
Intelligent Assistant System as acontext-aware 
decision-making support for theworkers of the future 

Abstract 

The key role of information and communication technologies (ICT) to improve manufacturing productivity 

within the paradigm of factory of the future is often proved. These tools are used in a wide range of product 

lifecycle activities, from the early design phase to product recycling. Generally, the assistance tools are mainly 

dedicated to the management board and fewer initiatives focus on the operational needs of the worker at the 

shop-floor level. 

This paper proposes a context-aware knowledge-based system dedicated to support the actors of the 

factory by the right information at the right time and in the appropriate format regarding their context of work 

and level of expertise. Particularly, specific assistance functionalities are dedicated to the workers in charge of 

the machine configuration and the realization of manufacturing operations. PGD-based (Proper Generalized 

Decomposition) algorithms are used for real time simulation of industrial processes and machine 

configuration. At the conceptual level, a semantic model is proposedas key enablersfor the structuration of the 

knowledge-based system. 
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1. Introduction

In their recent research review, Esmaeilian et al., [2016] highlights more than 40 technological, 

societal and informational pillars for the factory of the future. Among these elements, information 

and communication technologies and knowledge asset take a great interest in the new strategies and 
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offer high potential of innovation [Wu et al., 2017].  This is because human capital is the driving force 

for production efficiency and optimization [Mavrikios et al. 2011]. However, although their role is 

indisputable, the actors of the factory are capable of making mistakes that, no matter what their 

origin, have a direct influence on the cost of non-quality (CNQ) and delays [Schiffauerova et al., 

2006]. Some studies have demonstrated that human-caused CNQ is due to three main reasons: lack 

of appropriate guidelines, gaps in training, and the unavailability of documentation in production 

lines [Benhabib et al., 2004]. Furthermore, the heterogeneity of data and information makes their 

integration and management very complex [Zhong et al. 2016]. Managers aiming to face today’s 

competitiveness are continuously seeking to help their employees to efficiently accomplish their jobs. 

This goalcould be achievedby promoting a human-centered visions and roadmaps as key pillars of the 

factory of the future (FoF)[Longo et al., 2017]. 

In this context, the concept of “Digital Factory Assistant” (DFA) is proposed under the ARTUR (in 

French: AtelieR du fuTUR, translated as shop-floor of the future in English) project as a framework for 

intensive knowledge reuse dedicated to assist factory workers in their daily activities. The aim is also 

to improve the operational process efficiency through a set of decision-making support for problem 

solving and reaction against various events and operational constraints. 

Indeed, to deal with different working situations, actors have to be aware of important elements 

in the situation and to interpret it correctly according to their task of interest [Hasan et al., 2003]. 

Being constantly aware of all these elements is a difficult task for the workers and may lead to a 

cognitive overload. Based on contextual knowledge reuse, high-speed simulation and advanced 

visualization techniques, the aim of the DFA framework is to provide proactive support for different 

manufacturing tasks. As an extension of classical decisions support systems that mainly focus on the 

delivery of key indicators and risk notifications, the proposed framework aims to centralize the 
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knowledge asset in the factory and enables each actor to access the useful knowledge according to 

his/her working situation and real operational need. That said,the decision-making support built 

under the proposed framework will considerthe user’s profile by formatting the appropriate 

information in a consistent way so as to allow him well understanding and easier use of the available 

knowledge [Laroche et al., 2012; Dhuieb et al., 2013].  

The remaining of the paper is organized as follow. Section 2 discusses the main innovations 

within the paradigm of factory of the future. A state-of-the-art of different knowledge based and 

decision-making support systems used in the manufacturing field is given. The choice of these 

systems was based on two main criteria: the application scope and the consideration of the concept 

of context as enabler of the systems. The motivations of the proposed intelligent assistant system are 

explained at the end of this section while the characteristics of this framework are detailed in section 

4 from conceptual and technical points of view. Section 5 concentrates on the problem of multi-

physics simulation as key assistance functionality proposed by the Framework. This aspect is 

illustrated through an implementation scenario allowing users to access contextually to the 

simulation models in real time condition. In section 6, the advantages and limits of the proposed 

system are discussed based on feedback from first application in industrial context and a comparison 

with some existing tools. Conclusion and perspectives of future developments are given at the end. 

2. Motivations: Towards a new generation of assistant systems in factory  

2.1. Visions of the factory of the future 

Complementary visions contribute to the initiative of the factory of the future [Göleç, 2015]. 

