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Circular flows for the Euler equations in
two-dimensional annular domains

François Hamel and Nikolai Nadirashvili ∗

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Abstract

In this paper, we consider steady Euler flows in two-dimensional bounded annuli, as
well as in exterior circular domains, in punctured disks and in the punctured plane. We
always assume rigid wall boundary conditions. We prove that, if the flow does not have
any stagnation point, and if it satisfies further conditions at infinity in the case of an
exterior domain or at the center in the case of a punctured disk or the punctured plane,
then the flow is circular, namely the streamlines are concentric circles. In other words,
the flow then inherits the radial symmetry of the domain. The proofs are based on the
study of the trajectories of the flow and the orthogonal trajectories of the gradient of
the stream function, which is shown to satisfy a semilinear elliptic equation in the whole
domain. In exterior or punctured domains, the method of moving planes is applied to
some almost circular domains located between some streamlines of the flow, and the
radial symmetry of the stream function is shown by a limiting argument. The paper
also contains two Serrin-type results in simply or doubly connected bounded domains
with free boundaries. Here, the flows are further assumed to have constant norm on each
connected component of the boundary and the domains are then proved to be disks or
annuli.
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1 Introduction and main results

Throughout this paper, | | denotes the Euclidean norm in R2 and, for 0 ≤ a < b ≤ ∞, Ωa,b

denotes the two-dimensional domain defined by

Ωa,b =
{
x ∈ R2 : a < |x| < b

}
.

When a < b are two positive real numbers, Ωa,b is a bounded smooth annulus. When 0 <
a < b = ∞, Ωa,∞ is an exterior domain which is the complement of a closed disk. When
0 = a < b < ∞, Ω0,b is a punctured disk. When 0 = a < b = ∞, Ω0,∞ is the punctured
plane R2\{0}, where we denote 0 = (0, 0) with a slight abuse of notation.

We also denote

er(x) =
x

|x|
and eθ(x) = er(x)⊥ =

(
− x2

|x|
,
x1

|x|

)
for x = (x1, x2) ∈ R2\{0}. Moreover, for x ∈ R2 and r > 0,

B(x, r) = {y ∈ R2 : |y − x| < r}

denotes the open Euclidean disk with center x and radius r. We also write Br = B(0, r) and

Cr = ∂Br = {x ∈ R2 : |x| = r}

for r > 0.
In Ωa,b, we consider steady flows

v = (v1, v2)

of an inviscid fluid, solving the system of the Euler equations:{
v · ∇ v +∇ p = 0 in Ωa,b,

div v = 0 in Ωa,b,
(1.1)
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where the solutions v and p are always understood in the classical sense, that is, they are (at
least) of class C1 in Ωa,b and therefore satisfy (1.1) everywhere in Ωa,b. We always assume rigid
wall boundary conditions, that is, v is (at least) continuous up to the regular parts of ∂Ωa,b

and tangential there: {
v · er = 0 on Ca if a > 0,

v · er = 0 on Cb if b <∞.
(1.2)

A flow v in Ωa,b is called a circular flow if v(x) is parallel to the vector eθ(x) at every point
x ∈ Ωa,b, that is, v · er = 0 in Ωa,b. The main goal in this paper is to show that, under some
conditions, the flow is a circular flow and thus inherits the radial symmetry of the domain Ωa,b.
We obtain such results in the four cases 0 < a < b <∞, 0 < a < b =∞, 0 = a < b <∞, and
0 = a < b =∞.

We also consider Euler flows in simply or doubly connected bounded domains whose bound-
aries are free: under the additional condition that the flow has constant norm on the boundary,
we show that both the domain and the flow are then circular.

The case of bounded smooth annuli Ωa,b with 0 < a < b <∞

The first result is concerned with flows having no stagnation point in the closed annulus Ωa,b.
Throughout the paper, the stagnation points of a flow v are the points x for which |v(x)| = 0.

Theorem 1.1 Assume 0 < a < b < ∞. Let v be a C2(Ωa,b) flow solving (1.1)-(1.2) and
such that |v| > 0 in Ωa,b. Then v is a circular flow, and there is a C2([a, b]) function V with
constant strict sign such that

v(x) = V (|x|) eθ(x) for all x ∈ Ωa,b.

It actually turns out that the assumption |v| > 0 in Ωa,b can be slightly relaxed. Namely,
if |v| > 0 in the open annulus Ωa,b and if the set of stagnation points is assumed to be properly
included in one of the connected components of ∂Ωa,b, then the same conclusion holds, and
then in fact |v| > 0 in Ωa,b. This is the purpose of the following result.

Theorem 1.2 Assume 0 < a < b <∞. Let v be a C2(Ωa,b) flow solving (1.1)-(1.2) and such
that {

x ∈ Ωa,b : |v(x)| = 0
}
( Ca or

{
x ∈ Ωa,b : |v(x)| = 0

}
( Cb.

1 (1.3)

Then |v| > 0 in Ωa,b and the conclusion of Theorem 1.1 holds.

Theorem 1.2 is clearly stronger than Theorem 1.1, but we preferred to state Theorem 1.1
separately since the assumption is simpler.

Several further comments are in order. First of all, despite the fact that Ωa,b is not simply
connected, the flow v has a stream function u : Ωa,b → R of class C3(Ωa,b) defined by

∇⊥u = v, that is,
∂u

∂x1

= v2 and
∂u

∂x2

= −v1 (1.4)

1Throughout the paper, by E ( F , we mean that E ⊂ F and E 6= F .

3



in Ωa,b, since v is divergence free and tangential on Ca. Notice that the stream function u is
uniquely defined in Ωa,b up to an additive constant. Theorems 1.1 and 1.2 can then be viewed
as Liouville-type symmetry results since their conclusion means that the stream function u is
radially symmetric (and strictly monotone with respect to |x| in Ωa,b). Furthermore, if for x
in Ωa,b one calls ξx the solution of {

ξ̇x(t) = v(ξx(t)),

ξx(0) = x,
(1.5)

the conclusion of Theorems 1.1 and 1.2 then implies that each function ξx is defined in R and
periodic, and that the streamlines Ξx = ξx(R) of the flow are concentric circles.

Theorems 1.1 and 1.2 also mean equivalently that any C2(Ωa,b) non-circular flow for (1.1)-
(1.2) must either have a stagnation point in the open annulus Ωa,b, or must have stagnation
points in both circles Ca and Cb, or in the whole circle Ca, or in the whole circle Cb.

Without the assumption |v| > 0 in Ωa,b or the weaker one (1.3), the conclusion of Theo-
rems 1.1 and 1.2 obviously does not hold in general, in the sense that there are non-circular
flows which do not fulfill (1.3). To construct such flows explicitly, we first point out that, for
any continuous function f : R→ R and any non-radial C2(Ωa,b) solution u of

∆u+ f(u) = 0 (1.6)

in Ωa,b which is constant on Ca and on Cb and which has a critical point in Ωa,b, the C1(Ωa,b)
field

v = ∇⊥u

is a non-circular solution of (1.1)-(1.2) with a stagnation point in Ωa,b: notice indeed that
v = ∇⊥u satisfies the boundary condition v · er = −∇u · eθ = 0 on ∂Ωa,b since u is constant
on Ca and on Cb, and v solves (1.1) with pressure

p = −|v|
2

2
− F (u) = −|∇u|

2

2
− F (u),

where F ′ = f . As an example, let λ ∈ R and ϕ ∈ C∞([a, b]) be the principal eigenvalue and
the principal eigenfunction of the eigenvalue problem

−ϕ′′(r)− r−1ϕ′(r) + r−2ϕ(r) = λϕ(r) in [a, b]

with ϕ > 0 in (a, b) and Dirichlet boundary condition ϕ(a) = ϕ(b) = 0 (the principal
eigenvalue λ is unique and the principal eigenfunction ϕ is unique up to multiplication
by positive constants). The C∞(Ωa,b) function u defined by u(x) = ϕ(|x|)x1/|x| (that is,
u(x) = ϕ(r) cos(θ) in the usual polar coordinates) satisfies

∆u+ λu = 0 in Ωa,b

and it has some critical points in Ωa,b (since minΩa,b
u < 0 < maxΩa,b

u and u = 0 on ∂Ωa,b).

Actually, it can easily be seen that ϕ has only one critical point in [a, b] and that u has exactly
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6 critical points in Ωa,b (2 in Ωa,b, 2 on Ca, and 2 on Cb). Then the C∞(Ωa,b) flow v = ∇⊥u is
a non-circular flow solving (1.1)-(1.2) and having 2 stagnation points in Ωa,b and 4 on ∂Ωa,b.

However, we do not know whether the hypothesis (1.3) could be more relaxed for the
conclusion of Theorems 1.1 and 1.2 to still hold. For instance, would it be sufficient to assume
that v has no stagnation point in Ωa,b? We refer to Remark 2.5 in Section 2 below for further
comments on this question.

On the other hand, we point out that the sufficient conditions |v| > 0 in Ωa,b or the more
general one (1.3) are obviously not equivalent to being a circular flow, in the sense that there
are circular flows for (1.1)-(1.2) which do not fulfill (1.3) (besides the trivial flow v = (0, 0)!).
Actually, any C1(Ωa,b) circular flow v(x) = V (|x|) eθ(x) solving (1.1)-(1.2) and for which
V ∈ C1([a, b]) does not have a constant strict sign, has a set of stagnation points containing
at least a circle. For instance, let µ ∈ R and φ ∈ C∞([a, b]) be the principal eigenvalue and
the principal eigenfunction of the eigenvalue problem

−φ′′(r)− r−1φ′(r) = µφ(r) in [a, b],

with φ > 0 in (a, b) and Dirichlet boundary condition φ(a) = φ(b) = 0, and let u = φ(| · |).
Then v = ∇⊥u = φ′(| · |) eθ is a C∞(Ωa,b) non-trivial circular flow solving (1.1)-(1.2) with
pressure p(x) = −φ′(|x|)2/2 − µφ(|x|)2/2 and with a circle of stagnation points in Ωa,b: more
precisely, if r∗ ∈ (a, b) denotes a real number such that φ(r∗) = max[a,b] φ (it is easy to see
that r∗ is the only critical point of φ in [a, b]), then the set of stagnation points of the flow v
is equal to the whole circle Cr∗ .

Lastly, the assumption on the C2(Ωa,b) smoothness of v is a technical assumption which is
used in the proof. It warrants the C1 smoothness of the vorticity ω = ∂v2

∂x1
− ∂v1

∂x2
, satisfying

v · ∇ω = 0 in Ωa,b, and the C1 smoothness of the vorticity function f arising in the semilinear
elliptic equation of the type (1.6) satisfied by the stream function u. We refer to the proofs in
Section 2 and especially Lemma 2.4 below for further details.

The case of exterior domains Ωa,∞ with 0 < a <∞

Theorem 1.3 Assume 0 < a < ∞ and b = ∞. Let v be a C2(Ωa,∞) flow solving (1.1)-(1.2)
and such that {

x ∈ Ωa,∞ : |v(x)| = 0
}
( Ca and lim inf

|x|→+∞
|v(x)| > 0. (1.7)

Assume moreover that

v(x) · er(x) = o
( 1

|x|

)
as |x| → +∞. (1.8)

Then |v| > 0 in Ωa,∞ and v is a circular flow, namely there is a C2([a,+∞)) function V with
constant strict sign such that v(x) = V (|x|) eθ(x) for all x ∈ Ωa,∞.

As for Theorems 1.1 and 1.2, the conclusion of Theorem 1.3 says that the stream function u
is radially symmetric and strictly monotone with respect to |x| in Ωa,∞, and that the streamlines
of the flow v are concentric circles.

As far as the behavior of v at infinity is concerned, we do not know what could be the
critical behavior of v(x) · er(x) as |x| → +∞, or another type of asymptotic condition at
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infinity, for the conclusion of Theorem 1.3 to hold. However, we can say that without the
condition (1.8) the conclusion of Theorem 1.3 does not hold in general. For instance, consider
the C∞(Ωa,∞) function u defined by u(x) = 2(|x|2/a2 − 1) + (|x|/a− a/|x|)x1/|x|, that is,

u = 2
(r2

a2
− 1
)

+
(r
a
− a

r

)
cos θ

in the usual polar coordinates. The function u satisfies ∆u− 8/a2 = 0 in Ωa,∞ with Dirichlet
boundary condition u = 0 on Ca, and the C∞(Ωa,∞) field v = ∇⊥u satisfies (1.1)-(1.2) with
pressure p = −|v|2/2 + 8u/a2. In the usual polar coordinates, the field v is given by

v =
[4r

a2
+
(1

a
+
a

r2

)
cos θ

]
eθ +

[(1

a
− a

r2

)
sin θ

]
er. (1.9)

It satisfies condition (1.7) (and even infΩa,∞ |v| ≥ 2/a > 0). But

v(x) · er(x) =
(1

a
− a

|x|2
) x2

|x|
6= o
( 1

|x|

)
as |x| → +∞,

and v is not a circular flow. However, since u(x) → +∞ as |x| → +∞ and u = 0 on Ca
and since u has no critical point, it is easily seen that all solutions ξx of (1.5) are defined
in R and periodic and that all streamlines Ξx = ξx(R) (which are level sets of u) surround
the origin.2 Nevertheless, the streamlines do not converge to any family of circles at infinity
since a calculation yields maxy∈Ξx |y| −miny∈Ξx |y| = maxR |ξx(·)| −minR |ξx(·)| → a/2 > 0 as
|x| → +∞.

We point out that, in Theorem 1.3, the flow v is not assumed to be bounded. Actually,
there are unbounded circular flows satisfying all assumptions of Theorem 1.3: consider for
instance the C∞(Ωa,∞) unbounded circular flow v defined by

v(x) = |x| eθ(x),

solving (1.1)-(1.2) with stream function u(x) = |x|2/2 and pressure p(x) = |x|2/2, and satisfy-
ing infΩa,∞ |v| = a > 0.

Notice lastly that the condition (1.7) is fulfilled in particular when infΩa,∞ |v| > 0. Further-
more, as soon as |v| > 0 on Ca (that holds if infΩa,∞ |v| > 0), the boundary condition (1.2) and
the continuity of v imply in particular that v · eθ has a constant strict sign on Ca. Under the
condition infΩa,∞ |v| > 0, the following result then provides some estimates on the infimum or
the supremum of the vorticity ∂v2

∂x1
− ∂v1

∂x2
in Ωa,∞, in terms of the sign of v · eθ on Ca.

Theorem 1.4 Assume 0 < a < ∞ and b = ∞. Let v be a C2(Ωa,∞) flow solving (1.1)-(1.2)
and such that infΩa,∞ |v| > 0. If v · eθ > 0 on Ca (respectively if v · eθ < 0 on Ca), then

sup
Ωa,∞

(∂v2

∂x1

− ∂v1

∂x2

)
> 0 (respectively inf

Ωa,∞

(∂v2

∂x1

− ∂v1

∂x2

)
< 0).

2Throughout the paper, we say that a Jordan curve C surrrounds the origin if the bounded connected
component of R2 \ C contains the origin.
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The flow v given by (1.9) is an example of a flow satisfying the assumptions of Theorem 1.4,
with v · eθ > 0 on Ca, and for which the vorticity (namely ∆u) is actually equal to the positive
constant 8/a2 everywhere in Ωa,∞.

Theorem 1.4 can also be viewed as a Liouville-type result. Namely, we show in its proof
that, if infΩa,∞ |v| > 0, if v ·eθ > 0 on Ca, and if the vorticity is nonpositive everywhere in Ωa,∞,
then v is a circular flow of the type v = V (| · |) eθ with V : [a,+∞)→ [η,+∞) for some η > 0.
Therefore, the vorticity ∂v2

∂x1
(x)− ∂v1

∂x2
(x) = V ′(|x|)+V (|x|)/|x| can not be nonpositive everywhere

(since otherwise the function r 7→ r V (r) (≥ ηr) would be nonincreasing in [a,+∞), leading
to a contradiction).3

Notice that Theorem 1.4 does not hold good if the assumption infΩa,∞ |v| > 0 is dropped.

There are actually some circular flows v satisfying (1.1)-(1.2) such that |v| > 0 in Ωa,∞ and
v ·eθ > 0 on Ca, but infΩa,∞ |v| = 0 and for which the vorticity is negative everywhere. Consider

for instance the C∞(Ωa,∞) circular flow

v(x) =
1

|x|2
eθ(x),

solving (1.1)-(1.2) with stream function u(x) = −1/|x| and pressure p(x) = −1/(4|x|2): one
has |v| > 0 in Ωa,∞ and v · eθ > 0 on Ca, but infΩa,∞ |v| = 0 and ∂v2

∂x1
(x)− ∂v1

∂x2
(x) = −1/|x|3 < 0

in Ωa,∞.

The case of punctured disks Ω0,b with 0 < b <∞

Theorem 1.5 Assume a = 0 and 0 < b <∞. Let v be a C2(Ω0,b\{0}) flow solving (1.1)-(1.2)
and such that {

x ∈ Ω0,b\{0} : |v(x)| = 0
}
( Cb and

∫
Cε

|v · er| → 0 as ε
>→ 0. (1.10)

Then |v| > 0 in Ω0,b \{0} and v is a circular flow, namely there is a C2((0, b]) function V with
constant strict sign such that v(x) = V (|x|) eθ(x) for all x ∈ Ω0,b \ {0}.

