keywords – algorithmic skeletons; parallelization;
template metaprogramming; task orchestration

1 Introduction
Developing parallel software has become an important issue
in order to take advantage of currently available multiple
cores hardware. It led to the design of many tools helping
developers to design their code using multiple threads with
varying levels of abstraction, from low level interfaces (e.g.
POSIX Threads) to high level ones, that relieve the devel-

oper from directly manipulating threads and rather using
parallelization patterns (e.g. OpenMP, Intel TBB). How-
ever, these tools often still require the developer to know
how parallelization works and source code is interspersed
with parallelization specific instructions. Skeleton-based
approaches [4] provide parallelization patterns as skele-
tons with blank parts which the developer can fill using
functions, the muscles, usually written unknowingly of the
possibility of being inserted into a skeleton. This approach
allows a clear separation of the end developer code from
the parallelization system.

Our work aims at providing an automatic parallelization
utility with the following requirements: being not intrusive
in the domain code; not requiring advanced knowledge
about parallelization; possibly integration into an exist-
ing project; without significant run-time overhead. To
meet this list of requirements, we have selected the widely
used C++ language with its ability to achieve Template
Metaprogramming (TMP) [1]. The design we propose in
this paper represents atomic parallel or sequential patterns
as "bones" that can be used together to build the algorithm
structure. We then pair it with a data flow graph, the
links, to build a full skeleton. By setting muscles to a
skeleton, one can create a body. Bodies can be used as
components of skeletons, but ultimately are to produce
an implementation of the described algorithm using our
library. Eventually, a task orchestrator can be set to con-
trol how the execution is done. Using our library, one can
operate at the lowest level and provide new parallelization
patterns. One can also write generic skeletons that end
developers will use to describe their algorithm to get a par-
allel program from it. One can eventually write decision
algorithms to control how the parallelization is done.

We apply our algorithmic skeleton library to Operational
Research (OR), specifically to a commonly used metaheuris-
tic, GRASPxELS [10], in order to solve Traveling Salesman
Problem (TSP) instances. This metaheuristic requires var-
ious kinds of bones and offers two parallelizable levels,
making it an interesting application to our modeling.

Section 2 presents related work. In section 3, we detail
the use case that serves to support our study. Then we
explain how our modeling fits specifically with our use case,
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and more generally with any case, by presenting first how
we construct skeletons from bones, and how we define mus-
cles. Eventually, we show our data flow representation that
enables flexibility and type safety. Section 4 explains the
instantiation process of skeletons into bodies and the code
generation process from bodies to the desired algorithm.
This section describes the various ways to set muscles
and the skeleton nesting mechanism. Then, section 5 dis-
cusses about task orchestration for which two strategies
are presented. Section 6 shows performance results of our
proposed modeling and the associated library.

2 Related work
There are many low level utilities to write parallel code
using multithreading. For this execution model, various
libraries implementations are available, including the main-
stream POSIX Thread, C++ Standard Library Thread,
and Boost.Thread. These tools expect that users create
and manage the threads themselves. Whereas that allows
a high level of flexibility, advanced knowledge and care-
fulness are required. To avoid working at this level of
detail, one can use many tools. The most widely used
Application Programming Interface (API) in this domain
is OpenMP. Provided as a compiler extension, OpenMP
uses annotations to declare parallelizable code segments.
Threading Building Blocks (TBB) [12], a C++ template
library developed by Intel, provides tools to implement
parallel patterns and a run-time system to map tasks to
physical cores, preventing oversubscription (i.e. the use of
too many threads so the performance is worse than with
fewer threads). Oversubscription results of the generation
of an excessive amount of threads which can occur with
OpenMP. These tools are intrusive and require the multi-
threading utilities to be mixed with the user code. We can
also find languages and code converters [8, 2]. A new lan-
guage implies re-writing all the user code and is therefore
also very intrusive. Code converters require an additional
step in the compilation and can limit the expressiveness in
the target language.