According to [Westkämper, 2014], the factory of the future requires holistic production systems with 

learning capabilities integrated into the entire product lifecycle, from the design and initial 

configurations to after-sales services. In particular, the smart factory aims to enhance the control and 

3



  

the optimization of factory processes based on advanced ICT tools [Lucke et al., 2008]. For instance, 

the vision for a smart factory developed in the work of [Zuehlke, 2010] aims to build the concept of 

the “Factory of Things” where the factory implements intelligent objects interacting together to 

exchange information about their states. This vision is inspired by the “Internet of Things” concept 

developed in computer science [Lee et al., 2017].  

The German thoughts about the factory of the future are expressed in the concept of industry 

4.0 [Kagermann et al, 2013]. This concept encloses technologies and industrial processes allowing all 

the physical and virtual actors of the production system to interact in the same environment. 

According to this vision, the next industrial revolution will be distinguished by the generalization of 

sensors and intelligent agents with the aim of communicating with other machines, products, 

processes, humans, etc. The main objectives are to rapidly detect any production variation, anticipate 

the dysfunction and accelerate the research for new solutions and alternatives.  

The importance of giving more emphasis to the role of the human being as a key driver for better 

factory performance has been pointed out by many visions and roadmaps about the factory of the 

future. Mainly, [Westkämper, 2014] discussed the next human-centered production systems and how 

the human being will work jointly with digital objects in the factory. Knowledge engineering tools and 

methods are one of the key enablers supporting this issue [Quintana-Amate et al., 2017].  

2.2. Emerging ICT trends for future manufacturing systems 

The importance of information systems (IS) in industry has been highlighted from the last three 

decades and several propositions have been made along this period [Collins and Parks 1991]. In Toro 

et al. [2007] for example, a framework were developed for the exploitation of embedded knowledge 

in industrial maintenance. The proposed framework is based on a shared ontology designed to model 

and support pervasive computing applications called SOUPA (Standard Ontology for Ubiquitous and 
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Pervasive Applications). The UDKE (User, Device, Knowledge and Experience) is a conceptual model of 

the maintenance support tool that combines knowledge, user experience and Augmented Reality 

techniques. Even though the system relies on SOUPA ontology known by its ability to handle 

contextual information, nothing is mentioned in this work about handling different situations that a 

maintenance agent may encounter in real life. In another study, decision support system architecture 

was proposed by [Klein et al., 2008] in order to improve product flow control. The novelty in their 

work was to continuously feed the decision support system by Kanban cards that provide additional 

shop-floor information. The aim was to give the decision-maker a consistent view of the shop-floor. 

While in [Kong et al., 2000], an intelligent decision support system was developed to support the task 

allocation and reallocation, local queue management and production resource management in the 

metal forming process.  

The CARMMI framework outlined in the work of [Espindola et al., 2013] provides a support to 

operators during maintenance tasks through mixed reality. The presented framework allows the 

acquisition and presentation of different CAx data with the aim of predicting breakdowns that may 

occur in industrial equipment. Kwon et al., [2004] has developed a framework called ubiDSS. ubiDSS 

is a framework of multi-agent and context-aware-based proactive decision support system. The 

architecture of this framework is composed of a number of subsystems: context subsystem, dialogue 

subsystem, knowledge subsystem, model management subsystem, and a database management 

subsystem. Even though the application field of the ubiDSS system is not applied in the 

manufacturing domain, it gives very interesting lessons on the interactions between the components 

of such a framework.  

Recently, the new generation of IS embeds intelligence and communication features to provide 

assistance tailored to specific business process such as for maintenance and machine configuration 
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[Ruschel et al., 2017]. As explained by [Satyanarayanan, 2001], our Society has moved progressively 

from a Distributed System to pervasive and ambient computing [Syvanen, 2005]. The first two states 

have been observed but the last and third one is coming [Cliquet, 2010] (see Figure 1).  

Distributed systems allow remote communication and access to shared information inside wide 

networks while preserving security and data availability issues via encryption, authentication and 

backup technologies. Mobile systems propose advance communication facilities that ensure 

continuity of services independent from geographical location. To enhance their efficiency, these 

tools are based on limited resources and offer summarized interfaces to be adapted to various 

environments. Ubiquitous systems are the category of systems that take in consideration the context 

of user through some measurements and personalization of profile [Lyytinen et al., 2002]. This 

concept is introduced in 1991 by Weiser [Weiser, 1991] to describe a computer vision which provides 

assistance without anyone noticing its presence. Additional technologies like virtual and augmented 

reality [Nee et al., 2012] are now an emerging field in industry and contribute to its evolution. The 

aim is to enhance the real life sensation of the user when interacting with the decision system. 

