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ABSTRACT

This paper shows the particular application of the
general approach "Intelligent Optimal Design" to
the design of a woven composite material used o
make radomes and for which the mechanical and
electromagnetical properties have to satisfy special
properties. Although the design of such a material
needs the control of almost 50 design parameters,
with a very limited number of examples of
materials in the data base, but with a special
description of each material, it is possible to extract
the rules necessary to predict the behaviour of any
new material with a rather good accuracy and
thereafter, to reach the optimal design (minimum
cost) associated to any new requirements.

INTRODUCTION

Due to the economical and safety considerations,
the engineers are forced to find the optimal design
of their structures when multiphysical aspects have
to be considered. Although they have sophisticated
experimental set-ups, beautiful theories/models
and powerful numerical tools, usually, they can not
afford to realize several tests or simulations to
extract the "best" case and they have to face still
several lockings in their industrial world:

e no satisfactory constitutive modeling of
materials, no real control of the accuracy of the
numerical simulations, no real definition of the
initial state and/or the effective loading of the
structure

¢ no insurance to have noted and measured the
main signals during the tests or the returns of
experiments, usually, no perfect repetability of the
tests

e the results predicted by the theories/models are
often very far from the experimental ones.

These problems have no a complete solution as

the experts do not understand them in their whole.
"Copyright © 2000 by the American Institute of Aeronautics and
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Moreover, the available data are often not
statistically representative (limited number), fuzzy,
gualitative and missing in part.

To overcross these lockings, the actual best
knowledge of the researchers/experts have to be
intelligently mixed with the results of experiments
or real returns.

That it is why, a new approach "the intelligent
optimal design of materials and structures” was
elaborated, see full details in the book J. Zarka et
al (2000). In this approach it is needed:

i) to build a DATA BASE of examples i.e.
to obtain some experimental, real or simulated
results where the EXPERTS indicate all variables
or descriptors which may take a part. This is, at
first, done with some PRIMITIVE descriptors x ,
which are often in a different number and different
types for each example. Then, the data are
transformed with the introduction of some
INTELLIGENT descriptors XX, with the actual
whole knowledge thanks to (but usually
insufficient) beautiful theories and models. These
descriptors may be number, boolean, strings,
names of files which give access to data bases, or
treatments of curves, signals and images. Now, for
all examples, their number and their type are
always the same which is the only one way to
allow the fusion of data. The results or conclusions
may be classes (good, not good, ...) or numbers.

ii) to generate the RULES with any
Automatic Learning Tool (based on iogical rules,
statistics, machine learning, numerical learning,
fuzzy logic, neural networks...). Each conclusion is
explained as function or set of rules of some
among the input intelligent descriptors with a
known reliability or accuracy.

iii) to optimize at two levels (Inverse
Problems):

o considering the intelligent descriptors as
independent; it is possible to get the OPTIMAL
SOLUTION satistying the special required properties
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and allowing the DISCOVERY OF NEW
MECHANISMS,

e considering the intelligent descriptors linked to
primitive descriptors for a special family; it is possible
to obtain the optimal solution which is technologically
possible.

So, not only a Practical Optimal Solution is
obtained but also the Experts may learn the
missing parts, may build models or theories based
only on the retained intelligent descriptors and

guided by the shapes of the rules or relationships.

Composites are more and more often used in the
mechanical engineering, the civil engineering, the
automotive, the aeronautical and the naval
industries. It is necessary to reduce their
acquisition cost while improving the life cycle and
safety of the structures.
Many general contributions have been made to
understand the physics and to develop models for
the  mechanical, electromagnetical global
properties of aggregates during the modeling
which is called homogenization. Simplified models,
simple bounds of the properties or and even
sophisticated theories ... were produced.
In the case of the woven composites, idealized
geometry and even numerical finite element
methods due to the complex geometry, were also
done. The simulated results are sometimes near
from the real experimental ones, but very often
they do not give sufficient elements to be used into
the real design.
This design implies a multiphysics problem: how to
design the optimal woven composite (i.e. to give
the composition and the process) for any special
application when, only a few tests are available
(due to the cost in money and time) and when the
simulated predictions are not reliable.
Textile composite materials are woven fabrics with
more efficient properties than layered composites.
The description of the process is rather difficult:
fibers are used to make bundles which are then
intertwined according several types.
Here, we consider only a special hybrid woven
composite where in one bundle one or two fibers
are used and where one or two bundles are used
for the warp and the fill in one layer. The
geometrical description for the layer was given by
the University of Technology of Compiegne. All the
fabrics are made with 16 identical fayers.
BUILDING THE DATA BASE
Eleven different fibers are available. Each fiber is
fully characterized from a data base of materials.
Only one resin is used and characterized.
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Figure 1: Data for the basic elements

Figure 3: Definition of microscopic parameters

PRIMITIVE DESCRIPTION
The composite materials are all equilibrated fabrics
with a constant step of 2: i.e. the two bundles in
the warp and the fill are the same. Usually, the
fabric is characterized by the macroscopic
parameters:

e Porosity (x%) (rather difficult to control !)