Algorithmic skeletons [4] address the problem of writing
parallel code by defining the overall structure of a paral-
lelizable code segment. Multiple usages of this concept can
be found: Skandium [9] is an algorithmic skeleton Java
library that demonstrates the interest of this technique
in multicore parallelization; Quaff [7] and Muesli [5] are
examples of C++ libraries making use of C++ templates,
and Template Metaprogramming (TMP), to reduce run-
time overhead and maintain a good level of abstraction;
SkePU 2 [6] is another example of a C++ library that uses
templates to implement algorithmic skeletons and generate
parallel software, but it uses a pre-compilation step before
compiling with any C++11 compliant compiler. To our
knowledge, there is no algorithmic skeleton library that
can represent an entire algorithm, including any sequential
part of it. This is probably because algorithmic skeletons

have been created specifically to ease parallel development.
However, this limits the possible code coverage of an al-
gorithmic skeleton library. Representing an algorithm in
one single skeleton even if it contains non-parallelizable
parts is interesting when it comes to making the decision
on how the tasks will be orchestrated over the available
cores. Algorithmic skeletons generally define implicitly the
communication details [9]. This is a choice that reduces
flexibility for the end developer, while making the use of
the skeleton possibly simpler.

From these observations, we propose a framework for
algorithmic skeletons based on 4 layers.

• The first layer defines the atomic parallel or sequential
patterns that will be used to compose algorithms,
which we call bones.

• The second layer contains both the structure definition
of an algorithm, and a representation of the data flow
(the links), that paired together make the skeleton.

• The third layer corresponds to the domain code, that
is the code that the end developer will inject into a
skeleton, the muscles, to define a body.

• The fourth layer is the task orchestration system that
interacts with bones to tune how threads are created
and which tasks are assigned to these threads.

3 Modeling skeletons using tem-
plates

We propose an algorithmic skeleton C++ library, relying on
C++ templates and TMP techniques to represent and pro-
cess algorithmic skeletons during the compilation process.
This makes our library portable and allows us to reduce
the execution time overhead implied by the abstraction
layer we introduce.

In this section, our choices for modeling algorithmic
skeletons with our library are explained. We present here
how to design a GRASPxELS algorithm, a common Op-
erational Research (OR) metaheuristic, that will be our
use case throughout this document. This algorithm is a
combination of two well-known metaheuristics: a Greedy
Random Adaptive Search Procedure (GRASP) whose local
search is an Evolutionary Local Search (ELS) [10]. This
algorithm is interesting because despite of its simplicity, it
raises challenges both in the design of skeletons with TMP,
and in automating parallelization.

The goal of GRASP (cf. algorithm 1) is to find the best
solution 𝑆∗ for an optimization problem 𝑃. Its structure
is composed of a loop, repeating a sequence of two tasks:
a constructive heuristic that randomly builds a solution,
followed by a local search that improves this solution. After
the loop, the best solution 𝑆∗ is selected amongst the
solutions 𝑆𝑖 found at each iteration. Because the iterations
do not depend on each other, they all could be run in
parallel.
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Algorithm 1 GRASP
function GRASP(𝑃)

for 𝑖 = 1..𝑁 do
𝑆𝑖 ← constructiveHeuristic(𝑃)
𝑆𝑖 ← localSearch(𝑃, 𝑆𝑖)

end for
𝑆∗ ← select({𝑆1, 𝑆2, ..., 𝑆𝑁 })
return 𝑆∗

end function

CH ... CH

LS ... LS

Sel

Figure 1: GRASP skeleton

3.1 Skeletons, Muscles, and Bones
An algorithmic skeleton is a parameterized algorithm
where the overall structure is known, but some parts are
willingly let unknown (i.e. the parameters of the skele-
ton, called here the muscles). The GRASP skeleton (cf.
figure 1) can be modeled as a farm [3], a well-known al-
gorithmic structure, where many tasks are independently
performed, here the constructive heuristic (CH) followed by
the local search (LS); and afterwards, the result of one of
them is selected, here the best solution (Sel).

The muscles are the algorithmic elements the developer
must provide to a skeleton in order to fill the blanks left
(in figure 1, each circle corresponds to a slot for a muscle).
These elements can be concrete sequential code (considered
as atomic) or skeletons. The GRASPxELS algorithm is
built from the GRASP skeleton where the LS muscle is
implemented by the ELS skeleton (cf. figure 2), which has
its own muscles.