Notice that the condition limε→0

∫
Cε
|v · er| = 0 is fulfilled in particular if v(x) · er(x) =

o(1/|x|) as |x| >→ 0. We do not know what could be the critical behavior of v ·er at 0, or another
type of asymptotic condition at the origin, for the conclusion of Theorem 1.5 to hold. However
we can say that, without the condition limε→0

∫
Cε
|v · er| = 0, the conclusion of Theorem 1.5

does not hold in general. Let us give a counter-example similar to (1.9) above (which was
there defined in Ωa,∞). More precisely, consider the C∞(Ω0,b \ {0}) function u defined by
u(x) = (|x|/b− b/|x|)x1/|x|, that is,

u =
(r
b
− b

r

)
cos θ

in the usual polar coordinates. The function u satisfies ∆u = 0 in Ω0,b \ {0} with Dirichlet
boundary condition u = 0 on Cb, and the C∞(Ω0,b \ {0}) field v = ∇⊥u satisfies (1.1)-(1.2)

3The same arguments do not lead to any contradiction in the case of bounded annuli Ωa,b and Ω0,b with b <
∞, see Remark 1.6.
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with pressure p = −|v|2/2 (and vorticity equal to 0). In the usual polar coordinates, the field v
is given by

v =
[(1

b
+

b

r2

)
cos θ

]
eθ +

[(1

b
− b

r2

)
sin θ

]
er. (1.11)

It has only two stagnation points in Ω0,b \ {0} and they both lie on Cb. Hence, the first part of

condition (1.10) is fulfilled. But
∫
Cε
|v · er| = 4(ε/b− b/ε) 6→ 0 as ε

>→ 0, and v is not a circular
flow.

Lastly, in Theorem 1.5, the flow v is not assumed to be bounded. Actually, there are
unbounded circular flows satisfying all assumptions of Theorem 1.5: consider for instance
the C∞(Ω0,b \ {0}) unbounded circular flow v defined by

v(x) =
1

|x|
eθ(x) (1.12)

solving (1.1)-(1.2) with stream function u(x) = ln |x| and pressure p(x) = −1/(2|x|2), and
satisfying |v| > 0 in Ω0,b \ {0} and then (1.10).

Remark 1.6 A result similar to Theorem 1.4 does not hold in the punctured disk Ω0,b. For
instance, the C∞(Ω0,b \ {0}) flow (1.12) satisfies (1.1)-(1.2), v · eθ > 0 on Cb, infΩ0,b

|v| > 0,

but ∂v2
∂x1
− ∂v1

∂x2
≡ 0 in Ω0,b. The same observation holds good in a smooth annulus Ωa,b with

0 < a < b <∞.

The case of the punctured plane Ω0,∞

The last geometric configuration considered in the paper is that the punctured plane

Ω0,∞ = R2 \ {0}.

Theorem 1.7 Let v be a C2(Ω0,∞) flow solving (1.1) and such that |v| > 0 in Ω0,∞ and
lim inf |x|→+∞ |v(x)| > 0. Assume moreover that

v(x) · er(x) = o
( 1

|x|

)
as |x| → +∞ and

∫
Cε

|v · er| → 0 as ε
>→ 0, (1.13)

and that the flow has one streamline which is a Jordan curve surrounding the origin. Then v
is a circular flow. Furthermore, there is a C2((0,+∞)) function V with constant strict sign
such that v(x) = V (|x|) eθ(x) for all x ∈ Ω0,∞.

The conclusion says that, under some conditions on |v| and under the same conditions as in
Theorems 1.3 and 1.5 on the behavior of the radial component of v at infinity and at the origin,
the existence of a streamline surrounding the origin implies that all streamlines surround the
origin and are actually all concentric circles.

Remark 1.8 Let us mention here other rigidity results for the stationary solutions of (1.1)
in various geometrical configurations. The analyticity of the streamlines under a condition
of the type v1 > 0 in the unit disk was shown in [16]. The local correspondence between
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the vorticities of the solutions of (1.1) and the co-adjoint orbits of the vorticities for the
non-stationary version of (1.1) in more general annular domains was investigated in [8]. In
a previous paper [12] (see also [13]), we considered the case of a two-dimensional strip with
bounded section and the case of bounded flows in a half-plane, assuming in both cases that the
flows v are tangential on the boundary and that inf |v| > 0: all streamlines are then proved to
be lines which are parallel to the boundary of the domain (in other words the flow is a parallel
flow). Earlier results by Kalisch [15] were concerned with flows in two-dimensional strips under
the additional assumption v · e 6= 0, where e is the main direction of the strip. Lastly, in [14],
we considered the case of the whole plane R2 and we showed that any C2(R2) bounded flow v
is still a parallel flow under the condition infR2 |v| > 0.

Some Serrin-type free boundary problems with overdetermined boundary condi-
tions

The last main results on the solutions of the Euler equations (1.1) are two Serrin-type results
in smooth simply or doubly connected bounded domains whose boundaries are free but on
which the flow is assumed to satisfiy an additional condition.

Theorem 1.9 Let Ω be a C2 non-empty simply connected bounded domain of R2. Let v ∈
C2(Ω) satisfy the Euler equations (1.1) and assume that v · n = 0 and |v| is constant on ∂Ω,
where n denotes the outward unit normal on ∂Ω. Assume moreover that v has a unique
stagnation point in Ω. Then, up to a shift,

Ω = BR

for some R > 0. Furthermore, the unique stagnation point of v is the center of the disk and v is
a circular flow, that is, there is a C2([0, R]) function V : [0, R]→ R such that V 6= 0 in (0, R],
V (0) = 0, and v(x) = V (|x|) eθ(x) for all x ∈ BR \ {0}.

In the proof, we will show that the C3(Ω) stream function u defined by (1.4) satisfies a
semilinear elliptic equation ∆u+f(u) = 0 in Ω. Furthermore, up to normalization, the function
u vanishes on ∂Ω and is positive in Ω. Lastly, since |v| is assumed to be constant along ∂Ω, the
normal derivative ∂u

∂n
of u along ∂Ω is constant. This problem is therefore an elliptic equation

with overdetermined boundary conditions. Since the celebrated paper by Serrin [22], it has
been known that these overdetermined boundary conditions on ∂Ω determine the geometry
of Ω, namely, Ω is then a ball and the function u is radially symmetric (hence, here, v would
then be a circular flow). The proof is based on the method of moving planes developed
in [3, 6, 10, 22] and on the maximum principle, and it relies on the Lipschitz continuity of
the function f . In our case, the function f is given in terms of the function u itself and it
may not be Lipschitz continuous on the whole range [0,maxΩ u]. More precisely, it may not
be Lipschitz continuous in a neighborhood of the maximal value maxΩ u. One therefore has to
adapt the proof to this case by removing small neighborhoods of size ε around the maximal
point of u (which is the unique stagnation point of v): one shows the symmetry of the domain

in all directions up to ε and one concludes by passing to the limit as ε
>→ 0.

In connection with Theorems 1.5 and 1.9, we state the following conjecture.
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Conjecture 1.10 Let D be an open non-empty disk and let z ∈ D. Let v be a C2(D\{z})
and bounded flow solving (1.1) and v · n = 0 on ∂D, where n denotes the outward unit normal
on ∂D. Assume that |v| > 0 in D\{z}. Then z is the center of the disk and the flow is circular
with respect to z.

Up to shift, one can assume that D = Ω0,b for some b ∈ (0,+∞), hence n = er on ∂D. If
the point z is a priori assumed to be the center of the disk, namely the origin, then Theorem 1.5
implies that v is a circular flow. Up to rotation, assume now that z = (α, 0) for some α ∈ (0, b)
and, without loss of generality, that the stream function u is positive in D\{z} and vanishes
on ∂D. The goal would be to reach a contradiction. As far as Theorem 1.9 is concerned, the
method of proof described in the paragraph following the statement shows simultaneously the
symmetry of the domain and the symmetry of the function u (which obeys an equation of the
type ∆u+f(u) = 0), thanks to the overdetermined boundary conditions satisfied by u. Here in
Conjecture 1.10, the same technics based on the method of moving method implies for instance
on the one hand that the function u is even in x2 in Ω0,b\{z}, and on the other hand that
u(x1, x2) < u(2α − x1, x2) for all (x1, x2) ∈ Ω0,b such that x1 > α. But, regarding the second
property, the Hopf lemma might not apply to the function (x1, x2) 7→ u(x1, x2)−u(2α−x1, x2)
at the point z = (α, 0) since the vorticity function f might not be Lipschitz continuous around
the limiting value of u at z (see also Remark 2.5 below, and notice that u is not differentiable
at z, unless one further assumes that |v(x)| → 0 as x → z). Therefore, the same arguments
as the ones in the proof of Theorem 1.9 do not lead to an obvious contradiction if z is not the
center of the disk. However, Conjecture 1.10 seems natural and will be the purpose of further
investigation.

A related weaker conjecture (with stronger assumptions) can also be formulated: if D is
an open non-empty disk, if z ∈ D, if v ∈ C2(D) solves (1.1), if v · n = 0 on ∂D and if z is the
only stagnation point of v in D, then z is the center of the disk and v is circular with respect
to z. For the same reasons as in the previous paragraph (since the vorticity function f might
not be Lipschitz continuous around u(z)), the proof of that second conjecture not clear either.

The last main result of the paper is concerned with the case of doubly connected bounded
domains.

Theorem 1.11 Let ω1 and ω2 be two C2 non-empty simply connected bounded domains of R2

such that ω1 ⊂ ω2, and denote
Ω = ω2 \ ω1.

Let v ∈ C2(Ω) satisfy the Euler equations (1.1). Assume that v · n = 0 on ∂Ω = ∂ω1 ∪ ∂ω2,
where n denotes the outward unit normal on ∂Ω, and that |v| is constant on ∂ω1 and on ∂ω2.
Assume moreover that |v| > 0 in Ω. Then ω1 and ω2 are two concentric disks and, up to shift,

Ω = Ωa,b

for some 0 < a < b < ∞ and v is a circular flow satisfying the conclusion of Theorem 1.1
in Ω = Ωa,b.

In this case, by using similar arguments as in the proof of Theorem 1.1 in smooth annuli Ωa,b

with 0 < a < b < ∞, it follows that the stream function u of the flow v satisfies a semilinear
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elliptic equation ∆u + f(u) = 0 in Ω, with u = c1 on ∂ω1 and u = c2 on ∂ω2, for some
real numbers c1 6= c2. Furthermore, min(c1, c2) < u < max(c1, c2) in Ω and ∂u

∂n
is constant

along ∂ω1 and along ∂ω2. Since v has no stagnation point in Ω, the function f is then shown
to be Lipschitz continuous in the whole interval [min(c1, c2),max(c1, c2)], and known results of
Reichel [18] and Sirakov [24] then imply that, up to shift, Ω = Ωa,b for some 0 < a < b < ∞,
and u is radially symmetric.

Further symmetry results have been obtained for nonlinear elliptic equations of the type
∆u + f(u) = 0 or more general ones in exterior domains with overdetermined boundary
conditions (see e.g. [1, 19, 24]), or in the whole space (see e.g. [11, 17, 23]), in both cases with
further assumptions on the solution u at infinity and on the function f . Such conditions are
in general not satisfied by the stream function u and the vorticity function f of a flow v that
would be defined in the complement of a simply connected bounded domain or in the whole
or punctured plane. Lastly, we refer to [5, 9, 20, 21] for further references on overdetermined
boundary value elliptic problems in domains with more complex topology or in unbounded
epigraphs.

Outline of the paper

In Section 2, we prove Theorems 1.1 and 1.2 dealing with the case of bounded smooth an-
nuli Ωa,b. Section 3 is devoted to the proof of Theorems 1.3 and 1.4 in the exterior do-
mains Ωa,∞. Sections 4 and 5 are concerned with the proof of Theorems 1.5 and 1.7 in the
punctured disks Ω0,b and in the punctured plane Ω0,∞. Lastly, the proof of the Serrin-type
Theorems 1.9 and 1.11 is carried out in Section 6. The strategies of the proofs of Theo-
rems 1.1, 1.2, 1.3, 1.4, 1.5 and 1.7 share some common features: we show some properties of
the streamlines of the flow and we prove some symmetry results for the equation satisfied by
the stream function u, after checking that this equation is well defined. However, the cases of
the exterior domains Ωa,∞ and the punctured disks Ω0,b and plane Ω0,∞ involve some additional
technicalities and require specific additional assumptions. They also require some further Li-
ouville type results for the semilinear elliptic equations ∆u + f(u) = 0 in these domains. For
the sake of clarity of the paper, that is why we preferred to first deal with the case of smooth
annuli Ωa,b (with 0 < a < b < ∞) and to carry out the whole proof of Theorems 1.1 and 1.2
separately in Section 2.

2 The case of bounded annuli Ωa,b: proof of Theo-

rems 1.1 and 1.2

This section is devoted to the proof of Theorem 1.2 (we recall that Theorem 1.1 is a particular
case of Theorem 1.2). Throughout this section, we consider two positive real numbers a < b
and a C2(Ωa,b) solution v of (1.1)-(1.2) satisfying (1.3), namely{

x ∈ Ωa,b : |v(x)| = 0
}
( Ca or

{
x ∈ Ωa,b : |v(x)| = 0

}
( Cb.

Before going into further details, let us first explain the general strategy of the proof of
Theorem 1.2. As already mentioned in the introduction, since div v = 0 in the two-dimensional

11



annulus Ωa,b and since v · er = 0 on Ca, there is a C3(Ωa,b) stream function u : Ωa,b → R
satisfying (1.4), that is,

∇⊥u = v in Ωa,b.

By definition, the stream function u is constant along the streamlines of the flow, parametrized
by the solutions ξx of (1.5). In order to show that the flow v is circular, one will show that the
stream function u is radially symmetric, that is, there is a C3([a, b]) function U such that

u(x) = U(|x|) for all x ∈ Ωa,b.

Indeed, this means that
v(x) = V (|x|) eθ(x) for all x ∈ Ωa,b,

with V = U ′ ∈ C2([a, b]). Furthermore, since |v| is continuous and does not vanish in Ωa,b nor
in the whole circle Ca nor in the whole circle Cb, the function V then has a constant strict sign
in [a, b].

To show that u is radially symmetric, we will prove that, up to changing v into −v, u
satisfies a semilinear elliptic equation of the type

∆u+ f(u) = 0 in Ωa,b,

c1 < u < c2 in Ωa,b,

u = c1 on Ca, u = c2 on Cb,

(2.1)

for some real numbers c1 < c2 and some C1([c1, c2]) function f . Lastly, we use a result of
Sirakov [24] to complete the proof.

The first step of the proof consists in proving that u strictly ranges between its, different,
values on Ca and Cb.

Lemma 2.1 There are two real numbers c1 6= c2 such that u = c1 on Ca, u = c2 on Cb, and

min(c1, c2) < u < max(c1, c2) in Ωa,b.

Proof. First of all, since u satisfies (1.2), the C3(R) functions t 7→ u(a cos t, a sin t) and
t 7→ u(b cos t, b sin t) are constant. There are then two real numbers c1 and c2 such that

u = c1 on Ca and u = c2 on Cb. (2.2)

For each x ∈ Ωa,b, let σx be the solution of{
σ̇x(t) = ∇u(σx(t)),

σx(0) = x.
(2.3)

Since ∇u is (at least) Lipschitz-continuous in Ωa,b, each σx is defined in a neighborhood of 0
and the quantities {

t+x = sup
{
t > 0 : σx([0, t]) ⊂ Ωa,b},

t−x = inf
{
t < 0 : σx([t, 0]) ⊂ Ωa,b}
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are such that −∞ ≤ t−x < 0 < t+x ≤ +∞. The curve σx((t
−
x , t

+
x )) (⊂ Ωa,b) is the trajectory

of the gradient flow in Ωa,b containing x. Notice that the functions σx and u ◦ σx are of
class C1((t−x , t

+
x )) with

(u ◦ σx)′(t) = |∇u(σx(t))|2 = |v(σx(t))|2 > 0 for all t ∈ (t−x , t
+
x ),

since |v| > 0 in Ωa,b by (1.3). Observe also that σx((t
−
x , t

+
x )) meets the streamline of the flow v

containing x (parametrized by the solution ξx of (1.5)), orthogonally at x, since v = ∇⊥u.
We now claim that, for each x ∈ Ωa,b,

dist(σx(t), ∂Ωa,b)→ 0 as t
<→ t+x (2.4)

and
dist(σx(t), ∂Ωa,b)→ 0 as t

>→ t−x , (2.5)

meaning that min
(
|σx(t)|−a, b−|σx(t)|

)
→ 0 as t→ t+x with t < t+x and as t→ t−x with t > t−x .

Assume first by way of contradiction that (2.4) does not hold. There exist then an increasing
sequence of positive real numbers (tn)n∈N and a point y ∈ Ωa,b such that tn → t+x and σx(tn)→ y
as n→ +∞. Since y ∈ Ωa,b and the continuous field |∇u| = |v| does not vanish in Ωa,b by (1.3),
there are three real numbers r > 0, η > 0 and τ > 0 such that{

B(y, r) ⊂ Ωa,b, |∇u| ≥ η in B(y, r),

σz(t) ∈ B(y, r) for all z ∈ B(y, r/2) and t ∈ [−τ, τ ].

Since σx(tn) → y as n → +∞, one has σx(tn) ∈ B(y, r/2) for all n large enough, hence σx
is defined in [tn − τ, tn + τ ] with σx(t) ∈ B(y, r) ⊂ Ωa,b for all t ∈ [tn − τ, tn + τ ] and n
large enough. This implies that t+x = +∞. Furthermore, for all n large enough, one has
(u ◦ σx)′(t) = |∇u(σx(t))|2 ≥ η2 for all t ∈ [tn − τ, tn + τ ], hence

u(σx(tn + τ)) ≥ u(σx(tn − τ)) + 2η2τ.

Since u ◦ σx is increasing in (t−x , t
+
x ) and since tn → t+x = +∞ as n→ +∞, one then gets that

u(σx(t))→ +∞ as t→ t+x = +∞, contradicting the boundedness of u (u is continuous in the
compact set Ωa,b). Therefore, (2.4) has been proved. Similarly, (2.5) holds.

