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Abstract  
This paper deals with a new method for handling manufacturing and geometrical requirements in the framework of a general Topology Optimisation 
(TO) strategy. In particular, the maximum length scale constraint (MLSC) implementation is addressed in order to obtain multiple load paths or to locally 
limit the size of the component. The classic formulation of the MLSC is revisited in the framework of a density-based TO algorithm wherein the pseudo-
density field is represented through a NURBS hyper-surface. The NURBS hyper-surface properties are exploited to effectively formulate the MLSC. The 
effectiveness of the proposed approach is proven on a meaningful 3D benchmark. 
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1. Introduction 

Integrating technological and geometrical requirements in 
Topology Optimisation (TO) is basic to achieve optimised as well 
as manufacturable configurations [1]. In the framework of the 
emerging Additive Manufacturing (AM) technologies, this work 
deals with the integration of the maximum length scale constraint 
(MLSC) in the design process. The MLSC provides a limitation on 
the maximum allowable thickness of topological features. 
Particularly, this requirement is implemented into a TO algorithm 
making use of NURBS entities to describe the topology. 

An intuitive way to define the MLSC has been suggested by 
Guest in [2] for 2D structures: the thickness of the material phase 
evaluated around each mesh element must be lower than a given 
maximum length scale. An exhaustive explanation about the 
implementation of the MLSC by making use of both projection 
methods and aggregation techniques is given in [2]. More recent 
approaches have been proposed in [3]. Firstly, the technique used 
in [4] has been generalised and the maximum member size is 
controlled through a low-pass filter in the frequency domain via a 
Fast Fourier Transform. However, setting the design parameters 
in the frequency domain does not allow the designer to effectively 
handle the optimisation. Secondly, the concept of mathematical 
morphology is used to formulate a suitable MLSC but the 
provided solutions can exhibit disjoint zones of material phase, 
which are meaningless from a physical viewpoint. Nevertheless, 
the interest of integrating the MLSC in TO analyses goes beyond 
the control of the size of structural elements and it originates 
from design needs. As remarked in [1,3], the MLSC induces 
multiple load paths in optimised configurations. This fact has 
been confirmed in [5], wherein a simplified damage model is 
included in a density-based TO method: final topologies meet fail-
safe engineering requirements. Moreover, as it usually happens 
when dealing with density-based TO analyses, results evaluated 
before and after the CAD reconstruction phase are not consistent. 
In the case of the MLSC, the imposed maximum size condition is 
not met on the final, reassembled geometry. 

To overcome the aforementioned shortcomings, the aim of this 
work is to generalise the implementation of the MLSC to the 3D 
case in the framework of the NURBS-based TO algorithm 
presented in [6,7]. Particularly, some of the NURBS hyper-
surfaces properties can be suitably combined with well-
established methods in order to effectively integrate the MSLC in 
the problem formulation. 

The paper is outlined as follows. The theoretical background is 
briefly described in section 2. The NURBS-based approach for 3D 

TO problems is presented in section 3. The formulation of the 
MLSC is provided in section 4. Results are shown on a meaningful 
3D benchmark in section 5. Finally, section 6 ends the paper with 
some conclusions and perspectives. 

2. Tools and Methods 

2.1. The NURBS hyper-surfaces theory 
 

The fundamentals of NURBS hyper-surfaces are briefly recalled 
here below by using the notation of [8]. A NURBS hyper-surface is 
a polynomial-based function, defined over a parametric space 
(domain), taking values in the NURBS space (codomain). 
Therefore, if 𝑁 is the dimension of the parametric space and M is 
the dimension of the NURBS space, a NURBS entity is defined as 
𝑯: ℝ𝑁 → ℝ𝑀. The mathematical formula of a generic NURBS 
hyper-surface is   

 

𝑯(𝑢1, … , 𝑢𝑁) = ∑ …
𝑛1
𝑖1=0

∑ 𝑅𝑖1,…,𝑖𝑁(𝑢1, … , 𝑢𝑁)
𝑛𝑁
𝑖𝑁

𝑷𝑖1,…,𝑖𝑁, (1) 

 
where 𝑅𝑖1,…,𝑖𝑁(𝑢1, … , 𝑢𝑁) are the piecewise rational basis 

functions, which are related to the standard NURBS blending 
functions 𝑁𝑖𝑘,𝑝𝑘(𝑢𝑘), 𝑘 = 1,… ,𝑁 by means of the relationship 