The goal of the ELS algorithm (cf. algorithm 2 and
figure 2) is to improve a given solution 𝑆 by generating a
set of mutated solutions 𝑆 𝑗 (muscle M), that are improved
through a local search procedure (muscle LS). The best
solution 𝑆∗ of all 𝑆 𝑗 is selected (muscle Sel1) and becomes
the reference solution 𝑆 if better than the previous 𝑆 (mus-
cle Sel2). This procedure is repeated several times. Notice
that the outer loop cannot be parallelized, as each iteration
depends on the previous one (data dependency), whereas
the inner loop can be. The overall GRASPxELS offers
thus the possibility of two levels of parallelization.

In our approach, a skeleton is defined by assembling

Algorithm 2 ELS
function ELS(𝑃, 𝑆)

for 𝑖 = 1..𝑁 do
for 𝑗 = 1..𝑀 do

𝑆 𝑗 ← mutate(𝑆)
𝑆 𝑗 ← localSearch(𝑃, 𝑆 𝑗 )

end for
𝑆∗ ← select1({𝑆1, 𝑆2, ..., 𝑆𝑀 })
𝑆 ← select2(𝑆, 𝑆∗)

end for
return 𝑆

end function

M ... M

T LS ... LS

Sel2 Sel1

Figure 2: ELS skeleton

elementary patterns, which we call bones, with muscles
and skeletons. For instance, to define the GRASP skeleton,
the bone Farm is combined with two muscles in sequence,
CH and LS. Contrary to muscles which implementation is
sequential when provided by the end developer, and con-
trary to skeletons which implementation is automatically
generated by our library, bones have predefined various
implementations (e.g. a sequential code, a multithread
code...) usually provided with the library (notice that well-
aware users can define bones and their implementations).

3.2 Structure and Links
Most libraries implicitly define how the data transfer is
done. For instance, in a bone with two muscles executed
in sequence, one can force the return value of the first
muscle to be the first argument of the second muscle. If it
relieves the developer from deciding for each muscle how
it will interact with others, it is also a constraint when it
comes to writing muscles because one must comply with
the choices done when the library was implemented. We
chose to make this explicit and flexible. For that reason,
we split the description of a skeleton in two parts: the
structure that corresponds strictly to the structure of the
algorithm, and the links that describe the data flow inside
the structure.

Listing 1 shows how to define the structure of the GRASP
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skeleton with our library. CH, LS and Sel correspond to
the muscles in figure 1. The first line makes these muscles
unknown at this point. We use two bones, Serial which
simply executes tasks in sequence, and FarmSel which
is an association of a classic farm skeleton followed by a
selection. Our implementation of FarmSel in its selection
part targets scalability with high number of threads (i.e.
high number of generated outputs to filter), hence it does
not strictly correspond to figure 1 because the selection
function will not be called with all the generated outputs
but only with a pair to compare.

1 template<typename CH, typename LS, typename Sel>
2 using SkGraspStructure =
3 S<FarmSel,
4 S<Serial, CH, LS>,
5 Sel
6 >;

Listing 1: GRASP skeleton structure definition

Listing 2 shows how to define the links for the GRASP
skeleton. Muscles and bones can be considered as callables
(i.e. functions, functors or lambdas in C++), meaning
that the nature of the parameters they accept and what
they return can be described using a function signature.
Line 8 states that muscle Sel gets two solutions and returns
one. In this particular case, it is the FarmSel bone that
sets which arguments are given to the muscle (here, the
arguments are 𝑆∗ and one of the 𝑆𝑖, for each iteration).

1 template<typename Problem, typename Solution>
2 using SkGraspLinks =
3 L<FarmSel, Solution(Problem const&),
4 L<Serial, R<1>(P<0>),
5 Solution(P<0>),
6 Solution(P<0>, R<0>)
7 >,
8 Solution(Solution const&, Solution const&)
9 >;

Listing 2: GRASP skeleton links definition

To transfer values from one muscle or bone to another,
placeholders are used: P<i> means the parameter of index
i of the upper bone, R<i> means the return of the muscle
of index i in the current bone. For instance, P<0> at
line 5 means that the argument of muscle CH is the first
parameter of Serial bone, which is also a placeholder for
the first parameter of FarmSel bone that is the problem
𝑃 of algorithm 1 to optimize. R<0> at line 6 means that
the second argument of LS is the return value of muscle
CH (at line 5), which is the solution 𝑆𝑖 of the constructive
heuristic of algorithm 1.