Finally, for each x ∈ Ωa,b, since the function u ◦ σx is increasing in (t−x , t
+
x ), it then follows

from (2.2) and (2.4)-(2.5) that u(σx(t)) → c1 or c2 as t → t±x and that c1 6= c2. Furthermore,
if c1 < c2 (resp c1 > c2), then |σx(t)| → a as t→ t−x and |σx(t)| → b as t→ t+x (resp. |σx(t)| → b
as t→ t−x and |σx(t)| → a as t→ t+x ). In both cases, one has

u(σx(t))→ min(c1, c2) as t→ t−x and u(σx(t))→ max(c1, c2) as t→ t+x .

Using again that u ◦ σx is increasing, one infers that min(c1, c2) < u(σx(t)) < max(c1, c2) for
each t ∈ (t−x , t

+
x ). In particular, at t = 0, one concludes that min(c1, c2) < u(x) < max(c1, c2).

This property holds for every x ∈ Ωa,b and the proof of Lemma 2.1 is thereby complete. �

The next lemma shows that all streamlines of the flow which are included in the open
annulus Ωa,b are closed and surround the origin.
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Lemma 2.2 For every x ∈ Ωa,b, the solution ξx of (1.5) is defined in R and periodic. Fur-
thermore, there are a continuous periodic function ρx : R → (a, b) and a continuous function
θx : R→ R such that

ξx(t) = (ρx(t) cos θx(t), ρx(t) sin θx(t)) for all t ∈ R, and θx(R) = R. (2.6)

In other words, the Jordan curve ξx(R) surrounds the origin.

Proof. Throughout the proof, we fix any x ∈ Ωa,b. Since v is (at least) Lipschitz continuous
in Ωa,b, there is a maximal open interval (τ−x , τ

+
x ) ⊂ R containing 0 such that ξx is C1 in (τ−x , τ

+
x )

and ranges in Ωa,b. Furthermore, owing to the definitions of ξx and u, the function u ◦ ξx is
constant in (τ−x , τ

+
x ). It then follows from Lemma 2.1 and the uniform continuity of u in Ωa,b

that
a < inf

t∈(τ−x ,τ
+
x )
|ξx(t)| ≤ sup

t∈(τ−x ,τ
+
x )

|ξx(t)| < b. (2.7)

Furthermore, the function ξx is then defined in R, that is, (τ−x , τ
+
x ) = R. In the sequel, we call

Ξx = ξx(R)

the streamline containing x.
Let us now show that ξx is periodic. Consider the sequence (ξx(n))n∈N in Ωa,b. Since Ωa,b is

compact and since a < inft∈R |ξx(t)| ≤ supt∈R |ξx(t)| < b, there are y ∈ Ωa,b and an increasing
map ϕ : N → N such that ξx(ϕ(n)) → y as n → +∞. Since u is constant along Ξx, one has
u(x) = u(ξx(0)) = u(ξx(ϕ(n)))→ u(y) as n→ +∞, hence u(x) = u(y) and u(ξx(ϕ(n))) = u(y)
for all n ∈ N. Furthermore, since |∇u(y)| = |v(y)| > 0 by (1.3) (remember that y ∈ Ωa,b),

there are some real numbers r > 0 and τ− < 0 < τ+ such that B(y, r) ⊂ Ωa,b and

B(y, r) ∩ Ξy = B(y, r) ∩ u−1({u(y)}) = ξy((τ−, τ+)).

Therefore, ξx(ϕ(n)) ∈ ξy((τ−, τ+)) for all n large enough, that is, ξx(ϕ(n)) = ξy(τn) with
τn ∈ (τ−, τ+) (notice in particular that this implies that the streamlines Ξx and Ξy coincide).
Since

ξx(ϕ(n)− τn) = ξy(0) = ξx(ϕ(2n)− τ2n)

for all n large enough and ϕ(2n)− ϕ(n) ≥ n for all n ∈ N, there is N ∈ N large enough such
that TN := (ϕ(2N)− τ2N)− (ϕ(N)− τN)) > 0, and ξx(ϕ(N)− τN) = ξx(ϕ(N)− τN + TN). As
a consequence, the function ξx is TN -periodic.

Finally, remembering that |ξ̇x(t)| = |v(ξx(t))| > 0 for all t ∈ R by (1.3) and (2.7), we claim
that the non-empty open connected subset of R2 surrounded by the curve Ξx is not included
in Ωa,b. Indeed, otherwise, the function u, which is constant on Ξx, would have a critical
point in this domain: that is impossible since |∇u| = |v| > 0 in Ωa,b. As a conclusion, the
streamline Ξx surrounds the origin. That implies that θx(R) = R, where θx : R → R is any
continuous function given as in (2.6). In (2.6), the function ρx = |ξx| is necessarily continuous
and periodic, as is ξx. The proof of Lemma 2.2 is thereby complete. �
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Remark 2.3 Lemma 2.2 was concerned with the description of the streamlines Ξx when x
belongs to the open annulus Ωa,b. If |v| > 0 on Ca (resp. on Cb), then the boundary condi-
tions (1.2) imply that, for any x ∈ Ca (resp. x ∈ Cb), ξx is still defined and periodic in R
with Ξx = Ca (resp. Ξx = Cb). If x ∈ ∂Ωa,b and |v(x)| = 0, then ξx(t) = x for all t ∈ R
and Ξx = {x}. If x ∈ Ca (resp. x ∈ Cb) with |v(x)| > 0 and if v has some stagnation points
on Ca (resp. Cb), then it is easy to see that ξx is still defined in R, but it is not periodic
anymore and Ξx is a proper arc of Ca (resp. Cb) which is open relatively to Ca (resp. Cb).

Up to changing v into −v and u into −u, one can assume without loss of generality that
the real numbers c1 6= c2 given in Lemma 2.1 are such that

c1 < c2. (2.8)

The last preliminary lemma is the derivation of an equation of the type (1.6) in Ωa,b.

Lemma 2.4 There is a C1([c1, c2]) function f : [c1, c2]→ R such that ∆u+ f(u) = 0 in Ωa,b.

Proof. From assumption (1.3), either there is a point A ∈ Ca such that |v(A)| > 0 and |v| > 0
on Cb, or there is a point B ∈ Cb such that |v(B)| > 0 and |v| > 0 on Ca. Let us consider
the first case only (the second one can be handled similarly). Then, let σA be the solution
of (2.3) with x = A. Since |∇u(A)| = |v(A)| > 0 and ∇u(A) · eθ(A) = −v(A) · er(A) = 0
by (1.2), the vector ∇u(A) is non-zero and parallel to er(A). Furthermore, since u = c1 on Ca
and c1 < u < c2 in Ωa,b by Lemma 2.1, one infers that ∇u(A) = |∇u(A)| er(A), that σA is
defined in (at least) some interval [0, t∗) with t∗ > 0 and σA((0, t∗)) ⊂ Ωa,b. Denote

t+A = sup{t > 0 : σA((0, t]) ⊂ Ωa,b} ∈ (0,+∞].

The function σA is of class C1([0, t+A)) and, for every t ∈ (0, t+A), one has σA(t) ∈ Ωa,b with

(u ◦ σA)′(t) = |∇u(σA(t))|2 = |v(σA(t))|2 > 0.

Since u(σA(t)) → u(σA(0)) = u(A) = c1 as t → 0, the proof of Lemma 2.1 then implies
that |σA(t)| → b and u(σA(t)) → c2 as t → t+A. On the other hand, the function |∇u ◦ σA|
is continuous in [0, t+A), positive at 0 (since |∇u(σA(0))| = |v(A)| > 0), positive in (0, t+A)
(since σA((0, t+A)) ⊂ Ωa,b), and lim inft→t+A

|∇u(σA(t))| = lim inft→t+A
|v(σA(t))| > 0 (since the

uniformly continuous field |v| is positive on Cb and |σA(t)| → b as t→ t+A). As a consequence,
there is η > 0 such that

|σ̇A(t)| = |∇u(σA(t))| ≥ η for all t ∈ [0, t+A).

Therefore, (u ◦ σA)′(t) = |∇u(σA(t))|2 ≥ η2 for all t ∈ [0, t+A) and t+A is positive a real number,
since u is bounded in Ωa,b. Moreover, for every t ∈ [0, t+A), one has

c2 − c1 ≥ u(σA(t))− u(A) = u(σA(t))− u(σA(0)) =

∫ t

0

|∇u(σA(s))|2ds ≥ η

∫ t

0

|σ̇A(s)| ds,

hence the length of the curve σA([0, t+A)) is finite. Finally, there is a point A+ ∈ Cb such
that σA(t) → A+ as t → t+A. By setting σA(t+A) = A+ and remembering that the field ∇u
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is (at least) continuous in Ωa,b, it follows that the function σA : [0, t+A] → Ωa,b is then of
class C1([0, t+A]) and that the function g := u◦σA is a C1 diffeomorphism from [0, t+A] onto [c1, c2]
(with g′ ≥ η2 > 0 in [0, t+A]). Let g−1 : [c1, c2]→ [0, t+A] be the reciprocal of gA and define

f(τ) = −∆u(σA(g−1(τ))) for τ ∈ [c1, c2]. (2.9)

The function f : [c1, c2]→ R is of class C1([c1, c2]) (since ∆u, σA and g−1 are C1, respectively
in Ωa,b, [0, t+A], and [c1, c2]), and

∆u(σA(s)) + f(u(σA(s)) = 0 for all s ∈ [0, t+A]. (2.10)

Consider now any x ∈ Ωa,b. Since |σA(0)| = |A| = a and |σA(t+A)| = |A+| = b, the
streamline Ξx necessarily meets the curve σA([0, t+A]) at a point lying in Ωa,b, by Lemma 2.2.
Hence, there are t ∈ R and s ∈ (0, t+A) such that ξx(t) = σA(s), while u(x) ∈ (c1, c2). On
the other hand, the stream function u is constant along the streamline Ξx, and the C1(Ωa,b)
vorticity ∂v2

∂x1
− ∂v1

∂x2
= ∆u satisfies v ·∇(∆u) = 0 in Ωa,b from the Euler equations (1.1), hence ∆u

is constant along the streamline Ξx too. As a consequence, (2.10) yields

∆u(x) + f(u(x)) = ∆u(ξx(t)) + f(u(ξx(t))) = ∆u(σA(s)) + f(u(σA(s))) = 0.

Lastly, since the functions ∆u and f ◦ u are (at least) continuous in Ωa,b, the equation
∆u+ f(u) = 0 is satisfied every in Ωa,b and the proof of Lemma 2.4 is thereby complete. �

Proof of Theorem 1.2. It follows from Lemmas 2.1 and 2.4, together with (2.8) that the
function u is a classical solution of (2.1) for some real numbers c1 < c2 and some (at least)
Lipschitz-continuous function f : [c1, c2]→ R. If then follows from [24, Theorem 5]4 that u is
radially symmetric and increasing with respect to |x| in Ωa,b. Therefore, there is a C3([a, b])
increasing function U : [a, b]→ R such that u(x) = U(|x|) for all x ∈ Ωa,b. The flow v = ∇⊥u
is then given by

v(x) = V (|x|) eθ(x)

for all x ∈ Ωa,b, with V = U ′ ∈ C2([a, b]). Lastly, since |v| is continuous in Ωa,b and does not
vanish in Ωa,b nor in the whole circle Ca nor in the whole circle Cb, the function V then has a
constant strict (positive) sign in [a, b]. The proof of Theorem 1.2 is thereby complete. �

Remark 2.5 For a C2(Ωa,b) flow v solving (1.1)-(1.2), could the assumption (1.3) be slightly
relaxed for v still to be necessarily a circular flow? As we mentioned in the introduction, the
conclusion does not hold in general if v has stagnation points in Ωa,b. So a natural question
is the following one: if |v| > 0 in Ωa,b, then is v a circular flow? It is easy to see from their
proofs that Lemmas 2.1 and 2.2 hold good if (1.3) is replaced by |v| > 0 in Ωa,b. Consider then
any point y ∈ Ωa,b. With the same notations as in Lemma 2.1, and assuming without loss of

4Notice that this result holds in any dimension n ≥ 2. It is similar to the classical radial symmetry property
proved in [10] in the case where u is a positive solution of the equation ∆u+ f(u) = 0 in a ball, with Dirichlet
condition u = 0 on the boundary.
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generality that c1 < c2, there are some quantities t±y such that −∞ ≤ t−y < 0 < t+y ≤ +∞ and
the solution σy of (2.3) with y instead of x is of class C1((t−y , t

+
y )) and ranges in Ωa,b, with{

|σy(t)| → a and u(σy(t))→ c1 as t→ t−y ,

|σy(t)| → b and u(σy(t))→ c2 as t→ t+y .
(2.11)

The C1((t−y , t
+
y )) function g := u ◦ σy is increasing (since (u ◦ σy)′(t) = |∇u(σy(t))|2 =

|v(σy(t))|2 > 0 for all t ∈ (t−y , t
+
y )), and g is then an increasing homeomorphism from (t−y , t

+
y )

onto (c1, c2). The function f : (c1, c2)→ R defined by

f(τ) = −∆u(σy(g
−1(τ))) for τ ∈ (c1, c2) (2.12)

is of class C1((c1, c2)) and, since for every x ∈ Ωa,b the streamline Ξx intersects σy((t
−
y , t

+
y )) by

Lemma 2.2, the same arguments as in the proof of Lemma 2.4 imply that

∆u+ f(u) = 0 in Ωa,b.

Furthermore, remembering from Lemma 2.2 that for each x ∈ Ωa,b, the C1 solution ξx of (1.5)
is periodic and ranges in Ωa,b, we claim that

max
t∈R
|ξx(t)| → a as |x| >→ a. (2.13)

Indeed, otherwise, there would exist some sequences (xn)n∈N in Ωa,b and (tn)n∈N in R, and
a point z such that a < |z| ≤ b together with |xn| → a and ξxn(tn) → z as n → +∞.
Hence, u(xn)→ c1 by Lemma 2.1 and the uniform continuity of u, while u(xn) = u(ξxn(tn))→
u(z) > c1 by Lemma 2.1 again, leading to a contradiction. Therefore, (2.13) holds and,
similarly, one has mint∈R |ξx(t)| → b as |x| → b with |x| < b. Since the function ∆u is
constant along any streamline of the flow from the Euler equations (1.1) and since ∆u is
uniformly continuous in Ωa,b, it then follows from the previous observations and Lemma 2.2
that ∆u is constant on Ca and constant on Cb. Call d1 and d2 the values of ∆u on Ca and Cb,
respectively, and set f(c1) = −d1 and f(c2) = −d2. One then infers from (2.11) and (2.12)
that f : [c1, c2]→ R is continuous in [c1, c2] and that the equation ∆u+ f(u) = 0 holds in the
closed annulus Ωa,b (u is then a classical C2(Ωa,b) solution of (2.1)). However, since

f ′(τ) = −∇(∆u)(σy(g
−1(τ))) · ∇u(σy(g

−1(τ)))

|∇u(σy(g−1(τ)))|2
for all τ ∈ (c1, c2)

and since |∇u(σy(g
−1(τ)))| may converge to 0 as τ → c1 or c2 (this happens if |v| = 0 on Ca or

if |v| = 0 on Cb), it is not sure whether the function f ′ is bounded in (c1, c2) or not (it is not
sure whether or not there exists a maximal curve σX((t−X , t

+
X)) lying in Ωa,b, for some X ∈ Ωa,b,

along which |∇u| is bounded from below by a positive constant). The argument used in the
proof of Theorem 1.2 to conclude that the solution u of (2.1) is radially symmetric relies on [24,
Theorem 5], which itself uses the Lipschitz-continuity of f over the range of u. Thus, the same
argument can not be applied as such in general in the case where v is just assumed to have no
stagnation point in Ωa,b, without the assumption (1.3). Other arguments should then be used
to prove that v is circular or to disprove this property in general. We leave this question open
for a further work.
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3 The case of unbounded annuli Ωa,∞: proof of Theo-

rems 1.3 and 1.4

This section is devoted to the proof of Theorems 1.3 and 1.4. Throughout this section, we fix
a positive real number a and we consider a C2(Ωa,∞) flow v solving (1.1)-(1.2) and such that{

x ∈ Ωa,∞ : |v(x)| = 0
}
( Ca and |v| ≥ η > 0 in Ωa+1,∞ (3.1)

for some positive real number η > 0. Notice that these conditions are fulfilled in both The-
orems 1.3 and 1.4. The C3(Ωa,∞) stream function u given by (1.4) is well defined since v is
divergence free and tangent on Ca, and u satisfies

|∇u| ≥ η > 0 in Ωa+1,∞. (3.2)

Let A ∈ Ca be a point such that
|v(A)| > 0, (3.3)

hence v(A) · eθ(A) 6= 0 since v · er = 0 on Ca. Up to changing v into −v and u into −u, one
can assume without loss of generality that v(A) · eθ(A) > 0, that is,

∇u(A) · er(A) > 0. (3.4)

Since ∇u · eθ = −v · er = 0 on Ca, the function u is constant on Ca and, since u is unique up
to an additive constant, one can also assume without loss of generality that

u = 0 on Ca. (3.5)

We first show in Section 3.1 a preliminary lemma, namely Lemma 3.1 below, holding
for both Theorems 1.3 and 1.4. It is concerned with the limit of u along the trajectory of
the gradient flow starting from the point A. Then Sections 3.2 and 3.3 are devoted to the
proof of Theorems 1.3 and 1.4. In Section 3.4, we do the proof of an independent lemma,
Lemma 3.8 below, which is itself used not only in the proof of Theorems 1.3 and 1.4, but also
for Theorems 1.5 and 1.7 as well as for the Serrin-type Theorem 1.9.