 

𝑅𝑖1,…,𝑖𝑁(𝑢1, … , 𝑢𝑁) =
𝜔𝑖1,…,𝑖𝑁∏ 𝑁𝑖𝑘,𝑝𝑘(𝑢𝑘)

𝑁
𝑘=1

∑ …
𝑛1
𝑗1=0

∑ [𝜔𝑗1,…,𝑗𝑁∏ 𝑁𝑗𝑘,𝑝𝑘(𝑢𝑘)
𝑁
𝑘=1 ]

𝑛𝑁
𝑗𝑁

. (2) 

 
In Eqs. (1) and (2) , 𝑯(𝑢1, … , 𝑢𝑁) is a 𝑀-dimension vector-valued 
rational function, (𝑢1, … , 𝑢𝑁) are scalar dimensionless parameters 
defined in the interval [0,1], whilst 𝑷𝑖1,…,𝑖𝑁 are the so called 

control points, which strongly affect the NURBS shape. The 𝑗-th 

control point coordinate (𝑋𝑖1,…,𝑖𝑁
(𝑗)

) is stored in the array 𝑿(𝑗), 

whose dimension is (𝑛1 + 1) × … × (𝑛𝑁 + 1). For instance, 

𝑷𝑖1,𝑖2 = {𝑋𝑖1,𝑖2
(1)
, 𝑋𝑖1,𝑖2

(2)
, 𝑋𝑖1,𝑖2

(3)
} in the case of NURBS surfaces and each 

coordinate is arranged in a matrix defined in ℝ(𝑛1+1)×(𝑛2+1). The 
control points layout is referred as control hyper-net. A suitable 
scalar quantity 𝜔𝑖1,…,𝑖𝑁 (called weight) is related to the respective 

control point 𝑷𝑖1,…,𝑖𝑁 . The higher the weight 𝜔𝑖1,…,𝑖𝑁 value, the 

more the NURBS entity is attracted towards the control point 
𝑷𝑖1,…,𝑖𝑁 . The blending function of degree 𝑝𝑘  related to the 

parametric direction 𝑢𝑘 can be defined in a recursive way as 
 

𝑁𝑖𝑘,0 = {
1, if 𝑈𝑖𝑘

(𝑘)
≤ 𝑢𝑘 < 𝑈𝑖𝑘+1

(𝑘)
,

0,                             otherwise,
 (3) 

https://doi.org/10.1016/j.cirp.2019.04.048
mailto:marco.montemurro@ensam.eu
mailto:nicolas.perry@ensam.eu


 

𝑁𝑖𝑘,𝑞(𝑢𝑘) =
𝑢𝑘−𝑈𝑖𝑘

(𝑘)

𝑈𝑖𝑘+𝑞
(𝑘)

−𝑈𝑖𝑘
(𝑘)𝑁𝑖𝑘,𝑞−1(𝑢𝑘) +

𝑈𝑖𝑘+𝑞+1
(𝑘)

−𝑢𝑘

𝑈𝑖𝑘+𝑞+1
(𝑘)

−𝑈𝑖𝑘+1
(𝑘) 𝑁𝑖𝑘+1,𝑞−1(𝑢𝑘), 

𝑞 = 1,… , 𝑝𝑘, 
 
where each constitutive function is defined on the related knot 
vector 
 

𝑼(𝑘) = {0,… ,0, 𝑈𝑝𝑘+1 
(𝑘)

, … , 𝑈𝑚𝑘−𝑝𝑘−1 
(𝑘)

, 1, … ,1}, 

 
(4) 

 
whose size is 𝑚𝑘 + 1, with 𝑚𝑘 = 𝑛𝑘 + 𝑝𝑘 + 1. Each knot vector 

𝑼(𝑘) is a non-decreasing sequence of real numbers that can be 
interpreted as a discrete collection of values of the related 
dimensionless parameter 𝑢𝑘. 