 

Figure 1. From distributed systems to ubiquitous systems:everyday life VS factory. 

To sum up, many systems and frameworks applied to different working environments in the 

factory were found. Most of the research works are oriented towards specific applications. Except for 
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[Kong et al., 2000], fewer research works has tried to assist factory stakeholders at machine level 

where the information is less available but essential in the achievement of manufacturing tasks. 

Looking to the actual maturity on the usage of information and communication technologies, even in 

the “ordinary life”, it is assumed that the factory of the future must follow this tendency and 

demonstrate a great implication on the adoption of such technologies.  

2.3. Evolution of Decision Support Systems 

Decision Support Systems (DSS) are kind of information systems provided with a high capability 

of reasoning to provide their users with a set of appropriate information [Schönberger et al., 2011]. 

In [Shim et al., 2002], DSS are defined as “a set of computer technology solutions that can be used to 

support complex decision making and problem solving”. Even though multiple definitions of DSS can 

be found in literature, they share a common vision: DSS attempt to automate several tasks of the 

decision making process [Büyüközkan et al., 2011] in order to provide users with a set of possible 

solutions regarding his/her problem. In final, the decision is selected, accepted or modified or refused 

by the Human. 

Since their appearance, DSS has evolved in a significant way thanks to the side-by-side evolution 

made in information and communication technologies. This evolution has resulted in the appearance 

of a web-based technologies [Boreisha et al., 2008], Mobile solutions [Wen et al., 2008], and the 

ubiquitous DSS [Kwon et al., 2005].Figure 2, illustrates the relation between the portability of the DSS 

and the network type used in the implementation. As we can see, types of DSS have moved from 

individual DSS to a new category of DSS,based on the ubiquitous computing vision,in which context 

awareness [Dhuieb et al., 2016, Carneiro et al., 2012] takes an important place in order to anticipate 

the user’s needs in a particular situation and act proactively to provide appropriate assistance. 
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Figure 2. Evolution of DSS: an Illustration based on [Kwon et al., 2005]. 

Context awareness provide a clearer understanding of the way experts integrate knowledge 

during problem solving, and thus provide common grounds for decision-making and knowledge 

sharing [Anya et al., 2012]. Thanks to these capacities, a context-aware decision support system 

utilizes contextual information in the problem solving process to provide personalized service with 

minimum of explicit interaction between human and computer [Chen and Chen 2010]. It provides 

people by accurate information on their environment and assists experts making plans and 

monitoring their daily activities [Fadzillah et al., 2013], [Ngai et al., 2011]. 

2.4. Synthesis 

The main idea of ubiquitous computing based DSS is to apply the vision of Weiser [Weiser, 1991] 

with the aim of ensuring a higher level of information availability and proactivity. Embedding 

ubiquitous facilities can resolve the problem of user workload when manipulating several information 

systems and requiring real time assistance. However, even this concept is old, it is still an interesting 

scientific challenge that until now has not been sufficiently exploited by the industrial engineering 

research communities. Particularly, the usage of this kind of systems is limited because of the need of 

advanced technologies and the manipulation of large amount of data. Actually, recent developments 
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on big data collection and analysis as well as interoperability with information systems make the 

challenge reachable. This constitutes the first motivation of this research work: how a smart 

combination of recent technologies can contribute to the improvement of business processes? The 

second motivation is leaded by the application domain: industrial environment especially dedicated 

to the workers who generally are not familiar with such kind of applications and require more 

consideration of their level of expertise.  

As a synthesis of the state of the art, the ubiquitous computing paradigm came with interesting 

concepts that the industrial community and the visions of the factory of the future can benefit from. 

Table 1 compares the proposed digital factory assistant with other systems and frameworks cited in 

the second section. The comparison is based on different points of view.  

 Situation perception: indicate if the system proposes some connections to sensors, information 

systems and other facilities to real time capturing of new events in the situation. 

 User assistance: through real time notifications and warnings or offline procedures and reports 

to prevent risks of task failure or security problems. 

 Collaboration facilities: indicates if the system is able to support information sharing and 

situation awareness as well as coordination rules. 