Each muscle is described as a single function signature.
The structural elements, bones Serial and FarmSel, must
keep their organization as defined in the structure of the
skeleton. However, they also have a function signature,
with the same placeholder mechanism. For instance, R<1>
at line 4 means that the return value of Serial bone will
be the return value of muscle LS, which is the solution 𝑆𝑖
of the local search of algorithm 1.

One last thing to notice is the function signature at
line 3 that refers to the whole GRASP skeleton. For that
reason, using placeholders for parameters would not make
sense. At the opposite, a placeholder for the returned
value is possible. But the return value is hard linked in the
FarmSel bone, thus only the return type can be expressed
here.

Once the structure and the links of a skeleton are defined,
it is possible to produce a whole parameterized description
of a skeleton as in listing 3. The template SkGrasp is built
from the two templates defining the structure and the links
and keeps the muscles unknown, along with the data types.
This step makes it easier to define skeletons because it
allows describing the structure regardless of how data are
transferred.

1 template<
2 typename Problem, typename Solution,
3 typename CH, typename LS, typename Sel
4 >
5 using SkGrasp =
6 BuildSkeleton<SkGraspStructure, SkGraspLinks>
7 ::skeleton<
8 Pack<CH, LS, Sel>,
9 Pack<Problem, Solution>

10 >;

Listing 3: GRASP skeleton building

4 Implementing skeletons
The primary objective after defining a skeleton is to be able
to get a functional program that, given specific muscles,
runs the desired algorithm. In this section, we will explain
our process for implementing a skeleton with given muscles.
In order to continue with the example presented in section 3,
we assume that the SkEls skeleton has been defined to
describe the ELS algorithm (cf. algorithm 2 and figure 2).

4.1 Skeleton Body
The first step toward implementing a skeleton is its instanti-
ation. That means that the muscles, which were unknown,
are now set, as well as the data types (cf. listing 4). We
call body the full instantiation of a skeleton. For instance,
the following code instantiates the GRASPxELS algorithm
with our library, from the SkGrasp skeleton.

1 using GRASPxELS = SkGrasp<
2 TspProblem, TspSolution,
3 RGreedy, ELS, FN(selectMin)
4 >;

Listing 4: GRASPxELS body definition

Instantiating a skeleton simply is instantiating the cor-
responding template. Here, we are creating an instance
of SkGrasp to solve a Traveling Salesman Problem (TSP).
Line 2 defines the types, respectively of the problem 𝑃 and
the solution 𝑆 of the GRASP algorithm (cf. algorithm 1).
Line 3 sets the muscles, which can be implemented in
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multiple ways, as long as they are callable: a functor, a
function or a skeleton body. The RGreedy muscle, which
implements a random greedy constructive heuristic (CH in
figure 1), is a functor, a common alternative way in C++ to
function pointers that presents many advantages1. Despite
its advantages, writing a functor can be cumbersome, so
our library offers the possibility of setting muscles in the
form of functions. For instance, the selectMin muscle of
line 3 can be defined as in listing 5.

1 TspSolution selectMin(TspSolution const&lhs,
2 TspSolution const&rhs) {
3 return lhs.value() < rhs.value()? lhs:rhs;
4 }

Listing 5: selectMin muscle definition

Internally, our library only manages functors, so mus-
cles in the form of functions have to be transformed into
functors, which is done using the FN macro2 (cf. line 3 of
listing 4)

The last way to set a muscle is by providing the body of a
skeleton, which is not a callable yet, but will be transformed
into one in a further step. The template argument ELS in
our example is actually a body of the SkEls skeleton.

Ultimately, the type GRASPxELS represents the body of
the GRASPxELS algorithm. Until now, all about our skele-
tons was purely static (i.e. known at compile-time), but
there are properties of the skeleton that should be defined
dynamically, notably some parameters of the bones and
muscles that make up the body. To fill up this information,
we need a dynamic object, an instance of the body.

1 ELS bodyEls;
2 // parameterization of bodyEls
3
4 GRASPxELS bodyGraspEls;
5 bodyGraspEls.n = 10;
6 bodyGraspEls.task.task<1>() = bodyEls;

Listing 6: GRASPxELS body instantiation

At line 4 of listing 6, the GRASPxELS body is instanti-
ated, and the next lines initialize some of its parameters.
Line 5 initializes the parameter 𝑁 of algorithm 1, which is
the parameter n of the top FarmSel bone of the GRASP
skeleton. Line 6 initializes the LS muscle of the GRASP
skeleton with an instance of the ELS body (cf. line 1),
which is the second task (task<1>) of the Serial bone
that is itself the only task (task) of the top FarmSel bone
of the GRASP skeleton.