NURBS entities are characterised by some interesting 
properties (the interested reader is addressed to [8] for further 
details). Here, just the local support property is recalled since it is 
basic for the NURBS-based TO method [6,7,9]: each control point 
𝑷𝑖1,…,𝑖𝑁 (and the related weight 𝜔𝑖1,…,𝑖𝑁) affects only a precise zone 

of the parametric space that is precisely referred as a local 
support or influence zone (𝑆𝑖1,…,𝑖𝑁) , namely 

 

𝑆𝑖1,…,𝑖𝑁 = [𝑈𝑖1 
(1)
, 𝑈𝑖1+𝑝1+1 

(1)
[ × …× [𝑈𝑖𝑁 

(𝑁)
, 𝑈𝑖𝑁+𝑝𝑁+1 

(𝑁)
[ . (5) 

 
2.2. The SIMP Method - Solid Isotropic Material with Penalisation  
 

The classic SIMP method is described here below in the case of 
3D TO problems. Consider the compact Euclidean space 𝐷 =

{𝒙 = {𝑥1, 𝑥2, 𝑥3}
𝑇 ∈ ℝ3: 𝑥𝑗 ∈ [0, 𝑎𝑗]}, 𝑗 = 1,2,3, in a Cartesian 

orthogonal frame 𝑂(𝑥1, 𝑥2, 𝑥3): 𝑎𝑗  is a reference length of the 

domain defined along 𝑥𝑗 . For the sake of clarity, the mathematical 

formulation is here limited to the problem of minimising the 
compliance of a structure, subject to an equality constraint on the 
volume [10]. In this framework, the aim of TO is to search for the 
distribution of a given isotropic “heterogeneous material” (i.e. the 
definition of void and material zones) on the design domain 𝐷 in 
order to minimise the virtual work of external loads applied to 
the structure and, meanwhile, to meet a suitable volume equality 
constraint. Let 𝛺 ⊆ 𝐷 be the material domain. In the SIMP 
approach, 𝛺 is determined by means of a fictitious density 
function 𝜌(𝒙) ∈ [0,1] defined over the whole design domain 𝐷. 
Such a density field is related to the material distribution: 𝜌(𝒙) =
0 means absence of material, whilst 𝜌(𝒙) = 1 implies completely 
dense base material. The density field affects the stiffness tensor 
𝐸𝑖𝑗𝑘𝑙(𝒙), which is variable over the domain 𝐷, according to  

 

𝐸𝑖𝑗𝑘𝑙(𝜌(𝒙)) = 𝜌(𝒙)
𝛼𝐸𝑖𝑗𝑘𝑙

0 , 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, (6) 

where 𝐸𝑖𝑗𝑘𝑙
0  is the stiffness tensor of the bulk isotropic material 

and 𝛼 ≥ 1 a suitable parameter that aims at penalising all the 
meaningless densities between 0 and 1. Considering a FE static 
analysis, the relationship among the vector of applied generalised 
nodal forces 𝒇, the vector of degrees of freedom (DOFs) 𝒅, and the 
global stiffness matrix of the structure 𝐊 is 
 

𝐊𝒅 = (∑ 𝜌𝑒
𝛼𝐊𝑒

𝑁𝑒
𝑒=1 )𝒅 = 𝒇, (7) 

 
where the global stiffness matrix 𝐊 is expressed by interpreting 
Eq. (6) in the FE framework. In Eq. (7), 𝜌𝑒  is the fictitious density 
computed at the centroid of the generic element 𝑒, 𝑁𝑒 the total 
number of elements, whilst 𝐊𝑒  is the non-penalised element 
stiffness matrix expanded over the full set of DOFs of the 
structure. The compliance of the structure is easily computed as 
𝑐 = 𝒅𝑇𝐊𝒅. 

The problem of compliance minimisation subject to an equality 
constraint on the overall volume can be stated as follows: 
 

min
𝜌𝑒

𝑐(𝜌𝑒) 

subject to: 

{

𝐊𝒅 = 𝒇,

𝑉(𝜌𝑒)

𝑉𝑟𝑒𝑓
=

∑ 𝜌𝑒𝑉𝑒
𝑁𝑒
𝑒=1 

𝑉𝑟𝑒𝑓
= 𝛾,

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1, 𝑒 = 1,… , 𝑁𝑒 .

