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Nonsmooth modal analysis of a non-internally resonant finite bar subject to a unilateral
contact constraint

Carlos Yoong and Mathias Legrand
Department of Mechanical Engineering, McGill University, Montreal, Canada

Abstract. The present contribution describes a semi-analytical technique devoted to the nonsmooth modal analysis
(natural frequencies and mode shapes) of a non-internally resonant elastic bar of length L subject to a Robin condition at
x D 0 and a frictionless unilateral contact condition at x D L.

Introduction

Modal analysis of nonsmooth mechanical systems, also called nonsmooth modal analysis, has been recently
performed on a finite elastic bar of length L subject to a Dirichlet boundary condition at x D 0 and a unilateral
contact constraint at x D L [5]. This system satisfies a complete internal resonance condition, i.e. all linear
natural frequencies are commensurate with the first one, which has drastic consequences on the nonlinear
modal response. To further explore the nonlinear dynamics of this one-dimensional contact problem, a non-
internally resonant configuration is instead investigated in the present work. Analytical results were only found
for the internally resonant bar and restricted to the first nonlinear mode [1]. Moreover, traditional numerical
approaches, in the framework of finite-elements, present numerical issues that hinder the calculation of the
modes of vibration of contacting systems [2]. In this work, we propose a semi-analytical technique that employs
the exact travelling-wave solution to the one-dimensional wave equation [3, p. 77].

Non-internally resonant finite bar

The system of interest is an unforced, homogeneous elastic bar of length L > 0 and constant cross-sectional area
S subject to a conservative unilateral constraint at its right end. Its left end is connected to a rigid support through
a spring of stiffness � > 0, as depicted in Fig. 1. The displacement, velocity, strain and stress fields are denoted
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Fig. 1: Elastic bar attached to a spring and subject to unilateral contact constraint.

by u.x; t/, v.x; t/, �.x; t/ and �.x; t/ respectively. Young’s modulus is denoted by E > 0 and � > 0 stands for
the mass per unit volume. In linear elasticity, the stresses read � D E� where � D @xu should be infinitesimally
small. The unilateral contact force r.t/ is related to the stresses by �.L; t/ D E@xu.L; t/ D r.t/=S . The gap
function is defined as g.u.L; t// D g0�u.L; t/ where g0 is the signed distance between the unrestricted resting
configuration and the obstacle. The full formulation reads:

Wave equation @2ttu.x; t/ � c2@2xxu.x; t/ D 0; 8x 2 �0 ILŒ; 8t > 0; (1)

Robin BC @xu.0; t/ � ˛u.0; t/ D 0; 8t > 0; (2)

Signorini BC g.u.L; t// � 0; r.t/ � 0; r.t/g.u.L; t// D 0; 8t > 0; (3)

Initial conditions u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; 8x 2 �0 ILŒ: (4)

where ˛ D �=.ES/ and c D p
E=�. The operators @�.�/ and @2

��
.�/ stand for the first and second derivatives

of .�/ with respect to the argument �. This formulation possesses a unique solution which conserves the total
energy [4]. Non-trivial solutions of the problem satisfying Eqs. (1) to (4) are successions of free phases (open
gap) and contact phases (closed gap) [1]. They can be seen as combinations of travelling wave motions switching
at x D L between @xu.L; �/ D 0 when the gap is open and prescribed displacement u.L; �/ D g0 when the gap
is closed. The nonlinearity in the formulation arises in the dependence of the solution to the unknown switching
time. Consider the general solution to the local equation incorporating the reflection mechanism induced by
Eq. (2) at x D 0:

u.x; t/ D f .ct C x/C f .ct � x/ � 2˛e˛.x�ct/

Z ct�x

0

e˛sf .s/ ds; 8x 2 Œ0 IL�; 8t � 0: (5)

The displacement u.x; t/ is then obtained through Eq. (5) provided that function f is defined everywhere on R.
The successive switches in boundary conditions at x D L, reflecting Signorini’s condition (3), are incorporated
through appropriate functional extensions for the free and contact phases.



Periodic solutions and Nonsmooth Modal Analysis

Nonsmooth modes of vibration (NSMs) are defined as continuous families of periodic solutions satisfying
the formulation (1)-(4) together with periodicity conditions in displacement and velocity: 9T > 0 such that
u.x; tCT / D u.x; t/ and v.x; tCT / D v.x; t/, 8x 2 Œ0 IL� and 8t > 0. Finding such solutions translates into
finding corresponding initial conditions u0 and v0 and period T which generate periodic motions. Admissible
T -periodic motions involving one contact phase per period, by assumption, are described by a function f that
satisfies the following functional equation, arising from u0.x/ D u.x; T / and v0.x/ D v.x; T /, 8x 2 Œ0 IL�

u0.x/ D f .ctc C x/C f .ctc � x/ � 2˛e˛.x�ctc/

Z ctc�x

0

e˛sf .s/ ds; (6a)

1

c
v0.x/ D @tf .ctc C x/C @tf .ctc � x/ � 2 f̨ .ctc � x/C 2˛2e˛.x�ctc/

Z ctc�x

0

e˛sf .s/ ds: (6b)

together with functional inequalities mirroring Signorini’s conditions at x D L for all t 2 Œ0 IT �, where tc < T
is the contact phase duration. Solving this constrained formulation is a noticeably challenging task. We propose
a simultaneous discretization of the space and time domains in order to accurately mimic the propagation of
possibly discontinuous velocity waves along the characteristics lines.

Spectrum of nonsmooth vibration

The response of the autonomous elastic bar is depicted in frequency-energy plots (FEPs) where a backbone
curve represents a NSM. The backbone curves emerging in the range Œ!1 I�1� are shown in Fig. 2 as sets of
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Fig. 2: Backbone curves in Œ!1 I�1� for ˛ D 1=2
with g0 > 0 [ ], g0 < 0 [ ] and g0 D 0 [ ].
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Fig. 3: Periodic displacement field of a NSM mo-
tion located at point b in Fig. 2.

scattered points supposedly belonging to NSMs, where !k and �k for k 2 N� are the natural frequencies of the
linear system involved in the conditional BC switching: Robin–Neumann and Robin–Dirichlet, respectively. In
contrast to NSMs of the internally resonant bar [5] where the energy continuously depends on the frequency, the
depicted scattered points indicate more complicated backbone curves. A nonsmooth periodic displacement field
is depicted in Fig. 3. This point represents a periodic motion belonging to a backbone curve that emerges in
the vicinity of !1. The complicated pattern of the solution is caused by an intricate interplay between various
travelling waves embedding the Robin and Signorini boundary conditions. In contrast to linear modes that
are purely harmonic functions, the nonsmooth modes of the non-internally resonant system are nonsmooth
piecewise-sinusoidal functions.

Conclusions

The annihilation of the full internal resonance condition with the Robin BC generates complicated modal motions
that were computed through a semi-analytical approach based on the exact solution of the wave equation.
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