4.2 Body Implementation
The next step is to obtain an implementation for a body,
meaning generating an effective code, depending on the

1https://isocpp.org/wiki/faq/pointers-to-members#
functionoids

2FN macro is a syntactic helper due to C++14 compatibility
concerns

execution context required by the end user. Our library
currently deals with two contexts: sequential or parallel
(multithread). As explained previously, bones have imple-
mentations for each context, and muscles must be provided
as sequential code. Skeletons will be analyzed by our li-
brary to generate the appropriate code to link muscles and
bones.

To get the implementation of a body with our library,
template function implOf is called with a tag, a static value
setting the execution context, and providing the body to
implement. Listing 7 shows how to generate a sequential
code for the body bodyGraspEls.

1 auto graspEls = implOf<Sequential>(bodyGraspEls);

Listing 7: GRASPxELS sequential implementation

If a parallel implementation is wanted instead, changing
the tag from Sequential to Parallel is sufficient (list-
ing 8).

1 auto graspEls = implOf<Parallel>(bodyGraspEls);

Listing 8: GRASPxELS parallel implementation

The body being an object, its type can be parsed at
compile-time (like expression templates [11]) to analyze
the structure of the whole algorithm (which is performed
by the orchestrator presented in the next section), and
its parameters can be tuned at run-time, before (by the
implOf function) and during (by the orchestrator) the
execution of the algorithm.

The ultimate object graspEls is a callable whose sig-
nature is the one specified for the top-level bone of the
GRASP skeleton. One can call it as if it was a function as
in listing 9.

1 TspProblem problem = /* problem initialization */ ;
2 TspSolution solution = graspEls(problem);

Listing 9: GRASPxELS execution

5 Task orchestration
There is still one important aspect to consider when making
a parallel implementation of a body: how the tasks running
in parallel should be orchestrated? Here we will study how
tasks are assigned to threads on a multicore parallelization
context. This section will discuss the relevance of having
a facility that makes task orchestration when two levels
of parallelization are possible, and present the way our
library currently enables it.

As explained previously, the GRASPxELS algorithm
presents two loops that can possibly be parallelized: the
main loop of GRASP and the inner loop of ELS. More
generally, let us consider two intertwined parallelizable
loops, the outer loop having 𝑁 iterations and the inner
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loop running 𝑀 tasks, each task taking 1 unit of time
to run sequentially. We assume here that there are no
CPU, memory or I/O bounds for parallelization. Executed
sequentially, the two loops take 𝑀 × 𝑁 units of time. We
need to decide here how many threads to assign to each
loop, and how to distribute the tasks on these threads,
knowing the number 𝐾 of available cores in a multicore
architecture.

5.1 One-Level Orchestration
Let us consider that 𝐾 = 4 cores are available, and that
𝑁 = 6 and 𝑀 = 2. One possible orchestration is to have
𝑡1 = 4 threads allocated for the outer loop, with 2 threads
running 2 iterations and 2 threads running 1 iteration, as
in figure 3. The overall execution time will theoretically
be 2× 2 = 4 units. If considering only parallelizing the first
level, the theoretical optimal execution time should arise
when 𝐾 ≥ 6 by allocating 𝑡1 = 6 threads.

More generally, for one-level orchestration, 𝑡1 =

min{𝐾, 𝑁} threads should be allocated. As 𝑁
𝑡1

is not al-
ways an integer, 𝑟1 threads should run 𝑛1 + 1 iterations
and 𝑠1 = 𝑡1 − 𝑟1 threads should run 𝑛1 iterations, with
𝑛1 = b 𝑁

𝑡1
c and 𝑟1 = 𝑁 − 𝑛1𝑡1. Hence, the overall execution

time should be 𝑛1𝑀 if 𝑟1 = 0, (𝑛1 + 1)𝑀 otherwise.

1 2 3 4

5 6

Figure 3: One-level task orchestration

5.2 Two-Level Orchestration
Notice in the previous example (figure 3) that iterations
5 and 6 are not optimally executed. They are allocated
on two threads, whereas two cores remain available. The
inner loop of each iteration could be executed in parallel,
meaning two threads could be assigned to each iteration
(cf. figure 4). This way, iterations 1 to 4 should run in 2
units of time, and the iterations 5 and 6 in 1 unit of time,
decreasing the theoretical overall execution time to 3 units.