   

(8) 

 
In Eq. (8), 𝑉𝑟𝑒𝑓 is a reference volume, 𝑉(𝜌𝑒)  is the volume of the 

material domain 𝛺, while 𝛾 is the assigned volume fraction; 𝑉𝑒 is 
the volume of element 𝑒 and 𝜌𝑚𝑖𝑛 represents the density field 
lower bound, imposed to prevent any singularity for the solution 
of the equilibrium problem. Of course, the design variables of the 
TO problem in the classic SIMP framework are the fictitious 
densities defined at the centroid of each element. 
Problem (8) can be solved through a suitable gradient-based 
algorithm: to this purpose, the explicit expression of derivatives 
𝜕𝑐

𝜕𝜌𝑒
 and 

𝜕𝑉

𝜕𝜌𝑒
 must be retrieved, as discussed in [10].  

3. The NURBS-based SIMP Method for 3D Problems 

The formulation of the SIMP TO method in the B-Spline 
framework has been firstly provided in [11] and [12]. The more 
general formulation in the NURBS framework, by deeply 
investigating the influence of both discrete and continuous 
parameters of the NURBS blending functions, is given in [6,7,9].  

In the NURBS-based SIMP method, the pseudo-density field is 
represented through a suitable NURBS entity [6,7,9]. Therefore, 
NURBS hyper-surface (N = 3,M = 4) is necessary to describe the 
topology for 3D problems:  

 

𝜌(𝑢1, 𝑢2, 𝑢3) = ∑ ∑ ∑ 𝑅𝑖1,𝑖2,𝑖3(𝑢1, 𝑢2, 𝑢3)�̂�𝑖1,𝑖2,𝑖3
𝑛3
𝑖3=0

𝑛2
𝑖2=0

𝑛1
𝑖1=0

. (9) 

 
In Eq. (9), 𝑅𝑖1,𝑖2,𝑖3(𝑢1, 𝑢2, 𝑢3) are the NURBS rational basis 

functions, defined according to Eq. (2). In Eq. (9), 𝜌(𝑢1, 𝑢2, 𝑢3) 
constitutes the fourth coordinate of the array 𝑯 in Eq. (1). 
Moreover, the dimensionless parameters are directly related to 

the Cartesian coordinates through 𝑢𝑗 =
𝑥𝑗

𝑎𝑗
, 𝑗 = 1, 2, 3. 

The NURBS control points and the related weights are identified 
as 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. They are arranged in the arrays  

 

𝝃(1) = {�̂�0,0,0, … , �̂�𝑛1,0,0, �̂�0,1,0, … , �̂�𝑛1,𝑛2,0, … , �̂�𝑛1,𝑛2,𝑛3}, (10) 

  

𝝃(2) = {𝜔0,0,0, … ,𝜔𝑛1,0,0, 𝜔0,1,0, … ,𝜔𝑛1,𝑛2,0, … , 𝜔𝑛1,𝑛2,𝑛3}, (11) 

both defined in ℝ𝑛𝑡𝑜𝑡×1, with 𝑛𝑡𝑜𝑡 = (𝑛1 + 1)(𝑛2 + 1)(𝑛3 + 1). In 
Eqs. (10) and (11), �̂�𝑖1,𝑖2,𝑖3 ∈ [�̂�𝑚𝑖𝑛, 1] and 𝜔𝑖1,𝑖2,𝑖3 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥] 

∀𝑖𝑗 = 0,… , 𝑛𝑗 , 𝑗 = 1, 2, 3. 

The other NURBS parameters can be identified as 
𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, i.e. their value is set a priori at the beginning 
of the TO analysis and it is not optimised. A concise discussion on 
the effect of these parameters on the optimised topology is given 
here below. For more details, the interested reader is addressed 
to [6,7,9]. 
 Degrees: increasing the degree implies broadening the local 

support size and the effects of this operation are, on the one 
hand, a smoother boundary for the optimised topology and, 
on the other hand, a worse convergence towards more 
efficient configurations. 

 The number of control points: increasing the control points 
number implies a smaller local support size. Thus, better 
performances (in terms of objective function) can be 

𝑝𝑘 + 1 𝑝𝑘 + 1 



achieved and thinner topological features are allowed. Of 
course, the computational burden increases. 

 Knot vectors: the non-trivial knot vectors components 
appearing in Eq. (4) are uniformly distributed on the interval 
[0,1]. 