 MMI (Man Machine Interaction): or how the system support Knowledge restitution and 

presentation, which is a very important aspect that affect the efficiency of any DSS. 

 Contextual access: indicates if the system allows users accessing to content and functionalities 

based on their current objectives and status of their activities. 

 Legacy tools interoperability: does the system use some connections to legacy tools to extract 

knowledge, perform computing or realize some offline simulations. 
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 Application domain: gives information about the genericity level of the solution depending on 

the variety of business domains. 
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Table1: Comparison between the DFA system and other DSS. 

System / 
Framework 

Description 
Situation 

perception 
Real time 
assistance 

Collaboration 
facilities 

MMI Contextual 
access 

Legacy tools 

connection 
Application domain 

CARMMI 
[Espindola 
et al., 2013] 

Intelligent system for 
breakdowns prediction 
and industrial machines 
monitoring. 

Not supported Supported Not supported 
Mixed reality 
Desktop 
interface 

Not 
supported 

Supported 

Industrial maintenance 

– Can be mapped to 

different domains 

UDKE 
[Toro et al. 
2007] 

Knowledge based 
system for industrial 
maintenance 

Considered 
but not 
implemented 

Not 
supported 

Not supported 

Mobile 
interface 
Augmented 
reality 

Supported 
Not 

supported 
Industrial maintenance 

UbiDSS 
[Kwon et al., 
2004] 

Framework of 
ubiquitous decision 
support systems 

Not supported Supported Not supported 
Mobile 
interface 

Supported Supported 

Product 

recommendation for 

customers – Can be 

mapped to different 

domains 

Simulation-
based[Klein 
et al., 2008] 

Decision support system 
for product flow control 

Supported Supported Not supported Web interface 
Not 
supported 

Supported Product flow control 

[Kong et al., 
2000] 

Intelligent decision 
support system for 
metal forming industry 

Supported Supported Not supported Not indicated 
Not 
supported 

Supported Metal forming process 

DFA 
ubiquitous decision-
making assistant system 

Supported Supported 
Considered 
but not 
implemented 

Virtual/Augmen
ted reality 
Mobile/desktop 
interface 

Supported Supported 

Manufacturing 

operations – Can be 

mapped to different 

domains 
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3. ARTUR Platform: Functional architecture and related foundations

Looking at the actual industrial problematics and considering the recommendations of the state 

of the art, this section aims to set up the key elements of the proposed decision making platform by 

representing the functional architecture and describing the main scientific foundations behind the 

proposed functions. 

3.1. Functional architecture 

Analyzing and managing requirements of heterogeneous stakeholders is a key step to guarantee 

successful software project [Violante et al., 2017]. The analysis of the current needs of the 

operational actors in a factory points out three fundamental requirements to be respected by the 

assistant system: the multi-scale knowledge structuring approach, the ubiquitous knowledge access 

and the real time assistance. The first feature is because the expertise level is different from one 

worker to another and it is needed to adapt the knowledge restitution according to the user profile. 

The second feature highlights the fact that efficient decision making assistant should take in 

consideration the problem to resolve but also the current working situation of the decider that can 

impact his actions. Finally, real time assistance because that the worker is at the operational level 

face to the machine and need to react rapidly to some events. Real time simulation is preferred for 

this topic. Other aspects related to the virtual engineering based assistance in the ARTUR project are 

beyond the scope of this paper. However, some illustrations on how virtual engineering tools can be 

linked to PLM systems through the DFA framework are explained in [Dhuieb et al., 2014]. 

The aim of the DFA system is to provide the worker at the production line by a set of useful 

information at the right moment when he//she is facing the machine. Concretely, the core 

functionalities are the followings: 
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 Providing the right formal procedures for the configuration of the machine and the selection of 

the process parameters. 

 Capitalizing and sharing the best practices as applied usually by the experts when resolving 

some operational but redundant problems. 

 Real time simulation to assist the user analyzing the effect of different machine/process 

configurations on the form of the resulted product.  

 Knowledge transformation and adaptation for optimal restitution according to the level of 

expertise of the workers and his/her context of work.  

That said, the development of these functionalities requires solid scientific foundations but 

pragmatics from an industrial point of view. The next sections describe this kernel aspect. 

3.2. Multi-scale knowledge structuring approach 

In this work, we propose an approach in order to structure the knowledge set into multiple 

scales as a conceptual foundations supporting efficient knowledge restitution. The idea of expertise 

breakdown into different levels can be found in the model of [Dreyfus, 2000] who proposes to 

organize the skills that anyone can acquire into five stages: novice, advanced beginner, competent, 

proficient and expert.  