More generally, the outer loop should be split in two
loops: loop 𝐴, with 𝑡1 allocated threads running 𝑛1 it-
erations each, and the loop 𝐵, with 𝑟1 allocated threads
running 1 iteration each. For each loop, 𝐴 or 𝐵, the number
𝐾2 of cores available for the inner loop should be deter-
mined: 𝐾𝐴2 = b 𝐾

𝑡1
c for the first loop and 𝐾𝐵2 = b 𝐾

𝑟1
c for the

second loop. Once 𝐾2 is known, the orchestration of the
inner loop is achieved in the same way as the outer loop.

1 2 3 4

5 6

𝐴

𝐵

Figure 4: Two-level task orchestration

Table 1 shows how the two-level orchestration operates
for 𝑁 = 6 and 𝑀 = 5, with the number of available cores 𝐾
varying from 1 to 20.

Table 1: Two-level orchestration
Outer Loop Inner Loop A Inner Loop B

𝐾 𝑡1 𝑛1 𝑟1 𝐾2 𝑡2 𝑛2 𝑟2 𝐾2 𝑡2 𝑛2 𝑟2
1 1 6 0 1 1 5 0 - - - -
2 2 3 0 1 1 5 0 - - - -
3 3 2 0 1 1 5 0 - - - -
4 4 1 2 1 1 5 0 2 2 2 1
5 5 1 1 1 1 5 0 5 5 1 0
6 6 1 0 1 1 5 0 - - - -
7 6 1 0 1 1 5 0 - - - -
8 6 1 0 1 1 5 0 - - - -
9 6 1 0 1 1 5 0 - - - -

10 6 1 0 1 1 5 0 - - - -
11 6 1 0 1 1 5 0 - - - -
12 6 1 0 2 2 2 1 - - - -
13 6 1 0 2 2 2 1 - - - -
14 6 1 0 2 2 2 1 - - - -
15 6 1 0 2 2 2 1 - - - -
16 6 1 0 2 2 2 1 - - - -
17 6 1 0 2 2 2 1 - - - -
18 6 1 0 3 3 1 2 - - - -
19 6 1 0 3 3 1 2 - - - -
20 6 1 0 3 3 1 2 - - - -

Figure 5 presents the theoretical speedup of this orches-
tration on physical cores. It is compared with the one-level
orchestration.
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Figure 5: Theoretical speedup of two-level orchestration

5.3 Orchestrator
Our library enables using a task orchestrator that can
operate both at compile-time and run-time. During the
compilation, it has access to the body type (the same
way expression templates proceed [11]) and can therefore
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use it to analyze the whole algorithm and make decisions
even before the program is being executed. In the case
of GRASPxELS, it can detect the potential two levels
of parallelization before execution, which allows making
better decisions than considering the first level only. The
body type is given to the class template implementing an
orchestrator as a type template argument to instantiate it.
The class generated by this template can aggregate member
variables that will hold run-time properties, possibly set by
the end developer. An information that any orchestrator
will likely have is a limit of concurrent threads, typically
bound to the number of available cores, but which can
be overwritten. As an example, to implement a two-level
orchestration, one will use the run-time information 𝑁 to
tune the parameters (cf. table 1) of the outer and inner
loops.

For instance, the OneLevel orchestrator implements the
behavior we described in section 5.1, that is running in
parallel only the first parallelizable level. Listing 10 imple-
ments a GRASPxELS using this orchestrator.

1 auto orch = makeOrchestrator<OneLevel>(bodyGraspEls);
2 // orchestrator parameterization
3
4 auto graspEls = implOf<Parallel>(bodyGraspEls, orch);

Listing 10: GRASPxELS one-level orchestration

The class template representing the orchestrator must be
given to the makeOrchestrator function, along with the
body instance to analyze and tune. The resulting object,
orch, is an orchestrator instance that will be given to the
implOf function to be associated with the body instance.
This way, when necessary, a bone can send requests to the
orchestrator.

Changing the task orchestrator to use one that imple-
ments the behavior described in section 5.2 simply consists
in using its class template instead of the other one, see
listing 11.