The classic TO problem of compliance minimisation subject to 
an equality constraint on the volume of Eq. (8) changes into 

 

𝑚𝑖𝑛
𝝃(1),𝝃(2)

𝑐(𝜌𝑒)

𝑐𝑟𝑒𝑓
 

subject to: 

{
 
 

 
 (∑ 𝜌𝑒

𝛼𝐊𝑒
𝑁𝑒
𝑒=1 )𝒅 = 𝐊𝒅 = 𝒇,

𝑉(𝜉(1),𝜉(2))

𝑉𝑟𝑒𝑓
=

∑ 𝜌𝑒𝑉𝑒
𝑁𝑒
𝑒=1 

𝑉𝑟𝑒𝑓
= 𝛾,

𝜉𝑘
(1)
∈ [�̂�𝑚𝑖𝑛, 1],

𝜉𝑘
(2)
∈ [𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥], ∀𝑘 = 1,… , 𝑛𝑡𝑜𝑡.

  

(12) 

 
In Eq. (12), 𝜌𝑒  is the generic element pseudo-density, i.e. 𝜌𝑒 =

𝜌(𝑢1
𝑒 , 𝑢2

𝑒 , 𝑢3
𝑒) = 𝜌(𝑥1

𝑒/𝑎1, 𝑥2
𝑒/𝑎2, 𝑥3

𝑒/𝑎3), where the 𝑗-th Cartesian 
coordinate of the element centroid is referred as 𝑥𝑗

𝑒 . The objective 

function is divided by a reference compliance (𝑐𝑟𝑒𝑓) to obtain a 

dimensionless value. The linear index 𝑘 of Eq.  
(12) is related to the triplet (𝑖1, 𝑖2, 𝑖3) via the following 
relationship 
 

𝑘 = 𝑖1 + 𝑖2(𝑛1 + 1) + 𝑖3(𝑛1 + 1)(𝑛2 + 1)+1, (13) 
 

that is consistent to the assembly of the arrays 𝝃(1) and 𝝃(2) of 
Eqs. (10)-(11). 

The computation of the derivatives of both objective and 
constraint functions with respect to the design variables are 
needed in order to efficiently solve problem (12) through a 
gradient-based method. Let 𝑆𝑘 = 𝑆𝑖1,𝑖2,𝑖3 be the local support of 

control point 𝜉𝑘
(1)
= �̂�𝑖1,𝑖2,𝑖3  (and of the weight 𝜉𝑘

(2)
= 𝜔𝑖1,𝑖2,𝑖3), 

defined according to Eq. (5) when 𝑁 = 3. Then, consider a 

general response 𝐺, whose derivatives 
𝜕𝐺

𝜕𝜌𝑒
 are known. The 

general expressions of the derivatives of 𝐺 with respect to the 
NURBS control points and weights read  
 

𝜕𝐺

𝜕𝜉𝑘
(𝑙) = ∑

𝜕𝐺

𝜕𝜌𝑒

𝜕𝜌𝑒

𝜕𝜉𝑘
(𝑙)𝑒∈𝑆𝑘 , 𝑙 = 1, 2, (14) 

 

where the derivatives 
𝜕𝜌𝑒

𝜕𝜉𝑘
(𝑙) are straightforward to evaluate thanks 

to Eq. (9) [6,7].  
Some consequences of outstanding importance result from the 

NURBS-based SIMP approach: 
 The number of design variables is unrelated to the number of 

elements. Accordingly, the final optimised topology  will not 
depend upon the mesh quality and size. 

 Each control point (with the related weight) affects only 
those elements whose centroid falls in the local support 𝑆𝑘. 
This fact results in the definition of an implicit filter, that is of 
paramount importance in density-based TO algorithms in 
order to avoid numerical artefacts (such as the checkerboard 
effect).  

For further details and on the NURBS-based SIMP method, the 
reader is addressed to [6,7,9]. 