¢ Nature of fibers (Glass, Peek..among the
selected eleven fibers)

 Total_weight of fibers per unit surface in
one layer (zzz gr)

e Hybridation_massic_ratio for the two

bundles
Tx 1 = ‘mass (fiber 1)
mass (fiber 1) + mass (fiber 2)
Tx 2 = mass (fiber 2)

mass (fiber 1) + mass (fiber 2)

¢ Thickness of the fabric

e Nature of the resin (here only one).
For this special problem , there are 49 active
design parameters (twice {22 for each fiber: 0 or 1
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selected or not, the concentration, with the number
of fibers in the bundle}) + 5 for the process.
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Figure 4: Primitive active design parameters
A Design of Experiments (DOE) is impossible.
Indeed, only sixteen woven composite materials
were ordered. At the AIA/CP, they were, then,
mechanically characterized according the classical
normalized tests: the resistance and the elastic
modulus in tension, as in compression, flexion, and
shearing, are defined and measured.
The fabrics were also electromagnetically
characterized: the dielectric constant and the loss
tangent are measured.
At last, at UTC, some microscopic parameters
were measured by cutting the fabric:

e A,: width of the first bundle

e A,: width of the second bundle

¢ H; height of one wave of fibers

e HH: height of one layer (the thickness of
the fabric is here 16 x HH).
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Figure 5: Experimental data on the woven fabrics

INTELLIGENT DESCRIPTION

It is impossible with the classical mathematical
tools of data analysis to represent these results.
There is no enough tests. We need to be able to
make the fusion of the different fibers in the
bundles and of the different fabric parameters.

For that, we use the actual knowledges.

e For one bundle i.e. one dimensional composite,
analytical approximated models for the elastic and
electromagnetic properties are available.

This is also the case for layer with straight bundles.
¢ As a rough approximation, at first, it was
assumed that the woven fabric is assimilated to a
layered material with the warp in one layer and the
yarn in the other layer with a 90 ° angle.

¢ Then, quasi-analytical models and finite element
based models were also built. (the calculations of
the elastic properties were made in one internal
report of UTC based on the Ishikawa and Chou's
works.

e For the electromagnetic properties, we use for
one fiber, the Bruggeman's model and for two
different fibers, the Kingery's model.

Even if these simulated results are not very well
representative of the experimental values on the
fabrics, they allow to make the fusion and to help
the learnings.

The set of the values predicted by these models
are here our intelligent descriptors.

Successively, for each case or material, described
by its active design parameters or primitive
descriptors, we have analytically, the mass and the
price of the fabric, and the bundles properties.

We compute these intelligent descriptors based on
the models for layered composites and woven
composites.

AUTOMATIC LEARNINGS
Once the data base of examples has been created
within its intelligent description, it is possible to
learn the various conclusions as functions of these
intelligent descriptors. More than that, we were
able to learn the intelligent descriptors directly from
the primitive descriptors as functions of functions.
For this special problem, we used general
regression net or polynomial net in NeuroShell
from Wards systems. They are both based on
numerical learnings.
Then, after all these learnings, we are able to
compute the other intelligent descriptors:

o for the process
A, first bundle, A, second bundle
H, wave of fibers, HH one layer.
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prediction for the real measured experimental
conclusions or values of the fabric:
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o for the layers with straight bundles
EXM1, EYM1, NUXYM1, NUYXM1, GXYM1
EXM2, EYM2, NUXYM2, NUYXM2, GXYM2
for the fabric
Eps_th , simulated permittivity
Exy_th, Poisson_th and Gxy_th simulated elastic
coefficients.
We build these descriptors for all the 16 examples.
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Figure 8: Evaluations for straight bundle layers

SIMULATED'MECHANICAL PROPERTIES'FOR THE WOVENCOMPOSITE MATERIAL
l I
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Figure 9: First evaluations for the woven fabric

Then, we can after all these learnings, give the
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Figure 10: Final predictions for the woven fabric

OPTIMAL DESIGN OF THE WOVEN
FABRIC

Indeed, this approach allows to go much further
and to answer to the real problem: we have to
design the fabric such that its mechanical end
electromagnetic properties satisfy some
requirements.

We may assume that, for economical reasons, this
fabric must be obtained at the lowest price but any
other objective function may be taken.

This optimization problem is very difficult as, here
also, there is no convexity of the functions,
moreover, even if we have a reasonable
representation of the functions this is not the case
of their gradient. Only particular algorithms may be
used. However, as all our functions are
represented analytically (polynomial functions),
and do not imply any new finite element analysis or
test, the time to evaluate them is very short even
within the program EXCEL. We use the add-on
Genehunter of Wards Systems to have the total
integration of this Optimal Design of the Woven
Fabric.

It is elementary to introduce any new constraint on
the design variables or on the conclusions or
between the conclusions by referencing the
particular cells.
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Figure 11: Intelligent optimal design tool
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