3.1 A preliminary common lemma

Let us consider here the trajectory of ∇u starting from the boundary point A satisfying (3.3)-
(3.4). More precisely, let σ be the solution of (2.3) with x = A, that is,{

σ̇(t) = ∇u(σ(t)),

σ(0) = A.
(3.6)

Lemma 3.1 There is T ∈ (0,+∞] such that σ is defined and of class C1 in [0, T ), and

|σ(t)| → +∞ and u(σ(t))→ +∞ as t
<→T.
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Proof. Since ∇u is (at least) of class C1(Ωa,∞) and ∇u(A) · er(A) > 0 by (3.4), there is
t∗ ∈ (0,+∞) such that σ is defined and of class C1 at least in [0, t∗), and σ(s) ∈ Ωa,∞ for all
0 < s < t∗. Define

T = sup
{
t > 0 : σ is defined and of class C1 in [0, t) and σ((0, t)) ⊂ Ωa,∞

}
.

There holds 0 < t∗ ≤ T ≤ +∞ and the function σ is of class C1([0, T )) with σ((0, T )) ⊂
Ωa,∞. Furthermore, (u ◦ σ)′(t) = |∇u(σ(t))|2 = |v(σ(t))|2 > 0 for all t ∈ [0, T ) by (3.1)
and (3.3). Since σ(0) = A ∈ Ca and u is continuous in Ωa,∞ and constant on Ca, one infers
that lim inft→T, t<T |σ(t)| > a.

Assume now by way of contradiction that |σ(t)| does not converge to +∞ as t
<→T . Then

there are a sequence (tn)n∈N in (0, T ) and a point y ∈ Ωa,∞ such that tn → T and σ(tn) → y
as n → +∞. As in the proof of Lemma 2.1, there are three positive real numbers r > 0,
ρ > 0 and τ > 0 such that B(y, r) ⊂ Ωa,∞, |v| ≥ ρ in B(y, r), and σz is defined (at least) in

[−τ, τ ] and ranges in B(y, r) for all z ∈ B(y, r/2). Owing to the definition of T , one gets that
T = +∞ and u(σ(tn + τ)) ≥ u(σ(tn − τ)) + 2ρ2τ for all n large enough, hence u(σ(t))→ +∞
as t → +∞ since u ◦ σ is increasing on [0, T ) = [0,+∞). This leads to a contradiction since

u(σ(tn))→ u(y) ∈ R as n→ +∞. Therefore, |σ(t)| → +∞ as t
<→T .

Lastly, let T0 ∈ (0, T ) such that |σ(s)| ≥ a+ 1 for all s ∈ [T0, T ). It follows from (3.2) that,
for all t ∈ [T0, T ),

u(σ(t))− u(σ(T0)) =

∫ t

T0

|∇u(σ(s))|2ds ≥ η

∫ t

T0

|σ̇(s)| ds ≥ η (|σ(t)| − |σ(T0)|).

Consequently, u(σ(t))→ +∞ as t
<→T , and the proof of Lemma 3.1 is thereby complete. �

Remark 3.2 Notice that in Theorems 1.3 and 1.4, the flow v is not assumed to be bounded
in Ωa,∞. If v is assumed to be bounded in Ωa,∞, say |v| ≤ M in Ωa,∞ for some positive real
number M (notice that M ≥ η > 0), then

u(σ(t))− u(σ(0)) =

∫ t

0

|∇u(σ(s))|2ds ≤M2t

for all t ∈ [0, T ), hence T = +∞ by Lemma 3.1. However, T might be finite in general
if the flow v is not bounded. As an example, consider the smooth unbounded flow defined
by v(x) = |x|2eθ(x) in Ωa,∞. It solves (1.1)-(1.2) with pressure p(x) = |x|4/4 and stream
function u(x) = |x|3/3 (up to additive constants). Furthermore, |v| ≥ a2 > 0 in Ωa,∞. It is
immediate to check that the solution σ of (3.6) is given by σ(t) = (1−ta)−1A for all t ∈ [0, 1/a),
and that T = 1/a.

3.2 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. In addition to the assumptions (3.1)-(3.3)
and the normalizations (3.4)-(3.5), we assume in this section that

v(x) · er(x) = o
( 1

|x|

)
as |x| → +∞. (3.7)
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Let us describe in this paragraph the main scheme of the proof of Theorem 1.3. We first show
that the stream function u is positive in Ωa,∞ and converges to +∞ at infinity (see Lemma 3.3
below). This implies that all streamlines of the flow surround the origin and we further show
that the far streamlines converge to families of concentric circles at infinity (Lemma 3.4).
Therefore, u satisfies a semilinear elliptic equation of the type ∆u + f(u) = 0 in Ωa,∞ with
Dirichlet boundary conditions on Ca, for some function f of class C1([0,+∞)) (Lemma 3.6).
If some streamlines were true circles centered at the origin, then [24, Theorem 5] would imply
that the stream function u is radially symmetric in the bounded region between Ca and these
streamlines. To circumvent the fact that the streamlines are not known to be true circles a
priori, we use Lemmas 3.7 and 3.8 to compare the stream function u with its reflection with
respect to some lines approximating any line containing the origin. We then proceed by passing
to the limit as the approximation parameter goes to 0. With Lemma 3.8, it then easily follows
that u is radially symmetric and that all streamlines are truly circular, thus completing the
proof of Theorem 1.3.

The first lemma is concerned with the positivity of u and with its limit at infinity.

Lemma 3.3 The function u satisfies u > 0 in Ωa,∞ and u(x)→ +∞ as |x| → +∞.

Proof. For every r ≥ a, the C3(R) function wr : θ 7→ wr(θ) = u(r cos θ, r sin θ) is 2π-periodic
and

w′r(θ) = r∇u(r cos θ, r sin θ) · eθ(r cos θ, r sin θ) = −r v(r cos θ, r sin θ) · er(r cos θ, r sin θ) (3.8)

for all θ ∈ R. Hence, (3.7) implies that maxR |w′r| = max[0,2π] |w′r| → 0 as r → +∞ and

max
Cr

u−min
Cr

u→ 0 as r → +∞.5 (3.9)

Furthermore, it follows from Lemma 3.1 that, for every r ≥ a, there is sr ∈ [0, T ) such
that |σ(sr)| = r. Therefore, sr → T as r → +∞ (since σ is at least continuous in [0, T ))
and u(σ(sr)) → +∞ by Lemma 3.1. Together with (3.9), there holds minCr u → +∞ as
r → +∞. In other words, u(x)→ +∞ as |x| → +∞.

Let now R > a be any large real number such that minCR u > 0. Since u = 0 on Ca and u
has no critical point in Ωa,∞, one gets that u > 0 in Ωa,R. Since R can be as large as wanted,
one concludes that u > 0 in Ωa,∞. �

Before stating the next lemma on the property of all streamlines and the almost radial
symmetry of the far streamlines, we recall that the streamlines of the flow can be parametrized
by the solutions ξx of (1.5).

Lemma 3.4 For each x ∈ Ωa,∞, the solution ξx of (1.5) is defined in R and periodic, and the
streamline Ξx = ξx(R) surrounds the origin. Furthermore,

max
R
|ξx| −min

R
|ξx| → 0 as |x| → +∞.

5Notice that the property limr→+∞(maxCr u − minCr u) = 0 still holds if (3.7) is replaced by the weaker
condition limρ→+∞

∫
Cρ
|v · er| = 0, since in this case one still has max[0,2π] wr −min[0,2π] wr ≤

∫
Cr
|v · er| → 0

as r → +∞. However, the condition (3.7) will be used in the proof of Lemma 3.4 (there we actually use
v · er = o(1/|x|) = o(1) as |x| → +∞) and of Lemma 3.7 below.
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Proof. Consider any x ∈ Ωa,∞. From Lemma 3.3, there is r > |x| such that minCru>u(x)>0.
Since u = 0 on Ca and u equal to the constant u(x) along Ξx, it follows from the continuity
of u that a < infy∈Ξx |y| ≤ supy∈Ξx |y| < r. Therefore, as in Lemma 2.2, the solution ξx of (1.5)
is defined in R and periodic, and the streamline Ξx = ξx(R) surrounds the origin.

On the other hand, it follows from (3.1) and (3.7) that there is a real number R0 ≥ a + 1
such that

|∇u · er| = |v · eθ| ≥
η

2
in ΩR0,∞. (3.10)

Together with the continuity of ∇u and Lemma 3.3, one can even say that

∇u · er ≥
η

2
in ΩR0,∞. (3.11)

Let us now show that maxR |ξx| − minR |ξx| → 0 as |x| → +∞. Consider any ε > 0.
From (3.9) and (3.11), there is Rε ≥ a+ ε such that

max
C|x|−ε

u < u(x)− ε η

4
and min

C|x|+ε
u > u(x) +

ε η

4
, for all |x| ≥ Rε.

Therefore, for every x ∈ ΩRε,∞, one has Ξx ⊂ Ω|x|−ε,|x|+ε and maxR |ξx| − minR |ξx| < 2ε. In
other words, maxR |ξx| −minR |ξx| → 0 as |x| → +∞, and the proof of Lemma 3.4 is thereby
complete. �

Remark 3.5 In addition to Lemma 3.3, with R0 ≥ a + 1 as in (3.11), there is then R1 ≥ R0

such that, for every x ∈ ΩR1,∞, one has Ξx ⊂ ΩR0,∞ and ∇u · er ≥ η/2 > 0 on Ξx. Pick
any such x with |x| ≥ R1. Remembering that Ξx surrounds the origin, it then follows that,
for every θ ∈ R, there is a unique %x(θ) ≥ R0 such that (%x(θ) cos θ, %x(θ) sin θ) ∈ Ξx, and
moreover

Ξx =
{

(%x(θ) cos θ, %x(θ) sin θ) : θ ∈ R
}
. (3.12)

Notice also that the 2π-periodic function %x is of class C3(R) from the implicit function theo-
rem.

Lemma 3.6 There is a C1([0,+∞)) function f : [0,+∞)→ R such that

∆u+ f(u) = 0 in Ωa,∞.

Proof. Remember first from the proof of Lemma 3.1 that the function g = u ◦ σ is of
class C1([0, T )) and satisfies g′(t) = |∇u(σ(t))|2 = |v(σ(t))|2 > 0 for all t ∈ [0, T ), due to (3.1)

and (3.3). Furthermore, g(0) = u(σ(0)) = u(A) = 0 and g(t)→ +∞ as t
<→T . The function g

is then a C1 diffeomorphism from [0, T ) onto [0,+∞). Denote g−1 : [0,+∞) → [0, T ) its
reciprocal. From the chain rule, the function f defined by

f : [0,+∞) → R
s 7→ f(s) := −∆u(σ(g−1(s)))

(3.13)

is of class C1([0,+∞)), and ∆u(σ(t)) + f(u(σ(t))) = 0 for all t ∈ [0, T ). In other words,
∆u+ f(u) = 0 along the curve σ([0, T )).
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Figure 1: The sets Ωx, He,λ ∩ Ωx and Re,λ(He,λ ∩ Ωx)

Consider finally any point x ∈ Ωa,∞. It follows from Lemmas 3.1 and 3.3 that there is a
real number s′ ∈ [0, T ) such that σ(s′) ∈ Ξx. Since both u and ∆u are constant along Ξx, one
gets that ∆u(x) + f(u(x)) = ∆u(σ(s′)) + f(u(σ(s′))) = 0. The equation ∆u + f(u) = 0 then
holds in Ωa,∞ since u is at least of class C2(Ωa,∞) and f ◦u is at least continuous in Ωa,∞. The
proof of Lemma 3.6 is thereby complete. �

Let us now introduce a few notations which will be used in this section, as well as in the
proof of Theorems 1.4, 1.5, 1.7 and 1.9 in the following sections. For e ∈ S1 = C1 and λ ∈ R,
we denote

Te,λ =
{
x ∈ R2 : x · e = λ

}
, He,λ =

{
x ∈ R2 : x · e > λ

}
, (3.14)

and, for x ∈ R2,
Re,λ(x) = xe,λ = x− 2(x · e− λ)e. (3.15)

In other words, Re,λ is the orthogonal reflection with respect to the line Te,λ. For x ∈ Ωa,∞,
let Ωx denote the bounded connected component of R2 \Ξx. Notice that Ωx is well defined and
contains the origin, by Lemma 3.4. Notice also that u is equal to the positive constant u(x)
along Ξx, while u vanishes along Ca and has no critical point in Ωa,∞. Hence,

0 < u(y) < u(x) for all y ∈ Ωx ∩ Ωa,∞, (3.16)

where Ωx∩Ωa,∞ is the bounded domain located between Ξx and Ca. As a consequence, ∇u(z)
points outwards Ωx at each point z ∈ Ξx.

The following lemma says that, for any ε > 0, the set Ωx ∩He,λ will be an admissible set
for the method of moving planes for any e ∈ S1 and λ > ε > 0, provided |x| is large enough.

Lemma 3.7 For each ε > 0, there exists Rε > a such that

Re,λ

(
He,λ ∩ Ωx

)
⊂ Ωx

22



for all e ∈ S1, λ > ε and |x| ≥ Rε (see Fig. 1).

Proof. Fix ε > 0, and assume by way of contradiction that the conclusion of the lemma does
not hold. Then there are some sequences (xn)n∈N in Ωa,∞, (en)n∈N in S1, (λn)n∈N in (ε,+∞)
and (yn)n∈N such that

lim
n→+∞

|xn| = +∞, and yn ∈ Hen,λn ∩ Ωxn and zn := Ren,λn(yn) 6∈ Ωxn for all n ∈ N.

By Lemma 3.4, there is a sequence (rn)n∈N of positive real numbers converging to 0 such
that B|xn|−rn ⊂ Ωxn ⊂ B|xn|+rn for all n ∈ N, hence |yn| ≤ |xn|+ rn. On the other hand, since
yn · en > λn > ε > 0, one has

|yn|2 − |zn|2 = |yn|2 − |Ren,λn(yn)|2 = 4λn(yn · en − λn) > 0,

hence |yn| > |zn| ≥ |xn| − rn since zn 6∈ Ωxn . As a consequence, |xn| − rn ≤ |zn| < |yn| ≤
|xn| + rn for all n ∈ N, and limn→+∞(|yn| − |xn|) = limn→+∞(|yn| − |zn|) = 0. The inequality
|yn|2 − |zn|2 = 4λn(yn · en − λn) > 4ε(yn · en − λn) > 0 then yields limn→+∞(yn · en − λn) = 0.
Hence,

dist(yn,Ξxn ∩ Ten,λn)→ 0 and |yn − zn| → 0 as n→ +∞.

For each n ∈ N, let ϕn ∈ R be such that en = (cosϕn, sinϕn). Since yn · en > λn > ε > 0,
there is a unique θn ∈ (−π/2, π/2) such that

yn
|yn|

= (cos(ϕn + θn), sin(ϕn + θn)).

Similarly, since (zn − yn) · en → 0 as n→ +∞, one has zn · en > ε/2 for all large n and there
is a unique θ′n ∈ (−π/2, π/2) such that

zn
|zn|

= (cos(ϕn + θ′n), sin(ϕn + θ′n)).

Since limn→+∞ |yn−zn| = 0 and limn→+∞ |yn| = limn→+∞ |zn| = limn→+∞ |xn| = +∞, one also
infers that θn − θ′n → 0 as n→ +∞. We also recall from (3.12) that

Ξxn =
{

(%xn(θ) cos θ, %xn(θ) sin θ) : θ ∈ R
}

for all n large enough. It then follows from Lemma 3.4 and from the assumptions on yn and zn
that |yn| ≤ %xn(ϕn + θn) and |zn| ≥ %xn(ϕn + θ′n) for all n large enough. Denote, for n large
enough, {

y′n = (%xn(ϕn + θn) cos(ϕn + θn), %xn(ϕn + θn) sin(ϕn + θn)) ∈ Ξxn ,

z′n = (%xn(ϕn + θ′n) cos(ϕn + θ′n), %xn(ϕn + θ′n) sin(ϕn + θ′n)) ∈ Ξxn ,

and observe that yn ∈ (0, y′n] and z′n ∈ (0, zn].
We now claim that θ′n 6= θn for all n large enough. Indeed, otherwise, up to extraction of

a subsequence, y′n = z′n and the four points 0, yn, y′n = z′n and zn would be aligned in that
order. But since yn− zn = 2(yn · en− λn)en with yn · en− λn > 0, the vectors yn and zn would
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Figure 2: The points yn, y′n, zn, z′n, and ζn (with here en = (1, 0) and ϕn = 0)

be parallel to en. Hence, yn = (yn · en)en with yn · en > λn > ε > 0 and zn = (zn · en)en
with zn · en = 2λn − yn · en < λn < yn · en. This contradicts the fact that 0, yn and zn lie on
the half-line R+en in that order. Thus, θ′n 6= θn for all n large enough, thus for all n without
loss of generality. Notice that the same arguments also imply that θn 6= 0 and θ′n 6= 0 for all n
large enough (since otherwise in either case one would have θn = θ′n = 0 up to extraction of
a subsequence), thus for all n without loss of generality. In particular, either 0 < θn < π/2
or −π/2 < θn < 0.

Assume first that, up to extraction of a subsequence, 0 < θn < π/2 for all n. One then
infers from the definition of zn = Renλn(yn) and the previous paragraph that

0 < θn < θ′n <
π

2
.