4. Mathematical Formulation of the Maximum Length Scale 

Constraint (MLSC) 

The aim of this section is to formulate a suitable optimisation 
constraint on the maximum member size of topological features 

in the form 𝑔𝑑𝑚𝑎𝑥 ≤ 0. Such a constraint should be able to check 

the whole design domain and to penalise too thick material zones. 
Here, the formulation proposed in [6] for 2D applications, based 
on Guest's formulation [2], has been generalised to the 3D case in 
the framework of the NURBS-based SIMP approach. The intuitive 
idea is straightforward: for a given structure, a spherical region is 
drawn around each element centroid. The sphere diameter is 
equal to the imposed maximum length scale (referred as 𝑑𝑚𝑎𝑥  
hereafter). Let 𝛥𝑒 be the spherical region centred at element 𝑒. Its 

volume is 
4

3
𝜋 (

𝑑𝑚𝑎𝑥

2
)
3

. Thus, the condition that should be met for 

each element reads 
 

∑ 𝜌�̅�𝑖∈𝛥𝑒 𝑉𝑖 ≤
4

3
𝜋 (

𝑑𝑚𝑎𝑥

2
)
3
(1 − 𝜓), ∀𝑒 = 1,… , 𝑁𝑒. (15) 

 
In Eq. (15), 𝑖 is a mute index pointing at those elements whose 

centroid falls into 𝛥𝑒 , 𝜓 ∈ [0,1] is a relaxing parameter, 𝑉𝑖  is the 
volume of element 𝑖 and 𝜌�̅� is the projected fictitious density 
function evaluated at the centroid of element 𝑖. Such a projection 
is performed through the relation 
 

𝜌�̅� = 𝜌𝑖
𝛽

, (16) 

 
where 𝛽 ≥ 1 is a penalisation parameter (its effects are similar to 
those of the parameter 𝛼 of the SIMP method, as shown in section 
2.2). In other words, it is explicitly asked that the maximum 
material phase thickness is locally lower or equal to 𝑑𝑚𝑎𝑥 . Being 
impossible to handle the optimisation constraint of Eq. (15) for 
each element, a suitable aggregation technique is considered. 
Choosing the maximum value of the left-hand side of Eq. (15) is a 
smart strategy, preventing compensatory side effects.  

Let 𝛿𝑒 be the left term of Eq. (15), i.e. 
 

𝛿𝑒 = ∑ 𝜌�̅�𝑖∈𝛥𝑒 𝑉𝑖. (17) 
 
In order to consider the maximum operator in a gradient-based 
algorithm, a smooth approximation should be given. The 𝜒-norm 
is used here below: 

𝛿𝑚𝑎𝑥 = (∑ 𝛿𝑒
𝜒𝑁𝑒

𝑒=1 )
1

𝜒. (18) 

 
In Eq. (18), 𝜒 is a tuning parameter whose value should be high 
enough. Therefore, the MLSC can be formulated by combining Eq. 
(15) with Eq. (18) and by reordering terms: 
 

𝑔𝑑𝑚𝑎𝑥 =
(∑ (∑ 𝜌𝑖

𝛽
𝑉𝑖𝑖∈∆𝑒 )

𝜒𝑁𝑒
𝑒=1 )

1
𝜒

4

3
𝜋(

𝑑𝑚𝑎𝑥
2

)
3
(1−𝜓)

− 1 ≤ 0. (19) 

The gradient of the MLSC with respect to the optimisation 
variables (i.e. the NURBS control points and weights) must be 
computed. The analytical expression of the constraint derivatives 
is reported here below. For more details about the related 
mathematical passages to get these results, the reader is 
addressed to [6,7]. 

𝜕𝑔𝑑𝑚𝑎𝑥

𝜕𝜉𝑘
(1) = 𝛽(𝑔𝑑𝑚𝑎𝑥 + 1)

∑ ((∑ 𝜌𝑖
𝛽
𝑉𝑖𝑖∈∆𝑒 )

𝜒−1
(∑ 𝜌𝑖

𝛽−1
𝑉𝑖𝑅𝑘

𝑖
𝑖∈∆𝑒 ))

𝑁𝑒
𝑒=1

∑ (∑ 𝜌𝑖
𝛽
𝑉𝑖𝑖∈∆𝑒 )

𝜒𝑁𝑒
𝑒=1

, (20) 

 
𝜕𝑔𝑑𝑚𝑎𝑥

𝜕𝜉𝑘
(2) =

𝜉𝑘
(1)

𝜉𝑘
(2)