1 auto orch = makeOrchestrator<TwoLevel>(bodyGraspEls);
2 auto graspEls = implOf<Parallel>(bodyGraspEls, orch);

Listing 11: GRASPxELS two-level orchestration

6 Performance results
We aimed at a library implementation of algorithmic skele-
tons using TMP techniques to minimize the run-time over-
head caused by the abstraction layer our tool provides. To
validate that our library is not causing a significant over-
head, performance measures were run on a handwritten
implementation of GRASPxELS applied to TSP instances.
The same measures were performed with a GRASPxELS
automatically generated from its skeleton and muscles, us-
ing two distinct task orchestrators. All tests have been
performed on an Intel Xeon CPU E5-2670 v2 at 2.50 GHz,

with physical 20 cores, using g++ 8.2.0 with the optimiza-
tion O2 flag activated. All figures result of means of 20
runs, where seeds for the random number generation were
controlled to ensure repeatability (i.e. that every run, inde-
pendently of the number of threads allocated, performs the
same amount of operations and provide the same result).

Figure 6 shows the comparison between handwritten
sequential GRASPxELS and the automatically generated
one for a varying number of iterations, from 5 to 30, for
the GRASP loop. No significant overhead is noticeable.
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Figure 6: Skeleton overhead for sequential execution

Figure 7 shows the comparison between handwritten
parallel GRASPxELS and the automatically generated one
using the TwoLevel orchestration strategy for a varying
number of allotted cores. Again, there is no significant
overhead.
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Figure 7: Skeleton overhead for parallel execution

Figure 8 shows the comparison between one-level and
two-level orchestration for 2 to 20 cores, as presented in
section 5. We can notice improvement when considering
two levels of parallelization.

The two-level orchestration assumes that all the itera-
tions of a loop take almost the same amount of time to
execute, which should explain that we observe a speedup
below the theoretical one. As an orchestrator can also
operate at run-time, it is possible to implement a run-time
load balancing (e.g. with a thread pool).
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Probably, other two-level orchestrations should be stud-
ied, notably one that uses both information 𝑁 and 𝑀 to
make a decision at first level, contrary to our solution
that only uses 𝑁. Figure 9 shows nevertheless the rela-
tive improvement of the two-level orchestration over the
one-level.
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Figure 9: One-level vs two-level orchestrations

7 Conclusion
This paper presents our implementation of algorithmic
skeletons which enables a developer to write sequential code
that will serve as parts of an automatically parallelized pro-
gram. After introducing the GRASPxELS metaheuristic,
our Operational Research (OR) use case, we presented our
modeling. We defined bones: implementations of atomic
parallel or sequential patterns combined to describe an
algorithm structure. We explained the construction of an
algorithmic structure and the definition of its links (the
data flow graph) to make a skeleton. We showed how
bodies, skeletons instances to which muscles (missing code
provided by the end developer) are set, can be used to
automatically generate either a sequential or a parallel
implementation of the algorithm they represent.

We used C++ templates and Template Metaprogram-
ming (TMP) techniques to implement skeletons so we
achieved to minimize the execution time overhead that
is generally brought by abstraction layers. Moreover, by

strictly using only standard C++, we do not require any
step before compilation, making our utility portable and us-
able with any C++14 compliant compiler. We implemented
the GRASPxELS metaheuristic using our library and we
produced both a sequential and a parallel implementation,
along with handwritten corresponding implementations, so
that we could compare the performances. We showed that
no significant execution time overhead was measured.

Designing skeletons with TMP allows us to operate on al-
gorithmic structures both at compile-time and at run-time.
Our library enables designing orchestrators that are able
to analyze the structure of a skeleton during compilation,
like expressions templates do, and tune parameters of the
final code during execution. We illustrate this possibility
with the task orchestration of GRASPxELS that allows
two levels of parallelization.

While the library is operational, we still have to extend
the set of bones available so any common algorithm can
be implemented without requiring the developer to adapt
an existing bone or to fully create a new one. Creating
new bones will still be possible, for instance to address
very specific algorithm particularities in an effective way.
Designing more efficient orchestrators, adapted to more
general situations than a two-level parallelization, must
also be investigated. Another future work will be to in-
troduce tools to facilitate the numerical reproducibility
when using random numbers in skeletons. Some steps to
reproducibility have already been achieved for this paper
in order to validate the performance measures.
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