Remember now that 0 < u(y) < u(xn) for every y in the domain Ωxn ∩ Ωa,∞ between Ξxn

and Ca, and ∇u(z) points outwards Ωxn at each point z ∈ Ξxn . For each n ∈ N, since
yn ∈ (0, y′n], z′n ∈ (0, zn] and since yn − zn = ςnen with ςn := 2(yn · en − λn) > 0, there is then
an angle

φn ∈ [θn, θ
′
n] ⊂

(
0,
π

2

)
such that

ζn := (%xn(ϕn + φn) cos(ϕn + φn), %xn(ϕn + φn) sin(ϕn + φn)) ∈ Ξxn ∩ [yn, zn]

and ∇u(ζn) · en ≤ 0, see Fig. 2. The point ζn can be defined as the first point on Ξxn ∩ [yn, zn]
when going from y′n to z′n along Ξxn with increasing angle. Notice that |ζn| → +∞ since
|yn| → +∞ and |yn − zn| → 0 as n → +∞. Call v1,n = v(ζn) · en and v2,n = v(ζn) · e⊥n . The
inequality ∇u(ζn) · en ≤ 0 means that v2,n ≤ 0. Therefore,

v(ζn) · er(ζn) = v1,n cosφn + v2,n sinφn ≤ v1,n cosφn, (3.17)

24



while
0 <

η

2
≤ |v(ζn) · eθ(ζn)| = | − v1,n sinφn + v2,n cosφn|

for all n large enough, from (3.10) and |ζn| → +∞ as n → +∞. Furthermore, for each
x ∈ Ωa,∞, since u(y) < u(x) for every y ∈ Ωx ∩ Ωa,∞, one has ∇u(z) · er(z) ≥ 0 at a
point z ∈ Ξx such that |z| = maxR |ξx|. Since the continuous function v · eθ = ∇u · er has a
constant strict sign at infinity, it follows that v(ζ) · eθ(ζ) = ∇u(ζ) · er(ζ) > 0 for all |ζ| large
enough. As a consequence,

η

2
≤ v(ζn) · eθ(ζn) = −v1,n sinφn + v2,n cosφn

for all n large enough. Since v2,n ≤ 0 and 0 < φn < π/2, one gets that −v1,n sinφn ≥ η/2,
hence v1,n ≤ −η/2. Together with (3.17), it follows that, for all n large enough,

v(ζn) · er(ζn) ≤ −η
2

cosφn.

On the other hand, since ζn ∈ [yn, zn] and limn→+∞ |zn − yn| = limn→+∞(yn · en − λn) = 0,
there holds ζn · en − λn → 0, hence ζn · en ≥ ε/2 for all n large enough (since λn > ε > 0 for
all n). Finally,

cosφn =
ζn · en
|ζn|

≥ ε

2|ζn|
and v(ζn) · er(ζn) ≤ − η ε

4|ζn|
for all n large enough. That last inequality contradicts the assumption (3.7) and the limit
limn→+∞ |ζn| = +∞.

The second case, for which, up to extraction of a subsequence, −π/2 < θn < 0 for all n
(and then −π/2 < θ′n < θn < 0) can be handled similarly and leads to a contradiction as well.
The proof of Lemma 3.7 is thereby complete. �

Let us finally state the following important Lemma 3.8, that will be used in the proof of
Theorems 1.3, 1.4, 1.5, 1.7 and 1.9.

Lemma 3.8 Let Ξ and Ξ′ be two C1 Jordan curves surrounding the origin, and let Ω and Ω′

be the bounded connected components of R2 \ Ξ and R2 \ Ξ′, respectively. Assume that Ω′ ⊂ Ω
and let

ω = Ω \ Ω′

be the non-empty and doubly connected domain located between Ξ and Ξ′, with boundary

∂ω = Ξ ∪ Ξ′.

Call R′ = minx∈Ξ′ |x| > 0 and R = maxx∈Ξ |x| > R′. Let e ∈ S1, let λ = maxx∈Ξ x · e > 0 and
let ε ∈ [0, λ). Let c1 < c2 ∈ R and let ϕ ∈ C2(ω) be a solution of

∆ϕ+ F (|x|, ϕ) = 0 in ω,

c1 < ϕ < c2 in ω,

ϕ = c1 on Ξ, ϕ = c2 on Ξ′,

(3.18)
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0

R
R'

Figure 3: The sets Ω, Ω′, ω = Ω\Ω′, He,λ ∩ Ω (light blue background), Re,λ(Ω
′) (with dashed

boundary), and ωe,λ (dashed red)

with a continuous function F : [R′, R] × [c1, c2] → R that is nonincreasing with respect to its
first variable and uniformly Lipschitz continuous with respect to its second variable. Assume
that

Re,λ(He,λ ∩ Ω) ⊂ Ω for all λ > ε (3.19)

and that
Re,λ(He,λ ∩ Ξ′) ⊂ Ω′ for all λ > ε, (3.20)

see Fig. 3. Then, for every λ ∈ [ε, λ), there holds

ϕ(x) ≤ ϕe,λ(x) = ϕ(xe,λ) for all x ∈ ωe,λ, (3.21)

with
ωe,λ = (He,λ ∩ ω) \Re,λ(Ω′).

6

The proof of Lemma 3.8 is postponed in Section 3.4. Let us now complete the proof of
Theorem 1.3.

Proof of Theorem 1.3. We shall show that the stream function u is radially symmetric
in Ωa,∞. Notice that we already know that u = 0 on Ca. Let then x 6= y ∈ Ωa,∞ be such that

|x| = |y| (> a).

Call

e =
y − x
|y − x|

∈ S1. (3.22)

6Notice that ωe,λ is open by definition, and it is non-empty for each λ ∈ [0, λ): indeed, for such λ, the
set Te,λ ∩ Ξ is not empty and, for any x ∈ Te,λ ∩ Ξ and r > 0, ωe,λ ∩ B(x, r) 6= ∅. But ωe,λ may not be
connected, as in Fig. 3.
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Consider an arbitrary real number ε such that 0 < ε < a. Let Rε > a be as in Lemma 3.7.
From Lemma 3.4, there is a point xε ∈ Ωa,∞ such that |xε| ≥ Rε and minR |ξxε| > |x| = |y|.
Lemma 3.7 then yields

Re,λ(He,λ ∩ Ωxε) ⊂ Ωxε for all λ > ε. (3.23)

We are now going to apply Lemma 3.8 with
Ξ = Ξxε , Ω = Ωxε , Ξ′ = Ca, Ω′ = Ba, ω = Ωxε \Ba,

R′ = a, R = max
R
|ξxε| > a, λ = max

z∈Ξxε
z · e > a > ε > 0,

ϕ = −u ∈ C3(ω), c1 = −u(xε) = −u|Ξxε < 0, c2 = 0 = −u|Ca ,
F (r, s) = F (s) = −f(−s) for (r, s) ∈ [a,R]× [−u(xε), 0].

Notice immediately that assumption (3.20) is automatically satisfied. The function F clearly
satisfies the assumptions of Lemma 3.8 since f is of class C1([0,+∞)). The function ϕ satisfies
∆ϕ + F (ϕ) = 0 in ω, with c1 < ϕ < c2 in ω (since 0 < u < u(xε) in Ωxε ∩ Ωa,∞ by (3.16)).
Together with (3.23), all assumptions of Lemma 3.8 are satisfied.

Lemma 3.8 applied with λ = ε then implies that ϕ ≤ ϕe,ε, namely u ≥ ue,ε, in ωe,ε with

ωe,ε = (He,ε ∩ ω) \Re,ε(Ω′) =
(
He,ε ∩ (Ωxε\Ba)

)
\Re,ε(Ba).

Observe now that y · e = (|y|2 − x · y)/|y − x| > 0 since |x| = |y| and x 6= y, and remember
that a < |y| < minR |ξxε|, hence y ∈ ω. Therefore, y ∈ ωe,ε for all ε > 0 small enough, and

u(y) ≥ ue,ε(y) = u(ye,ε) = u(y − 2(y · e− ε)e)

for all ε > 0 small enough. By passing to the limit ε
>→ 0 and using the definition of e and the

assumption |x| = |y|, one infers that

u(y) ≥ u(y − 2(y · e)e) = u(x).

Since the last inequality holds for all x 6= y ∈ Ωa,∞ such that |x| = |y| (and also for all
x, y ∈ Ca), the C3(Ωa,∞) function u is radially symmetric in Ωa,∞. Together with (3.1), (3.5)
and Lemma 3.3, there is then a C3([a,+∞)) function U such that U(a) = 0, U ′ > 0 in [a,+∞)
and u(x) = U(|x|) for all x ∈ Ωa,∞. This means that v(x) = V (|x|) eθ(x) for all x ∈ Ωa,∞
with V = U ′ ∈ C2([a,+∞)) and V > 0 in [a,+∞). The proof of Theorem 1.3 is thereby
complete. �

3.3 Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. Instead of (3.1)-(3.2), we assume the
stronger condition

|v| = |∇u| ≥ η > 0 in Ωa,∞ (3.24)

for some η > 0. Properties (3.3)-(3.5) still hold (A can now be any point on Ca), as well as
Lemma 3.1. Notice that the normalization condition (3.4) and the conditions (1.2) and (3.24)
imply that

v · eθ = ∇u · er ≥ η > 0 on Ca. (3.25)
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To prove Theorem 1.4, we then have to show that the supremum of the vorticity is positive,
namely

sup
Ωa,∞

(∂v2

∂x1

− ∂v1

∂x2

)
> 0. (3.26)

We first show that all streamlines of the flow surround the origin and that the stream function u
satisfies an equation of the type (1.6) in Ωa,∞, with u > 0 in Ωa,∞. Then, we prove that if (3.26)
does not hold, namely if we assume by way of contradiction that the vorticity ∆u = ∂v2

∂x1
− ∂v1

∂x2
of the flow is nonpositive in Ωa,∞, then a Kelvin transform of the variables applied to the
stream function u leads to a semilinear heterogeneous equation ∆w + |x|−4f(w) = 0 in the
punctured disk Ω0,1/a with a nonnegative function f . Lemma 3.8, using the good monotonicity
of |x|−4f(w) with respect to |x|, implies that w is radially symmetric, hence u is radially
symmetric and the assumption ∆u ≤ 0 contradicts (3.4) and (3.24), leading to the desired
conclusion.

As a first step of this scheme, let us consider the solutions ξx of (1.5) with x ∈ Ωa,∞ and
let us recall that Ξx denotes the streamline of the flow containing x.

Lemma 3.9 Let T ∈ (0,+∞] be as in Lemma 3.1. Then, for every s ∈ [0, T ), the stream-
line Ξσ(s) surrounds the origin.

Proof. Denote

E =
{
s ∈ [0, T ) : the streamline Ξσ(s) surrounds the origin

}
.

Our goal is to show that E = [0, T ). To do so, we prove that E is not empty (it contains 0),
open relatively to [0, T ) and that the largest interval containing 0 and contained in E is actually
equal to [0, T ).

Note first that, since v · er = 0 and v · eθ 6= 0 on Ca, the streamline Ξσ(0) = ΞA is equal to
the circle Ca and it surrounds the origin. In other words, 0 ∈ E.

Let us now show that E is open relatively to [0, T ). Let s0 ∈ E and denote x = σ(s0) ∈
Ωa,∞. By definition, the function ξx is periodic, with some period Tx > 0. Remember also
that u is constant along each streamline of the flow. Therefore, as in Lemma 2.2, since v is (at
least) continuous and |v(x)| = |∇u(x)| > 0, there are some real numbers r > 0 and τ ∈ (0, Tx)
such that, for every y ∈ B(x, r) ∩ Ωa,∞, there are some real numbers t±y such that

−τ < t−y < 0 < t+y < τ and B(x, r) ∩ Ξy = B(x, r) ∩ u−1({u(y)}) = ξy((t
−
y , t

+
y )).

On the other hand, since ξx(Tx) = ξx(0) = x, the Cauchy-Lipschitz theorem provides the
existence of a real number r′ ∈ (0, r] such that, for every z ∈ B(x, r′) ∩ Ωa,∞, the function ξz
is defined (and of class C1) at least on the interval [0, Tx] and ξz(Tx) ∈ B(x, r) ∩ Ωa,∞. Fur-
thermore, by continuity of σ, there is ε > 0 such that s0 + ε < T and

σ(s) ∈ B(σ(s0), r′) ∩ Ωa,∞ = B(x, r′) ∩ Ωa,∞ for all s ∈ [max(0, s0 − ε), s0 + ε].

As a consequence, for every s ∈ [max(0, s0 − ε), s0 + ε], the points z := σ(s) ∈ B(x, r′) ∩Ωa,∞
and y := ξz(Tx) ∈ B(x, r) ∩ Ωa,∞ satisfy u(z) = u(y), hence

z ∈ B(x, r′) ∩ u−1({u(y)})
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and z = ξy(t) for some t ∈ (t−y , t
+
y ) (⊂ (−τ, τ)). Thus, ξy(−Tx) = z = ξy(t) and since

|t| < τ < Tx, the function ξy is defined in R and (Tx + t)-periodic. So is ξz since z ∈ Ξy. In
other words, for every s ∈ [max(0, s0 − ε), s0 + ε], the function ξσ(s) = ξz is defined in R and
periodic. One then concludes as in the last paragraph of the proof of Lemma 2.2 that Ξσ(s)

surrounds the origin. Finally, the set E is open relatively to [0, T ).
Denote

T∗ = sup
{
t ∈ [0, T ) : [0, t] ⊂ E

}
.

The previous paragraphs imply that 0 < T∗ ≤ T . The proof of Lemma 3.9 will be complete
once we show that T∗ = T . Assume by way of contradiction that T∗ < T (in particular, T∗ is
then a positive real number).

Consider any increasing sequence (sn)n∈N in (0, T∗) and converging to T∗. Owing to the
definition of T∗, each function ξσ(sn) is periodic and each streamline Ξσ(sn) surrounds the origin.
Furthermore, since each sn is positive and u ◦ σ is increasing in [0, T ) and u is constant
on Ca (3 A = σ(0)), each streamline Ξσ(sn) is included in the open set Ωa,∞. Consider now
any n ∈ N and any point x ∈ Ξσ(sn). Since ∇u is (at least) Lipschitz-continuous and x ∈ Ωa,∞,
the solution σx of (2.3) is defined and of class C1 in at least a neighborhood of 0. Let

t−x = inf
{
t < 0 : σx([t, 0]) ⊂ Ωa,∞

}
and t+x = sup

{
t > 0 : σx([0, t]) ⊂ Ωa,∞

}
.

One has −∞ ≤ t−x < 0 < t+x ≤ +∞ and the function σx is of class C1((t−x , t
+
x )). Notice that

u(x) = u(σ(sn)) since x ∈ Ξσ(sn), and that u ◦ σ is increasing on [0, T ), hence

0 = u(A) = u(σ(0)) < u(σ(sn)) < u(σ(T∗)).

Therefore, 0 < u(x) < u(σ(T∗)). Furthermore, σ̇x(0) = ∇u(σx(0)) = ∇u(x) is orthogonal
to Ξσ(sn) at x by definition of u. Since u◦σx is increasing on (t−x , t

+
x ), since u(σx(0)) = u(x) > 0

with u = 0 on Ca, and since Ξσ(sn) surrounds the origin, it then follows as in the proof of
Lemma 2.1 that |σx(t)| → a as t → t−x and u(σx(t)) > 0 for all t ∈ (t−x , t

+
x ). Then, for any

t ∈ (t−x , 0), there holds

u(σ(T∗)) > u(x) = u(σx(0)) > u(σx(0))− u(σx(t))=

∫ 0

t

|∇u(σx(s))|2ds ≥ η

∫ 0

t

|σ̇x(s)| ds

≥ η
(
|x|−|σx(t)|

)
.

By passing to the limit as t→ t−x , one gets that |x| ≤ a+ u(σ(T∗))/η. This property holds for
any n ∈ N and any x ∈ Ξσ(sn), hence

sup
n∈N

(
max

R
|ξσ(sn)|

)
≤ a+

u(σ(T∗))

η
=: M.

Lastly, consider the streamline Ξσ(T∗) parametrized by t 7→ ξσ(T∗)(t). If there is a real
number t such that |ξσ(T∗)(t)| > M , then |ξσ(sn)(t)| > M for all n large enough, by the Cauchy-
Lipschitz theorem. Therefore, Ξσ(T∗) ⊂ BM and, as in the proof of Lemma 2.2, it follows
that ξσ(T∗) is defined in R and periodic, and it surrounds the origin. In other words, T∗ ∈ E.

Since E is open relatively to [0, T ) from the previous paragraph, one is led to a contradic-
tion with the definition of T∗ if T∗ < T . Eventually, T∗ = T and the proof of Lemma 3.9 is

29



thereby complete. �

The next lemma gives the same conclusion as the previous lemma, for any streamline. It
also implies that each level set of the stream function u has only one connected component.

Lemma 3.10 There holds minR |ξσ(s)| → +∞ as s
<→T and

Ωa,∞ =
⋃

s∈[0,T )

Ξσ(s).

Furthermore, for every x ∈ Ωa,∞, the solution ξx of (1.5) is defined in R and periodic, and Ξx

surrounds the origin. Lastly,

min
R
|ξx| → +∞ as |x| → +∞.

Proof. Fix any R > a, and let C ∈ [0,+∞) be such that |u| ≤ C in Ωa,R. Since u(σ(t))→ +∞
as t

<→T by Lemma 3.1, there is τ ∈ (0, T ) such that u(σ(s)) > C for all s ∈ (τ, T ), hence
u(ξσ(s)(t)) = u(σ(s)) > C and |ξσ(s)(t)| > R for all s ∈ (τ, T ) and t ∈ R. Thus, minR |ξσ(s)| > R
for all s ∈ (τ, T ) (notice that the minimum is well defined by Lemma 3.9). This shows that

minR |ξσ(s)| → +∞ as s
<→T .

Consider now any point x ∈ Ωa,∞, and let s ∈ (0, T ) be such that minR |ξσ(s)| > |x|.
Therefore, the point x belongs to the bounded open set surrounded by the Jordan curve Ξσ(s).
It follows as in the proof of Lemma 2.2 that ξx is defined in R and periodic, and that it surrounds
the origin. Lemma 3.1 then implies that the streamline Ξx crosses σ([0, T )): there are t ∈ R
and s′ ∈ [0, T ) such that ξx(t) = σ(s′) (notice that such a s′ is unique since u ◦ σ is increasing
in [0, T ) and u is constant along Ξx). One then gets that Ξx = Ξσ(s′) and x ∈ ∪

s′′∈[0,T )
Ξσ(s′′).