In this work, three knowledge restitution levels are distinguished. Each one translates a 

completeness level of an activity domain in the factory. With respect to the multi-scale structuring 

hypothesis, the knowledge base can be organized in three completeness levels: 

      
 
                     . It is intended to store and to formalize the same knowledge within 

different representation. The knowledge Ki is a triplet Ki=<Pi|Pri|Ri> where Pi, Priand Ri represent 

respectively the knowledge set of the product, the process and the resources used. Therefore, a 

knowledge base that encompasses these knowledge fragments can be represented by the set KB = 
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{Ki, i € {1...n}}. This decomposition is inspired from models found in the literature mainly UEML 

[Vernadat et al., 2002] and FBS PPRE [Labrousse et al., 2004]. The integration of knowledge into the 

ubiquitous decision-making assistant system is done by formalizing expert knowledge and by 

accessing to the existing information systems (ERP, PLM, MES, etc.). Thus, the foundation of the 

multi-scale structure is to reduce the information overload by giving the beginner, intermediate and 

expert workers only the appropriate amount of knowledge on the suitable format.  

3.3. Ubiquitous knowledge access 

In fact, managing access to factory knowledge base depends not only on the expertise level but 

also on multiple factors such as the activity, the role, etc. These factors constitute the operational 

context and should be managed (captured, inferred, stored, etc.) separately from the knowledge 

base. The context-awareness is considered as a core feature of ubiquitous computing [Dhuieb et al., 

2015]. It relies on a context notion with the aim of increasing the ubiquitous system capabilities in 

order to adapt the service they provide to the situation of the user.  

Other communities refer to the context as the working situation defined in [Houssin et al., 2006] 

as “the existence of relations between users and machines, the two co-operating together to reach a 

performance in a given mission”. Situation-awareness is defined as an intermediate state of the 

decision-making process. Endsley [1995] proposed a largely accepted structuring approach used by 

situation-aware systems. The situation according to her can be divided into three complementary 

levels. The first level is the perception of the current state of situation elements. The second level 

builds a comprehensive picture by interpreting the current situation according to situation elements 

being perceived at the first level. The third level deals with the projection of future actions of the 

elements in the environment.  
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Situation-awareness and more generally the situation can be studied from many points of view 

and within different levels: 

 The perception level of the situation and how it is linked to the cognitive ability: According to 

[Belkadi et al. 2004], three representation levels of the situation might be distinguished: The 

Real situation includes all entities of the environment; The Observable situation is the sub-set 

of entities that can be considered by one actor from the real situation according to his 

perception capacities; The useful situation focus on the observed entities judged as pertinent 

by the actor in the realization of the task.  

 The link between the situation and the decision-making process: The concept of situation plays 

an important role in the decision process and the deployment of a specific competency by an 

actor for the realization of his mission [Bonjour et al., 2002]. 

 The link between the situation and the collaborative work: A  number  of  studies  about  

situation  awareness  have explored how technology  can  be  used  to  improve  it in dynamic 

and knowledge-intensive environments [Blandford and Wong, 2002] and to support 

collaborative work in globally distributed teams [Jang et al., 2002]. 

Based on the above properties, a context model is proposed as part of the global knowledge 

model.Three complementary dimensions are distinguished in this model: organizational, operational 

and user-centric (Figure 3). 

 Operational dimension is to determine, in execution time, in which processes the worker is 

involved. The process is broken down into a set of activities that can, in turn, be divided into a 

multiple number of tasks to be assigned to the right persons.  
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 Organizational dimension intended to determine to which department does the worker belong 

and what is his/her exact role in this organization? Linking expertise domain to process helps 

identifying all types of knowledge required in a particular business process, activity or task. 

 User-centric dimension is related to the user profile. It describes the user according to his/her 

competency, experience and expertise domain. Knowledge restitution is then organized 

according to his/her profile.  

Taking into account these context dimensions, shows the proposed context model used to 

handle contextual information in the DFA framework. 

 

Figure 3. Proposed context model. 

3.4. High speed simulation with PGD method 

In the era of digital manufacturing, simulation is a valuable IT instrument for supporting the 

continuously challenge of improving product quality and reducing the cost of non-quality. Offline and 

online simulations models have been used at different levels of the manufacturing system [Mourtzis 
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et al., 2015]. The application of simulation in the decision-making process for manufacturing can be 

categorized into two main categories: long-term simulation is used in the design and configuration of 

the manufacturing system [Truong et al., 2003]. Short-term simulation is used generally for 

production system control during the production [Rao et al., 2008].  