𝜕𝑔𝑑𝑚𝑎𝑥

𝜕𝜉𝑘
(1) +

𝛽(𝑔𝑑𝑚𝑎𝑥+1)

𝜉𝑘
(2)

∑ ((∑ 𝜌𝑖
𝛽
𝑉𝑖𝑖∈∆𝑒 )

𝜒−1
(∑ 𝜌𝑖

𝛽−1
𝑉𝑖𝑅𝑘

𝑖
𝑖∈∆𝑒 ))

𝑁𝑒
𝑒=1

∑ (∑ 𝜌𝑖
𝛽
𝑉𝑖𝑖∈∆𝑒 )

𝜒𝑁𝑒
𝑒=1

, 

 

(21) 

The MLSC in the form of Eq. (19) presents several advantages. 
Firstly, the mathematical formulation is simple. Secondly, the 



constraint statement is general and applies to whatever kind of 
element shape (hexahedral, tetrahedral, etc.). Finally, the MLSC 
can be imposed in particularly hard TO problems as well, which 
are characterised by a poor convergence rate: this is possible 
thanks to the “free” parameters 𝛽, 𝜓 and 𝜒. In this paper, they 
have been set as 𝛽 = 1.1, 𝜓 = 0.05 and 𝜒 = 15 and they are not 
modified during iterations.  

5. Results 

The effectiveness of the MLSC is proven in this section through 
the benchmark of Fig. 1. The domain is parametrised with a B-
Spline hyper-surface, whose parameters are set as 𝑝1 = 𝑝2 =
𝑝3 = 2 and (𝑛1 + 1) × (𝑛2 + 1) × (𝑛3 + 1) = 32 × 8 × 12. The TO 
analysis is solved through the algorithm SANTO, developed at 
I2M Laboratory [7,13].  

 
Figure 1 The proposed benchmark: 𝑎1 = 500 mm, 𝑎2 = 100 mm, 𝑎3 =
200 mm, 𝐸 = 72 GPa, 𝜈 = 0.33, 60 × 16 × 24 SOLID185 ANSYS elements, 
𝑃 = 5 kN. 
 

Firstly, problem (12) is solved without considering the MLSC 
(𝑐𝑟𝑒𝑓=241.42 Nmm, 𝑉𝑟𝑒𝑓 = 10

7 mm3, 𝛾 = 0.4). The result of this 

optimisation is shown in Fig. 2. The dimensionless compliance of 
the final configuration is 𝑐/𝑐𝑟𝑒𝑓 = 0.1422. Then, problem (12) is 

enhanced with the MLSC in the form of Eq. (19), wherein the 
maximum member size is set as 𝑑𝑚𝑎𝑥 = 30 mm. The solution of 
problem (12) with the MLSC is shown in Fig. 3 and details about 
the optimised topology are illustrated in Fig. 4. 
 

  
Figure 2 Solution of problem (12). Figure 3 Solution of problem (12) 

with the MLSC of Eq. (19). 

Due to the active constraint on the maximum length scale, the 
compliance fraction is 𝑐/𝑐𝑟𝑒𝑓 = 0.2994. The constraint value is 

𝑔𝑑𝑚𝑎𝑥 = 1.601 × 10
−6: the MLSC is practically met on the whole 

design domain. It is interesting to remark that the proposed 
formulation of the MLSC properly works also with a relatively 
coarse mesh. 

  
(a) 0 ≤ 𝑥1 ≤ 100. (b) 100 ≤ 𝑥1 ≤ 200. 

  
(c) 200 ≤ 𝑥1 ≤ 300. (d) 300 ≤ 𝑥1 ≤ 400. 

Figure 4 Details about the solution of problem (12) with MLSC. 

6. Conclusions 

In this work, the MLSC has been implemented in the framework 
of the NURBS-based SIMP method for 3D applications. It relies on 
a suitable extension of the Guest’s formulation. Even if the 
maximum length scale is not completely free from the FE mesh, 
its effectiveness has been shown in the most general context of 
4D NURBS hyper-surfaces. The constraint is strictly met on the 
reassembled geometry, apart from a limited zone in the 
neighbourhood of the load application.  

Research is ongoing on the formulation of further AM-oriented 
constraints: the integration (and limitation) of the support 
material volume and of residual stresses related to the 
thermodynamic process are challenging perspectives. 
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