Finally,

Ωa,∞ ⊂
⋃

s′′∈[0,T )

Ξσ(s′′),

and both sets are equal since the other inclusion is obvious by definition.
It only remains to show that minR |ξx| → +∞ as |x| → +∞. Fix again any R ≥ a.

From the first paragraph of the proof, there is s ∈ [0, T ) such that minR |ξσ(s)| > R. Define
R′ = maxR |ξσ(s)| (one has R′ > R). For any x with |x| > R′, the streamlines Ξx and Ξσ(s)

do not intersect, and both of them surround the origin. Therefore, minR |ξx| > minR |ξσ(s)|,
hence minR |ξx| > R for every |x| > R′. The proof of Lemma 3.10 is thereby complete. �

Lemma 3.11 The function u satisfies u > 0 in Ωa,∞ and u(x)→ +∞ as |x| → +∞.

Proof. Fix any x ∈ Ωa,∞. By Lemmas 3.1 and 3.10, the streamline Ξx crosses σ([0, T )), at
some point σ(s) with s ∈ [0, T ), and, since u is constant along Ξx, one has u(x) = u(σ(s)). The
real number s cannot be 0, since otherwise σ(0) = A would belong to Ξx, that is, Ξx = ΞA = Ca,
which is impossible since x is taken in the open set Ωa,∞. Thus, s > 0 and, since u ◦ σ
is increasing on [0, T ), one infers that u(x) = u(σ(s)) > u(σ(0)) = u(A) = 0 from the
normalization (3.5).
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Furthermore, as in the proof of Lemmas 2.1 and 3.9, the solution σx of (2.3) is defined in a
maximal interval (t−x , t

+
x ) with image in Ωa,∞, with −∞ ≤ t−x < 0 < t+x ≤ +∞ and |σx(t)| → a

as t
>→ t−x . For any t ∈ (t−x , 0), there holds u(σx(t)) > 0 (by applying the result of previous

paragraph at the point σx(t) ∈ Ωa,∞). Therefore, for any t ∈ (t−x , 0), one has

u(x) = u(σx(0)) > u(σx(0))− u(σx(t)) =

∫ 0

t

|∇u(σx(s))|2ds ≥ η

∫ 0

t

|σ̇x(s)| ds

≥ η
(
|x| − |σx(t)|

)
,

hence
u(x) ≥ η (|x| − a)

by passing to the limit as t
>→ t−x . Since this last inequality holds for any x ∈ Ωa,∞, one con-

cludes that u(x)→ +∞ as |x| → +∞, and the proof of Lemma 3.11 is complete. �

The last preliminary lemma provides the existence of a function f such that the elliptic
equation (1.6) holds in Ωa,∞.

Lemma 3.12 There is a C1 function f : [0,+∞)→ R such that

∆u+ f(u) = 0 in Ωa,∞.

Proof. The C1([0, T )) function g := u◦σ satisfies g′(t) = |∇u(σ(t))|2 ≥ η2 for all t ∈ [0, T ) and

it converges to +∞ as t
<→T by Lemma 3.1. Furthermore, g(0) = u(σ(0)) = u(A) = 0. The

function g is then a C1 diffeomorphism from [0, T ) onto [0,+∞). As in the proof of Lemma 3.6,
the function f defined by (3.13) is of class C1([0,+∞)), and ∆u(σ(t)) + f(u(σ(t))) = 0 for
all t ∈ [0, T ). Now, for any point x ∈ Ωa,∞, it follows from Lemma 3.10 that σ(s′) ∈ Ξx for
some s′ ∈ [0, T ). Since both u and ∆u are constant along Ξx, one gets that ∆u(x) +f(u(x)) =
∆u(σ(s′)) + f(u(σ(s′))) = 0. The proof of Lemma 3.12 is thereby complete. �

Proof of Theorem 1.4. Given the conditions (3.24)-(3.25), our goal is to show that the
property (3.26) holds. To do so, let us assume by way of contradiction that

∆u =
∂v2

∂x1

− ∂v1

∂x2

≤ 0 in Ωa,∞. (3.27)

We will show that u is radially symmetric, and this will easily lead to a contradiction. To
prove the radially symmetry of u, let us use a Kelvin transform of the variables by setting

w(x) = u
( x

|x|2
)

for x ∈ Ω0,1/a\{0},

and let us show that the C3(Ω0,1/a\{0}) function w is radially symmetric in Ω0,1/a\{0}. Notice
from (3.5) and Lemma 3.11 that

w = 0 on C1/a, w > 0 in Ω0,1/a and w(x)→ +∞ as x
>→ 0.
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Furthermore, it follows from Lemma 3.12 and a straightforward calculation that

∆w(x) +
1

|x|4
f(w(x)) = 0 for all x ∈ Ω0,1/a\{0},

that is, ∆w(x) + F (|x|, w(x)) = 0 in Ω0,1/a\{0} with

F : (0, 1/a]× [0,+∞) → R
(r, s) 7→ F (r, s) = r−4f(s).

The function F is of class C1((0, 1/a] × [0,+∞)). Furthermore, the range of u is equal to
the whole interval [0,+∞) by (3.5) and Lemma 3.11, and f ≥ 0 in [0,+∞) by (3.27) and
Lemma 3.12. Therefore, the function F is nonincreasing with respect to its first variable
in (0, 1/a]× [0,+∞).

Consider now any two points x 6= y ∈ Ω0,1/a \{0} with |x| = |y|. As in the proof of
Theorem 1.3, denote

e =
y − x
|y − x|

∈ S1

and consider an arbitrary real number ε such that

0 < ε < |x| = |y| ≤ 1

a
.

By Lemma 3.10, there is a point xε ∈ Ωa,∞ such that minR |ξxε | > 1/ε > a. One knows that
the streamline Ξxε surrounds the origin and that u = u(xε) > 0 along Ξxε . Furthermore, as
in (3.16), one has 0 < u < u(xε) in the domain Ωxε ∩ Ωa,∞ between Ξxε and Ca, since u = 0
on Ca and u has no critical point in Ωa,∞.

Denote Ξ = C1/a and

Ξ′ =
{
x ∈ R2 :

x

|x|2
∈ Ξxε

}
.

Notice that the Jordan curve Ξ′ surrounds the origin and Ξ′ ⊂ Bε (⊂ B1/a) by definition of xε.
Call Ω = B1/a, let Ω′ be the bounded connected component of R2 \ Ξ′, and let

ω = Ω \ Ω′ = B1/a \ Ω′ (⊃ Ωε,1/a).

Denote R = 1/a,

0 < R′ = min
x∈Ξ′
|x| = 1

max
R
|ξxε |

< ε < R,

and λ = maxx∈Ξ x · e = 1/a > 0. One has 0 < ε < 1/a, hence ε ∈ [0, λ). The function ϕ = w
is of class C3(ω) with

ϕ = c1 = 0 on Ξ = C1/a, ϕ = c2 = u(xε) > 0 on Ξ′, and 0 < ϕ < u(xε) in ω

(since 0 < u < u(xε) in Ωxε ∩ Ωa,∞). Furthermore, ϕ satisfies ∆ϕ + F (|x|, ϕ) = 0 in ω,
with F (r, s) = r−4f(s) and, here, (r, s) ∈ [R′, 1/a]×[0, u(xε)]. The function F then satisfies the
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conditions of Lemma 3.8. Lastly, the condition (3.19) is immediately satisfied since Ω = B1/a

and the condition (3.20) also holds since He,λ ∩ Ξ′ = ∅ for all λ > ε (because Ξ′ ⊂ Bε).
To sum up, all assumptions of Lemma 3.8 are fulfilled. Its conclusion with λ = ε yields

w ≤ we,ε in ωe,ε, with
ωe,ε =

(
He,ε ∩ (B1/a\Ω′)

)
\Re,ε(Ω′).

Since y · e > 0 and since Ω′ ⊂ Bε and Re,ε(Ω′) ⊂ B3ε, it follows that y ∈ ωe,ε for all ε > 0 small
enough. As a consequence, w(y) ≤ we,ε(y) = w(ye,ε) = w(y − 2(y · e− ε)e) for all ε > 0 small
enough and the passage to the limit as ε→ 0 yields

w(y) ≤ w(y − 2(y · e)e) = w(x)

by definition of e. Since this holds for all x 6= y ∈ Ω0,1/a \ {0} with |x| = |y|, this means
that w is radially symmetric in Ω0,1/a \ {0}, hence u is radially symmetric in Ωa,∞. Together
with (3.25), there is then a C3([a,+∞)) function U such that u(x) = U(|x|) and U ′ ≥ η > 0
in [a,+∞). But ∆u ≤ 0 in Ωa,∞ by (3.27). Hence U ′′(r) + r−1U ′(r) ≤ 0 in [a,+∞) and the
function r 7→ rU ′(r) is nonincreasing in [a,+∞), a contradiction with U ′ ≥ η > 0.

As a conclusion, (3.27) can not hold, that is, (3.26) holds and the proof of Theorem 1.4 is
thereby complete. �

3.4 Proof of Lemma 3.8

It is based on the method of moving planes developed in [3, 6, 10, 22]. The idea is to compare
the function ϕ to its reflection ϕe,λ in ωe,λ by moving the lines Te,λ and decreasing λ from the
value λ to the value ε. We recall that

ωe,λ = (He,λ ∩ ω) \Re,λ(Ω′).

Notice in particular that R′ ≤ |x| ≤ R for all λ ∈ [ε, λ) and x ∈ ωe,λ, since ωe,λ ⊂ ω = Ω\Ω′.
Consider first any λ ∈ (ε, λ). For each x ∈ ωe,λ, there holds

xe,λ = Re,λ(x) ∈ Re,λ(He,λ ∩ ω) ⊂ Re,λ(He,λ ∩ Ω) ⊂ Ω

by (3.19), and xe,λ 6∈ Ω′, hence, xe,λ ∈ ω. Thus

Re,λ(ωe,λ) ⊂ ω

and the function ϕe,λ given in (3.21) is well defined and of class C2 in ωe,λ. Furthermore,
∆ϕe,λ +F (|xe,λ|, ϕe,λ) = 0 in ωe,λ. Since |x| ≥ |xe,λ| for all x ∈ ωe,λ (remember that λ > ε ≥ 0)
and since F is nonincreasing with respect to its first variable, it follows that

∆ϕe,λ + F (|x|, ϕe,λ) ≤ 0 in ωe,λ.

Let
Φe,λ = ϕe,λ − ϕ,

which is well defined and of class C2 in ωe,λ. There holds

∆Φe,λ + ce,λΦe,λ ≤ 0 in ωe,λ, (3.28)
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Figure 4: The three parts ∂1ωe,λ, ∂2ωe,λ and ∂3ωe,λ of the boundary of the set ωe,λ (dashed red)

where, say,

ce,λ(x) =


F (|x|, ϕe,λ(x))− F (|x|, ϕ(x))

ϕe,λ(x)− ϕ(x)
if ϕe,λ(x) 6= ϕ(x),

0 if ϕe,λ(x) = ϕ(x).

Since the function F is assumed to be Lipschitz continuous with respect to its second variable,
uniformly with respect to the first one, the function ce,λ is in L∞(ωe,λ) and, moreover, there is
a constant M ≥ 0 such that

|ce,λ(x)| ≤M for all λ ∈ (ε, λ) and for all x ∈ ωe,λ. (3.29)

Consider again any λ ∈ (ε, λ) and let us decompose the boundary of ωe,λ into three parts.
More precisely, since

∂(A ∩B ∩ C) ⊂
(
∂A ∩B ∩ C

)
∪
(
A ∩ ∂B ∩ C

)
∪
(
A ∩B ∩ ∂C

)
for any three sets A, B and C, since ∂ω = Ξ ∪ Ξ′ and since (He,λ ∩ Ξ′) \ Re,λ(Ω

′) = ∅ by
assumption (3.20), one has (with A = He,λ, B = ω and C = R2 \Re,λ(Ω′))

∂ωe,λ ⊂
(
(Te,λ ∩ ω)\Re,λ(Ω

′)
)︸ ︷︷ ︸

=:∂1ωe,λ

∪
(
(He,λ ∩ Ξ)\Re,λ(Ω

′)
)︸ ︷︷ ︸

=:∂2ωe,λ

∪
(
He,λ ∩ ω ∩Re,λ(Ξ

′)
)︸ ︷︷ ︸

=:∂3ωe,λ

, (3.30)

see Fig. 4. Notice that, since Te,λ ∩ Ξ = Te,λ ∩ ∂Ω is not empty (because λ ∈ (ε, λ) ⊂ [0, λ)),
both sets ∂1ωe,λ and ∂2ωe,λ are not empty (however, ∂3ωe,λ may be empty). Furthermore, even
if ωe,λ may not be connected (as in Fig. 4), the boundary of each connected component of ωe,λ
intersects ∂2ωe,λ ∪ ∂3ωe,λ.

Let us now study the sign of Φe,λ on ∂ωe,λ, for any λ ∈ (ε, λ). Firstly, on ∂1ωe,λ (⊂ Te,λ),
one has ϕe,λ = ϕ, hence Φe,λ = 0. Secondly, for each x ∈ ∂2ωe,λ, one has

xe,λ ∈ Re,λ(He,λ ∩ Ξ) ⊂ Re,λ(He,λ ∩ Ω) ⊂ Ω
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by (3.19), hence xe,λ ∈ ω∪Ξ′ and ϕe,λ(x) = ϕ(xe,λ) > c1 by (3.18), while x ∈ Ξ and ϕ(x) = c1.
Thus, Φe,λ(x) = ϕe,λ(x) − ϕ(x) > 0 for each x ∈ ∂2ωe,λ. Thirdly, for each x ∈ ∂3ωe,λ, one
has xe,λ ∈ Ξ′ and ϕe,λ(x) = ϕ(xe,λ) = c2, while x ∈ ω and ϕ(x) < c2, by (3.18). Thus,
Φe,λ(x) = ϕe,λ(x) − ϕ(x) > 0 for each x ∈ ∂3ωe,λ. As a consequence, Φe,λ ≥ 0 on ∂ωe,λ and
even Φe,λ > 0 on ∂2ωe,λ ∪ ∂3ωe,λ (6= ∅), hence

Φe,λ ≥6≡ 0 on the boundary of each connected component of ωe,λ. (3.31)

Let us now consider λ ' λ with λ < λ. Since the functions Φe,λ satisfy (3.28)-(3.31),
since the sets ωe,λ are all included in the given bounded domain Ω and since the Lebesgue

measure |ωe,λ| of ωe,λ goes to 0 as λ
<→λ owing to the definition of λ, it follows for instance

from the maximum principle in sets with bounded diameter and small Lebesgue measure and
from the strong maximum principle [7], that there is λ0 ∈ (ε, λ) such that Φe,λ > 0 in ωe,λ for
all λ ∈ (λ0, λ).

Let us finally define

λ∗ = inf
{
λ ∈ (ε, λ) : Φe,λ′ > 0 in ωe,λ′ for all λ′ ∈ (λ, λ)

}
,

and notice that ε ≤ λ∗ ≤ λ0 < λ. Our goal is to show that λ∗ = ε. Assume by way of
contradiction that λ∗ > ε. Notice that Φe,λ∗ ≥ 0 in ωe,λ∗ by continuity (indeed, for each
x ∈ ωe,λ∗ , there holds x ∈ ωe,λ for λ−λ∗ > 0 small, hence ϕ(x) < ϕe,λ(x) for λ−λ∗ > 0 small,

and ϕ(x) ≤ ϕe,λ∗(x) by passing to the limit λ
>→λ∗ and by continuity of ϕ; therefore, ϕ ≤ ϕe,λ∗

in ωe,λ∗ again by continuity of ϕ). On the other hand, Φe,λ∗ ≥6≡ 0 on the boundary of each
connected component of ωe,λ∗ , because λ∗ ∈ (ε, λ). Hence, Φe,λ∗ > 0 in ωe,λ∗ from the strong
maximum principle. As in the previous paragraph, from [7], there exists δ > 0 such that the
weak maximum principle holds in any open set ω′ ⊂ ω for the solutions Φ ∈ C2(ω′)∩C(ω′) of
∆Φ + cΦ ≤ 0 in ω′ with Φ ≥ 0 on ∂ω′ and ‖c‖L∞(ω′) ≤M , as soon as |ω′| ≤ δ. Let then K be
a compact subset of ωe,λ∗ such that

|ωe,λ∗\K| <
δ

2
.

Since minK Φe,λ∗ > 0, it follows from the continuity of ϕ in ω that there exists λ ∈ (ε, λ∗) such
that, for all λ ∈ [λ, λ∗],

min
K

Φe,λ > 0, ∂(ωe,λ\K) = ∂ωe,λ ∪ ∂K and |ωe,λ\K| < δ.

For any such λ ∈ [λ, λ∗], one then has Φe,λ ≥6≡ 0 on the boundary of each connected component
of ωe,λ\K and one then infers from the choice of δ and from the strong maximum principle
that Φe,λ > 0 in ωe,λ \K, and finally Φe,λ > 0 in ωe,λ. This last property contradicts the
definition of λ∗.

As a conclusion, λ∗ = ε. Therefore, for every λ ∈ (ε, λ), one has Φe,λ > 0 in ωe,λ,
namely ϕ < ϕe,λ in ωe,λ and ϕ ≤ ϕe,λ in ωe,λ by continuity of ϕ. As in the previous paragraph, it
also follows by continuity that ϕ ≤ ϕe,ε in ωe,ε. The proof of Lemma 3.8 is thereby complete. �
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4 The case of punctured disks Ω0,b: proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. Throughout this section, we fix a positive
real number b and we consider a C2(Ω0,b\{0}) flow v solving (1.1)-(1.2) and such that{

x ∈ Ω0,b\{0} : |v(x)| = 0
}
( Cb and

∫
Cε

|v · er| → 0 as ε
>→ 0. (4.1)

Since v is divergence free, together with the second condition in (4.1), it follows that there is
a C3(Ω0,b\{0}) stream function u, namely ∇⊥u = v in Ω0,b\{0}. Let B ∈ Cb be a point such
that

|v(B)| > 0, (4.2)

hence v(B) · eθ(B) 6= 0 since v · er = 0 on Cb. Up to changing v into −v and u into −u, one
can assume without loss of generality that v(B) · eθ(B) < 0, that is,

∇u(B) · er(B) < 0. (4.3)

Since ∇u · eθ = −v · er = 0 on Cb, the function u is constant on Cb and, since u is unique up
to an additive constant, one can also assume without loss of generality that

u = 0 on Cb. (4.4)

Following the general scheme of the proof of Theorem 1.3, we will show that the function u
is positive in Ω0,b, that it has a limit at 0, that all streamlines of the flow in Ω0,b surround the
origin, and that u satisfies a semilinear elliptic equation of the type (1.6) in Ω0,b\{0}. Finally,
we will apply Lemma 3.8 in suitable domains to prove the radial symmetry of u.

The first lemma, analogue to Lemma 3.1, is concerned with the trajectory of the gradient
flow starting from the point B. We denote σ the solution of (2.3) with x = B, that is,{

σ̇(t) = ∇u(σ(t)),

σ(0) = B.
(4.5)

Lemma 4.1 There is T ∈ (0,+∞] such that σ is defined and of class C1 in [0, T ), and

|σ(t)| → 0 as t
<→T.

Proof. Since ∇u is (at least) of class C1(Ω0,b\{0}) and ∇u(B) · er(B) < 0 by (4.3), there
is t∗ ∈ (0,+∞) such that σ is defined and of class C1 at least in [0, t∗), and σ(s) ∈ Ω0,b for
all 0 < s < t∗. Define

T = sup
{
t > 0 : σ is defined and of class C1 in [0, t) and σ((0, t)) ⊂ Ω0,b

}
.

There holds 0 < t∗ ≤ T ≤ +∞ and the function σ is of class C1([0, T )) with σ((0, T )) ⊂ Ω0,b.
Furthermore, (u ◦ σ)′(t) = |∇u(σ(t))|2 = |v(σ(t))|2 > 0 for all t ∈ [0, T ) by (4.1)-(4.2).
Since σ(0) = B ∈ Cb and u is continuous in Ω0,b \{0} and constant on Cb, one infers that
lim supt→T, t<T |σ(t)| < b. By arguing by way of contradiction as in the proof of Lemma 3.1, it
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follows that |σ(t)| → 0 as t
<→T . �

Since u ◦ σ is increasing in [0, T ) and u(σ(0)) = u(B) = 0, there is L ∈ (0,+∞] such that

u(σ(t))→ L as t
<→T. (4.6)

Remark 4.2 The quantities T and L in Lemma 4.1 and in (4.6) may be finite or infinite. As
a first example, consider the C∞(Ω0,b\{0}) flow v defined by

v(x) = − 1

|x|
eθ(x)

in Ω0,b\{0}. It solves (1.1)-(1.2), with |v| > 0 and v ·er = 0 in Ω0,b\{0}, hence (1.10) is fulfilled.
The stream function u and the pressure p are given by u(x) = ln b− ln |x| and p(x) = −(2|x|)−1

(up to additive constants). In this case, for any B ∈ Cb, the solution σ of (4.5) is given
by σ(t) =

√
1− 2t/b2B, with T = b2/2 and L = +∞. As a second example, consider

the C∞(Ω0,b\{0}) flow v defined by

v(x) = −|x| eθ(x)

in Ω0,b\{0}. It solves (1.1)-(1.2), with |v| > 0 and v ·er = 0 in Ω0,b\{0}, hence (1.10) is fulfilled.
The stream function u and the pressure p are given by u(x) = b2/2− |x|2/2 and p(x) = |x|2/2
(up to additive constants). In this case, for any B ∈ Cb, the solution σ of (4.5) is given
by σ(t) = e−tB, with T = +∞ and L = b2/2.

The next lemma shows that u has the limit L at the origin and that u is positive in Ω0,b.

Lemma 4.3 Let L ∈ (0,+∞] be defined by (4.6). Then the function u satisfies 0 < u < L

in Ω0,b and u(x)→ L as |x| >→ 0.

Proof. For every r ∈ (0, b], the C3(R) function wr : θ 7→ wr(θ) = u(r cos θ, r sin θ) is 2π-
periodic and, as in (3.8), one has w′r(θ) = −r v(r cos θ, r sin θ) · er(r cos θ, r sin θ) for all θ ∈ R.
Hence, (4.1) implies that

max
Cr

u−min
Cr

u = max
[0,2π]

wr − min
[0,2π]

wr ≤
∫
Cr

|v · er| → 0 as r
>→ 0. (4.7)

Furthermore, it follows from Lemma 4.1 that, for every r ∈ (0, b], there is sr ∈ [0, T ) such

that |σ(sr)| = r. Therefore, sr → T as r
>→ 0 and u(σ(sr)) → L by Lemma 4.1. Together

with (4.7), one gets that u(x)→ L as |x| >→ 0.
Let now r ∈ (0, b) be any small real number such that minCr u > 0. Since u = 0 on Cb

and u has no critical point in Ω0,b, one gets that u > 0 in Ωr,b. Since r > 0 can be as small as
wanted, one concludes that u > 0 in Ω0,b.

Similarly, if L ∈ (0,+∞), then for any ε > 0, there is rε ∈ (0, b) such that maxCr u < L+ ε
for all r ∈ (0, rε]. Then u < L + ε in Ωr,b for any such r, hence u < L + ε in Ω0,b. Finally,
since ε > 0 is arbitrary, one has u ≤ L in Ω0,b and since u has no critical point in Ω0,b, one
concludes that u < L in Ω0,b. The proof of Lemma 4.3 is thereby complete. �
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Lemma 4.4 For each x ∈ Ω0,b, the solution ξx of (1.5) is defined in R and periodic, and the
streamline Ξx = ξx(R) surrounds the origin. Furthermore,

max
R
|ξx| → 0 as |x| >→ 0.

Proof. Consider any x ∈ Ω0,b. Since u = 0 on Cb and u equal to the constant u(x) ∈ (0, L)
along Ξx, it follows from the continuity of u and the previous lemma that 0 < infy∈Ξx |y| ≤
supy∈Ξx |y| < b. Therefore, as in Lemma 2.2, the solution ξx of (1.5) is defined in R and
periodic, and the streamline Ξx = ξx(R) surrounds the origin.

Consider now any ε ∈ (0, b). It follows from Lemma 4.3 and the continuity of u that there
are L′ ∈ (0, L) and ρ ∈ (0, ε) such that maxΩε,b

u < L′ < L and u ≥ L′ in Ω0,ρ. Therefore,

for any x ∈ Ω0,ρ, the function u is equal to the constant u(x) ≥ L′ along the streamline Ξx,
hence Ξx ⊂ Ω0,ε. The proof of Lemma 4.4 is thereby complete. �

Lemma 4.5 Let L ∈ (0,+∞] be defined by (4.6). There is a C1([0, L)) function f : [0, L)→ R
such that

∆u+ f(u) = 0 in Ω0,b\{0}.

Proof. The C1([0, T )) function g := u ◦ σ satisfies g′(t) = |∇u(σ(t))|2 = |v(σ(t))|2 > 0 for
all t ∈ [0, T ), due to (4.1)-(4.2). Furthermore, g(0) = u(σ(0)) = u(B) = 0. With (4.6), the
function g is then a C1 diffeomorphism from [0, T ) onto [0, L). Denote g−1 : [0, L)→ [0, T ) its
reciprocal. From the chain rule, the function f given by

f : [0, L) → R
s 7→ f(s) := −∆u(σ(g−1(s)))

(4.8)

is of class C1([0, L)), and ∆u(σ(t))+f(u(σ(t))) = 0 for all t∈ [0, T ). Consider finally any point
x ∈ Ω0,b. It follows from Lemmas 4.1 and 4.4 that σ(s′) ∈ Ξx for some s′ ∈ [0, T ). Since both u
and ∆u are constant along Ξx, one gets that ∆u(x) + f(u(x)) = ∆u(σ(s′)) + f(u(σ(s′))) = 0.
The equation ∆u+ f(u) = 0 actually holds in Ω0,b\{0} since u is at least of class C2(Ω0,b\{0})
and f ◦ u is at least continuous in Ω0,b\{0}. The proof of Lemma 4.5 is thereby complete. �

With the above lemmas in hand, we shall apply Lemma 3.8 to complete the proof of Theo-
rem 1.5.

Proof of Theorem 1.5. One has to show that u is radially symmetric in Ω0,b\{0}. Consider
any two points x 6= y ∈ Ω0,b\{0} with |x| = |y|. As in the proof of Theorems 1.3 and 1.4,
denote

e =
y − x
|y − x|

∈ S1

and consider an arbitrary real number ε such that

0 < ε < |x| = |y| ≤ b.

By Lemma 4.4, there is a point xε ∈ Ω0,b such that maxR |ξxε| < ε < b. One knows that the
streamline Ξxε surrounds the origin and that u = u(xε) > 0 along Ξxε . Since u = 0 on Cb
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and u has no critical point in Ω0,b, one infers that 0 < u < u(xε) in the domain ω between Ξxε

and Cb. Denote Ξ = Cb, Ξ′ = Ξxε , Ω = Bb, let Ω′ = Ωxε be the bounded connected component
of R2 \ Ξxε , and notice that

ω = Ω \ Ω′.

Set
R = b, 0 < R′ = min

x∈Ξ′
|x| < ε < R and λ = max

x∈Ξ
x · e = b > 0.

One has ε ∈ (0, λ). The function ϕ = u is of class C3(ω) with

ϕ = c1 = 0 on Ξ = Cb, ϕ = c2 = u(xε) > 0 on Ξ′, and 0 < ϕ < u(xε) in ω.

Furthermore, ϕ satisfies ∆ϕ + F (ϕ) = 0 in ω, with F : [R′, b]× [0, u(xε)] 3 (r, s) 7→ F (r, s) =
f(s) satisfying all conditions of Lemma 3.8. Lastly, the condition (3.19) is immediately satisfied
since Ω = Bb and the condition (3.20) also holds since He,λ ∩ Ξ′ = ∅ for all λ > ε (because
Ξ′ ⊂ Bε).

To sum up, all assumptions of Lemma 3.8 are fulfilled. Its conclusion with λ = ε yields
u ≤ ue,ε in ωe,ε, with

ωe,ε =
(
He,ε ∩ (Bb\Ω′)

)
\Re,ε(Ω′).

Since y · e > 0 and since Ω′ ⊂ Bε and Re,ε(Ω′) ⊂ B3ε, it follows that y ∈ ωe,ε for all ε > 0 small
enough. As a consequence, u(y) ≤ u(ye,ε) = u(y− 2(y · e− ε)e) for all ε > 0 small enough and

the passage to the limit as ε
>→ 0 yields

u(y) ≤ u(y − 2(y · e)e) = u(x)

by definition of e. Since this holds for all x 6= y ∈ Ω0,b \{0} with |x| = |y|, this means that u is
radially symmetric in Ω0,b \ {0}. Together with (4.1) and Lemma 4.3, there is then a C3((0, b])
function U such that u(x) = U(|x|) and U ′ < 0 in (0, b]. Hence, v(x) = U ′(|x|)eθ(x) for
all x ∈ Ω0,b\{0}, and the proof of Theorem 1.5 is thereby complete. �

5 The case of the punctured plane Ω0,∞ = R2\{0}: proof

of Theorem 1.7

This section is devoted to the proof of Theorem 1.7. Let v be a C2(Ω0,∞) flow solving (1.1)
and such that |v| > 0 in Ω0,∞ and lim inf |x|→+∞ |v(x)| > 0. One assumes that (1.13) holds and
that there is X ∈ Ω0,∞ such that the streamline ΞX is a Jordan curve surrounding the origin.
Let ΩX be the bounded connected component of R2 \ ΞX .

Thanks to the second part of assumption (1.13), there is a C3(Ω0,∞) function u such
that ∇⊥u = v in Ω0,∞. Up to normalization, one can assume that u = 0 on ΞX . Furthermore,
since |∇u(X)| = |v(X)| > 0 and ∇u(X) is orthogonal to ΞX at X, one can assume without
loss of generality, up to changing v into −v and u into −u, that ∇u(X) points in the direction
of ΩX at X.

Let then σ be the solution of (2.3) with x = X. Since ∇u is at least of class C1(Ω0,∞),
the function σ is defined in a neighborhood of 0 and there are −∞ ≤ T− < 0 < T+ ≤ +∞
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such that (T−, T+) is the maximal interval in which σ is of class C1 and σ((T−, T+)) ⊂
Ω0,∞. Furthermore, because of the normalization of the previous paragraph and since u ◦ σ is
increasing in (T−, T+) and u is constant along ΞX , one has

σ(t) ∈ ΩX for all t ∈ (0, T+), and σ(t) ∈ R2 \ ΩX for all t ∈ (T−, 0).

Using that |v| > 0 in Ω0,∞ and lim inf |x|→+∞ |v(x)| > 0, it follows as in the proofs of

Lemma 3.1 and 4.1 that |σ(t)| → 0 and u(σ(t)) → L (for some L ∈ (0,+∞]) as t
<→T+,

while |σ(t)| → +∞ and u(σ(t)) → −∞ as t
>→T−. Secondly, as in the proofs of Lemma 3.3

and 4.3, using (1.13) and the fact that u has no critical point in Ω0,∞, there holds u(x) → L

as |x| >→ 0 and u(x)→ −∞ as |x| → +∞, together with

0 < u < L in ΩX\{0}, and u < 0 in R2\ΩX .

Thirdly, as in the proofs of Lemma 3.4 and 4.4, it follows that, for the each x ∈ Ω0,∞, the
solution ξx of (1.5) is defined in R and periodic, and the streamline Ξx = ξx(R) surrounds the

origin. Furthermore, maxR |ξx| − minR |ξx| → 0 as |x| → +∞ and maxR |ξx| → 0 as |x| >→ 0.
Lastly, as in the proofs of Lemma 3.6 and 4.5, the function g := u ◦ σ is a C1 diffeomorphism
from (T−, T+) onto (−∞, L) and the function f defined by

f : (−∞, L) → R
s 7→ f(s) := −∆(σ(g−1(s)))

is of class C1((−∞, L)), with ∆u(σ(t)) + f(u(σ(t))) = 0 for all t∈(T−, T+) and finally

∆u+ f(u) = 0 in Ω0,∞.

On the other hand, still using the notations (3.14)-(3.15), it follows as in Lemma 3.7 from
the assumption lim inf |x|→+∞ |v(x)| > 0 and the first condition in (1.13) that, for every ε > 0,
there is Rε > 0 such that

Re,λ(He,λ ∩ Ωx) ⊂ Ωx

for all e ∈ S1, λ > ε and |x| > Rε.
Lastly, consider two points x 6= y ∈ Ω0,∞ such that |x| = |y|. Let e ∈ S1 be defined

as in (3.22). Consider an arbitrary real number ε such that 0 < ε < |x| = |y|. As in
the proofs of Theorems 1.3 and 1.5, there are two points xε ∈ R2 \ΩX and x′ε ∈ ΩX such
that minR |ξxε| > |x| = |y| > ε,

Re,λ(He,λ ∩ Ωxε) ⊂ Ωxε for all λ > ε, (5.1)

and maxR |ξx′ε| < ε < |x| = |y|. The streamlines Ξ = Ξxε and Ξ′ = Ξx′ε surround the origin,
and u is equal to c1 = u(xε) < 0 along Ξ and to c2 = u(x′ε) > 0 along Ξ′. Furthermore,
u(xε) < u < u(x′ε) in the domain

ω = Ωxε \ Ωx′ε

located between Ξxε and Ξx′ε . Denote R′ = minz∈Ξ′ |z| = minR |ξx′ε| ∈ (0, ε), R = maxz∈Ξ |z| =
maxR |ξxε | > |x| = |y| > ε > R′, and λ = maxz∈Ξ z · e > minR |ξxε| > |x| = |y| > ε > 0.
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The C3(ω) function ϕ = u satisfies (3.18) with [R′, R] × [c1, c2] 3 (r, s) 7→ F (r, s) = f(s)
satisfying the assumptions of Lemma 3.8 since f is of class C1((−∞, L)). Together with (5.1)
and the fact that He,λ ∩Ξ′ = ∅ for all λ > ε (since Ξ′ ⊂ Bε), the assumptions (3.19)-(3.20) are
satisfied. All assumptions of Lemma 3.8 are therefore fulfilled.

Lemma 3.8 applied with λ = ε then implies that u ≤ ue,ε in ωe,ε with

ωe,ε =
(
He,ε ∩ (Ωxε\Ωx′ε)

)
\Re,ε(Ωx′ε).

As in the proof of Theorem 1.5, one has y ∈ ωe,ε for all ε > 0 small enough, hence

u(y) ≤ ue,ε(y) = u(ye,ε) = u(y − 2(y · e− ε)e)

for all ε > 0 small enough. By passing to the limit as ε
>→ 0 and using the definition of e and

the assumption |x| = |y|, one infers that u(y) ≤ u(y−2(y ·e)e) = u(x). Since the last inequality
holds for any x 6= y ∈ Ω0,∞ such that |x| = |y|, the C3(Ω0,∞) function u is radially symmetric
in Ω0,∞. Together with the fact that |∇u| = |v| > 0 in Ω0,∞ and lim|x|→+∞ u(x) = −∞,
there is then a C3((0,+∞)) function U such that U ′ < 0 in (0,+∞) and u(x) = U(|x|) for
all x ∈ Ω0,∞. This means that v(x) = V (|x|) eθ(x) for all x ∈ Ω0,∞ with V = U ′ ∈ C2((0,+∞))
and V < 0 in (0,+∞). The proof of Theorem 1.7 is thereby complete. �

6 Proof of the Serrin-type Theorems 1.9 and 1.11

We start in Section 6.1 with the proof of Theorem 1.11 dealing with the case of doubly con-
nected bounded domains, since the proof follows easily from the arguments used in the proof
of Theorems 1.1 and 1.2 and on some known results of Reichel [18] and Sirakov [24] on el-
liptic overdetermined boundary value problems. Section 6.2 is then devoted to the proof of
Theorem 1.9

6.1 Proof of Theorem 1.11

Let ω1, ω2, Ω = ω2\ω1 and v be as in Theorem 1.11. Since v is divergence free and v ·n = 0 on
∂ω1, the C3(Ω) stream function u given by (1.4) is well defined and is unique up to additive
constant. Furthermore, since v · n = 0 on ∂Ω = ∂ω1 ∪ ∂ω2, there are two real numbers c1 and
c2 such that

u = c1 on ∂ω1 and u = c2 on ∂ω2.

As in the proof of Lemma 2.1, one can show that, for each x ∈ Ω, the solution σx of (2.3) is
defined in an interval (t−x , t

+
x ) such that t−x < 0 < t+x , σx((t

−
x , t

+
x )) ⊂ Ω and dist(σx(t), ∂Ω)→ 0

as t → t±x . Since u ◦ σx is increasing in (t−x , t
+
x ), it follows that c1 6= c2 and min(c1, c2) < u <

max(c1, c2) in Ω. Up to changing v into −v and u into −u, one can assume without loss of
generality that c1 < c2, hence

c1 < u < c2 in Ω.

Since |∇u| = |v| > 0 in Ω, this normalization implies that ∂u
∂n
< 0 on ∂ω1 and ∂u

∂n
> 0 on ∂ω2,

where n denotes the outward unit normal of Ω on ∂Ω.
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Let then X be any point in ω1. As in the proof of Lemma 2.2, each streamline Ξx,
with x ∈ Ω, surrounds the point X. Notice that, here, since v · n = 0 on ∂ω1 ∪ ∂ω2 and v
has no stagnation point in Ω, both Jordan curves ∂ω1 and ∂ω2 are streamlines of the flow.
Moreover, for an arbitrarily fixed point A ∈ ∂ω1, the same arguments as in the proof of
Lemma 2.4 imply that the trajectory σA of the gradient flow is defined in an interval [0, t+A]
with t+A ∈ (0,+∞), σA((0, t+A)) ⊂ Ω and σA(t+A) ∈ ∂ω2. The function g := u ◦ σA is then a C1

diffeomorphism from [0, t+A] onto [c1, c2] and the C1([c1, c2]) function f defined by (2.9) is such
that

∆u+ f(u) = 0

along the curve σA([0, t+A]) and finally in the whole set Ω since each streamline of the flow
intersects the curve σA([0, t+A]).

Since |∂u
∂n
| = |∇u| = |v| along ∂Ω and since |v| is constant along ∂ω1 and along ∂ω2,

it follows that ∂u
∂n

is constant too along ∂ω1 and along ∂ω2. One concludes from [18, 24] (see
also [2, 25]) that, up to shift, Ω = Ωa,b for some 0 < a < b <∞ and u is radially symmetric and
increasing with respect to |x| in Ω = Ωa,b. The assumptions and the conclusion of Theorem 1.1
are then satisfied and the proof of Theorem 1.11 is thereby complete. �

6.2 Proof of Theorem 1.9

Let Ω be a C2 non-empty simply connected bounded domain of R2. Let v ∈ C2(Ω) satisfy the
Euler equations (1.1). We assume that v · n = 0 and |v| is constant on ∂Ω, where n denotes
the outward unit normal on ∂Ω, and that v has a unique stagnation point in Ω. Since Ω is
simply connected and v is divergence free, there is a C3(Ω) stream function u satisfying (1.4).
Furthermore, u is constant along ∂Ω since v · n = 0 on ∂Ω. Up to normalization, one can
assume without loss of generality that

u = 0 on ∂Ω. (6.1)

By assumption, the function u has a unique critical point in Ω, and |∇u| = |v| is constant
along ∂Ω. Then |∂u

∂n
| = |∇u| = |v| > 0 on ∂Ω. Up to changing v into −v and u into −u, one

can assume without loss of generality that

∂u

∂n
= γ < 0 on ∂Ω (6.2)

for some negative constant γ. Hence, u has a unique maximum point in Ω (which is actually
in Ω) and this point is the unique critical point of u in Ω. Up to shift, one can assume without
loss of generality that this critical point is the origin 0. One also infers from the uniqueness of
the critical point of u that

0 < u < u(0) for all x ∈ Ω\{0}. (6.3)

Our goal is to show that Ω is then a ball centered at the origin and that u is radially
symmetric and decreasing with respect to |x| in Ω. To do so, we first follow some steps of the
proof of Theorem 1.5.
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So, let B be any point on ∂Ω. Since ∇u(B) · n(B) < 0 by (6.2) and since 0 is the unique
critical point of u, it follows as in the proof of Lemma 4.1 that the solution σ of σ̇(t) = ∇u(σ(t))
with σ(0) = B is defined in an interval [0, T ) with T ∈ (0,+∞], and σ((0, T )) ⊂ Ω\{0}
together with |σ(t)| → 0 as t

<→T . Furthermore, since ∇u is at least Lipschitz continuous in Ω
and |∇u(0)| = 0, one necessarily has T = +∞. Using (6.3) and the fact that Ω is simply
connected, it follows as in the proof of Lemma 4.4 that, for each x ∈ Ω\{0}, the streamline Ξx

of the flow containing x surrounds the origin, and that maxR |ξx| → 0 as |x| >→ 0. Notice that,
since v · n = 0 and |v| > 0 on ∂Ω, the Jordan curve ∂Ω is also a streamline of the flow,
surrounding the origin.

The function g := u ◦ σ is of class C1([0,+∞)) with g′ > 0 in [0,+∞). It is a C1 diffeo-
morphism from [0,+∞) onto [0, L), with L = u(0). Therefore, as in the proof of Lemma 4.5,
the C1([0, L)) function f defined as in (4.8) by f(s) = −∆u(σ(g−1(s))) in [0, L) is such that
∆u+f(u) = 0 along the curve σ([0,+∞)) and then in Ω\{0} (since each streamline of the flow
in Ω\{0} intersects σ([0,+∞))). By setting f(L) = −∆u(0), the function f is then continuous
in [0, L] and the equation

∆u+ f(u) = 0

holds in the whole closed set Ω.
Remembering that u satisfies (6.1)-(6.3), it would then follow from [22] that Ω = BR

for some R > 0 and u is radially symmetric and decreasing with respect to |x| in Ω, if the
function f were known to be Lipschitz continuous in [0, L]. However, by using the same ideas
as in Remark 2.5, it is not clear that the function f ′ is bounded in a neighborhood of L
and thus the function f may not be Lipschitz continuous in the whole interval [0, L]. We
will however still be able to show the desired symmetry of Ω and of u by taking off from Ω
small neighborhoods of 0 and applying Serrin’s strategy and the method of moving planes in
punctured domains. The images by u of the closure of these punctured domains are intervals
of the type [0, L′], with L′ ∈ (0, L), and thus f is Lipschitz continuous in [0, L′].

More precisely, let first ρ > 0 be such that

Bρ ⊂ Ω

and let e be any unit vector. Let η be any real number in (0, ρ), and denote

λe = max
x∈∂Ω

x · e > ρ > η.

Using the same notations Te,λ, He,λ and Re,λ as in (3.14)-(3.15), it follows from [4] that there

is λ̃ ∈ (ρ, λe) such that

Re,λ(He,λ ∩ Ω) ⊂ Ω for all λ ∈ (λ̃, λe). (6.4)

Since maxR |ξx| → 0 as |x| >→ 0, there is xη ∈ Ω\{0} such that Ξxη ⊂ Bη. Let then Ω′ be the

bounded connected component of R2\Ξxη (notice that Ω′ ⊂ Bη ⊂ Ω) and let

ω = Ω\Ω′

be the doubly connected bounded domain located between Ξxη and ∂Ω. Notice that ∂ω =
Ξxη ∪ ∂Ω, that 0 6∈ ω and that

0 < u < u(xη) in ω (6.5)
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since u has no critical point in ω.
From (6.4), two cases can occur: either

• (case a)
Re,λ(He,λ ∩ Ω) ⊂ Ω for all λ ∈ [η, λe), (6.6)

• or (case b) there is λ∗ ∈ [η, λ̃] such that Re,λ(He,λ∩Ω) ⊂ Ω for all λ ∈ (λ∗, λe), and either

– (internal tangency) there is a point x∗ ∈ He,λ∗∩∂Ω such that x∗e,λ∗ = Re,λ∗(x
∗) ∈ ∂Ω,

– or (orthogonality) Te,λ∗ meets ∂Ω orthogonally, at some point p∗.

We will prove that only case a occurs.
Assume by way of contradiction that case b occurs. Denote{
Ξ = ∂Ω, Ξ′ = Ξxη , R

′ = min
x∈Ξ′
|x| ∈ (0, ρ), R = max

x∈Ξ
|x| > ρ > R′, ε = λ∗ ∈ [η, λ̃] ⊂ [0, λe),

c1 = 0 = u|∂Ω, c2 = u(xη) = u|Ξxη ∈ (0, L).

The C3(ω) function ϕ = u satisfies c1 < ϕ < c2 in ω by (6.5) and ∆ϕ + F (ϕ) = 0 in ω,
where F (s) = f(s) for s ∈ [c1, c2] ⊂ [0, L). The function F is therefore C1 in [c1, c2]. The
condition (3.19) holds by definition of ε, λ∗ and λe, and the condition (3.20) is automatically
fulfilled since Ξ′ ⊂ Bη and ε = λ∗ ≥ η. Therefore, all assumptions of Lemma 3.8 are satisfied
and it follows from the conclusion applied with λ = ε = λ∗ that

u ≤ ue,λ∗ in ωe,λ∗ ,

with
ωe,λ∗ = (He,λ∗ ∩ ω) \Re,λ∗(Ω′).

Denote
w = ue,λ∗ − u.

Since F = f is of class C1 in [c1, c2] ⊂ [0, L), the nonnegative C3(ωe,λ∗) function w satisfies an
equation of the type ∆w + cw = 0 in ωe,λ∗ , for some function c ∈ C(ωe,λ∗). Thus, the strong
maximum principle implies that, for each connected component ω′ of ωe,λ∗ , either w > 0
in ω′, or w ≡ 0 in ω′. We shall now consider separately the internal tangency case and the
orthogonality case.

Consider first the case of internal tangency: there is a point x∗ ∈ He,λ∗ ∩ ∂Ω such that
x∗e,λ∗ = Re,λ∗(x

∗) ∈ ∂Ω, hence

u(x∗) = u(x∗e,λ∗) = 0 and w(x∗) = 0.

Since Ω′ ∩ ∂Ω = ∅, one has x∗ 6∈ Ω′ ∪ Re,λ∗(Ω′). There is a connected component ω∗ of ωe,λ∗
such that x∗ ∈ ∂ω∗, and B(x∗, r)∩Ω = B(x∗, r)∩ω∗ for all r > 0 small enough (in particular,
the interior sphere condition in ω∗ is satisfied at the point x∗ ∈ ∂ω∗). Let n(ζ) be the generic
notation for the outward normal to Ω at a point ζ ∈ ∂Ω. Owing to the definitions of λ∗ and x∗,
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one has Re,λ∗(n(x∗)) = n(x∗e,λ∗), while ∇ue,λ∗(x∗) = Re,λ∗(∇u(x∗e,λ∗)) owing to the definition
of ue,λ∗ . Hence,

∇w(x∗) · n(x∗) = ∇ue,λ∗(x∗) · n(x∗)−∇u(x∗) · n(x∗)

= Re,λ∗(∇u(x∗e,λ∗)) ·Re,λ∗(n(x∗e,λ∗))−∇u(x∗) · n(x∗)

= ∇u(x∗e,λ∗) · n(x∗e,λ∗)−∇u(x∗) · n(x∗) = 0

since ∇u ·n is equal to the constant γ on ∂Ω by (6.2). It then follows from Hopf lemma applied
to the function w at the point x∗, together with the strong maximum principle, that

w ≡ 0 in ω∗, that is, u ≡ ue,λ∗ in ω∗. (6.7)

On the other hand, as for formula (3.30) in the proof of Lemma 3.8, one has

∂ω∗ ⊂ ∂ωe,λ∗ ⊂
(
(Te,λ∗∩ ω)\Re,λ∗(Ω

′)
)︸ ︷︷ ︸

=:∂1ωe,λ∗

∪
(
(He,λ∗∩ ∂Ω)\Re,λ∗(Ω

′)
)︸ ︷︷ ︸

=:∂2ωe,λ∗

∪
(
He,λ∗∩ ω ∩Re,λ∗(Ξxη)

)︸ ︷︷ ︸
=:∂3ωe,λ∗

.

Since ue,λ∗ = u(xη) on Re,λ∗(Ξxη) and u < u(xη) in ω, one has w = ue,λ∗ − u > 0 on ∂3ωe,λ∗ ,
hence ∂3ωe,λ∗ ∩ ∂ω∗ = ∅ and

∂ω∗ ⊂
(
(Te,λ∗∩ ω)\Re,λ∗(Ω

′)
)
∪
(
(He,λ∗∩ ∂Ω)\Re,λ∗(Ω

′)
)
⊂ (Te,λ∗∩ Ω) ∪ (He,λ∗∩ ∂Ω).

Therefore, ω∗ is a connected component of He,λ∗ ∩ Ω. Since w ≡ 0 in ω∗, the arguments of

Reichel [19] (see also [1, 24]) imply that Ω = ω∗ ∪Re,λ∗(ω∗). Hence Ω symmetric with respect
to the line Te,λ∗ and, moreover, u is itself symmetric with respect to Te,λ∗ , which is impossible
since 0 6∈ Te,λ∗ and 0 is the only maximum point of u. As a consequence, the case of internal
tangency is ruled out.

Consider now the case of orthogonality, that is, Te,λ∗ meets ∂Ω orthogonally, at some
point p∗. By definition of ue,λ∗ , one has u(p∗) = ue,λ∗(p

∗), thus w(p∗) = 0. Notice also, as in
the case of internal tangency, that p∗ 6∈ Ω′ ∪ Re,λ∗(Ω′). There is a connected component ω∗

of ωe,λ∗ such that p∗ ∈ ∂ω∗, and B(p∗, r)∩Ω∩He,λ∗ = B(p∗, r)∩ω∗ for all r > 0 small enough.
Since u and ∂u

∂n
are constant on ∂Ω and since Te,λ∗ meets ∂Ω orthogonally at p∗, it follows as

in [19] that all first and second order derivatives of w vanish at p∗. Serrin’s corner lemma [22]
and the strong maximum principle then yield w ≡ 0 in ω∗. One is then led to a contradiction
as in the previous paragraph.

As a consequence, only case a occurs. Thus, (6.6) holds. By arguing as in the beginning of
the study of case b and applying Lemma 3.8 with this time ε = η, one infers that

u ≤ ue,λ in ωe,λ for all λ ∈ [η, λe), (6.8)

with ωe,λ = (He,λ ∩ ω) \Re,λ(Ω′). Since (6.6) and (6.8) hold for every direction e ∈ S1 and for
every η ∈ (0, ρ), one finally concludes that

Ω = BR

for some R > 0 and, as in the proof of Theorem 1.5, that u is radially symmetric in Ω = BR.
Since 0 is the unique critical point of the C3(BR) function u and since u = 0 on ∂BR with u > 0
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in BR, there is then a C3([0, R]) function U : [0, R] → R such that u(x) = U(|x|) in BR,
with U ′(0) = 0 and U ′ < 0 in (0, R]. Therefore,

v(x) = ∇⊥u(x) = U ′(|x|)eθ(x) for all x ∈ BR\{0}

and the C2([0, R]) function V = U ′ satisfies the desired conclusion. The proof of Theorem 1.9
is thereby complete. �

References

[1] A. Aftalion, J. Busca, Radial symmetry of overdetermined problems in exterior domains, Arch. Ration.
Mech. Anal. 143 (1998), 195-206.

[2] G. Alessandrini, A symmetry theorem for condensers, Math. Meth. Appl. Sci. 15 (1992), 315-320.

[3] A. D. Alexandroff, A characteristic property of the spheres, Ann. Mat. Pura Appl. 58 (1962), 303-354.

[4] C. J. Amick, L. E. Fraenkel, Uniqueness of Hills spherical vortex, Arch. Ration. Mech. Anal. 92 (1986),
91-119.

[5] H. Berestycki, L. Caffarelli, L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz
domains, Comm. Pure Appl. Math. 50 (1997), 1089-1111.

[6] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras.
Mat. 22 (1991), 1-37.

[7] H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for
second order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), 47-92.

[8] A. Choffrut, V. Šverák, Local structure of the set of steady-state solutions to the 2D incompressible
Euler equations, Geom. Funct. Anal. 22 (2012), 136-201.

[9] A. Farina, E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications
to overdetermined problems, Arch. Ration. Mech. Anal. 195 (2010), 1025-1058.

[10] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm.
Math. Phys. 68 (1979), 209-243.

[11] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn,
In: Math. Anal. Appl. Part A, Advances in Math. Suppl. Studies A 7, 1981, 369-402.

[12] F. Hamel, N. Nadirashvili, Shear flows of an ideal fluid and elliptic equations in unbounded domains,
Comm. Pure Appl. Math. 70 (2017), 590-608.

[13] F. Hamel, N. Nadirashvili, Parallel and circular flows for the two-dimensional Euler equations, Sémin.
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