The novelty of the proposal is to dedicate high speed simulation mainly for real time to analysis 

of operational operations at work station level. Indeed, this is not common for conventional decision 

support systems, where simulation is generally dedicated to the actors of the planning and 

operational management departments. To answer the real time constraints, PGD-based (Proper 

Generalized Decomposition) method [Dumon et al., 2011] is used as a background for high speed 

simulation to predict the mechanical transformation of the product structure during the 

manufacturing operations. By means, the worker at the shop floor level can anticipate his/her 

decision by testing several combinations of process machine parameters and observing the results on 

the product simulated model before acting in a real working environment.  

The Proper Generalized Decomposition (PGD) is a recent methodology of simulation designed to 

meet both requirements [Chinesta et al., 2013]. The main steps are: 

 Identify the process variables that need to be controlled through simulation for one decision.  

 Identify all possible combinations of process variables and related variation ranges of values.  

 Establish a table of conversion that links the Process Variables and the Physical Variables, that 

is, those governing the physical behavior of the system.  

 Compute a Computational Vademecum (CV) that encloses the physical behavior of the system 

for every scenario. This part constitutes the main scientific interest of PGD. 

 Post-process the CV output data when it is of a physical nature (e.g. displacements, stresses) 

and probably of scarce interest for decision-maker who prefers practical indicators.  
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The CV encloses the behavior of the system for every combination of process (or physical) 

variables. This causes a combinatorial explosion, where the number of possible scenarios grows 

exponentially with the number of variables. PGD addresses this kind of problems efficiently because 

it is based on tensor product representations, also known as separated representations, which can be 

understood as a compressed version of the data. The CV is therefore stored in such a compressed 

format. A file format called PXDMF (based on XDMF) has been developed to handle separated 

representations [Bordeu et al., 2013]. The PGD algorithm enables the computing of the CV directly 

into compressed formats by solving the physics partially described by differential equation. 

4. ARTUR: Software architecture and graphical interfaces

4.1. Software architecture 

As shown in Figure 4, the generic conceptual architecture of the DFA is composed of three main 

layers: Human-Computer Interaction (HCI) layer, the application layer and the data layer. The human-

computer interaction layer provides different modalities to visualize and exploit information and 

assistance provided by the DFA. 

The data layer contains the knowledge base and the context base that stores all useful 

information about working situations that may occur in a production line. Some data are collected 

from other business information systems through specific Enterprise Service Bus (ESB). This 

technique guarantees better interoperability between the DFA and information systems by means of 

available service invocation in the ESB [Schmidt et al., 2005]. However, the implementation of such 

end-to-end features depends on how the existing components communicate with each other. 
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The application layer is the core elements of the DFA framework. It receives user requests from 

the HCI layer, extracts inputs from the data layer and realizes various reasoning and computations to 

provide a given decision. This layer contains five modules: 

 

Figure 4. Software architecture supporting ARTUR framework. 

 Knowledge management module: aims to monitor the knowledge base according to the multi-

scale approach and to fulfill all import/export operations on it. 

 Context management module: deals with the acquisition, inferring and storing of contextual 

information, side by side with the adaptation engine. These operations allow the DFA to 

understand the current situation of the user through a matching with similar situations. 

 Simulation management module: implements high-speed simulation techniques for the analysis 

of products’ transformation behavior. It manages resulted simulation files that can be exploited 

through a particular reader deployed on the client side. 
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4.2. Man - Machine Interactions 

Knowledge restitution is a critical issue for any decision support system and the profile of the 

user, his/her level of expertise and his/her working context should be considered to be sure that the 

delivered information is useful. A set of graphical user interfaces (GUI) and mobile applications have 

been developed as a communication layer of the DFA to support interactions with variety of actors 

depending on their experience levels. These interfaces are developed using HTML5 and JavaScript 

Bootstrap and was adapted for both personal computer and mobile operation systems for further 

facilities of use in every working situation.  

The main graphical user interface is composed of five main functionalities classified In five 

separate tabs respectively as shown in Figure 5. However, every user is supported by a set of 

functions according to his profile and his context of work. The related functionalities are displayed / 

hidden accordantly.  

 Knowledge management section helps the expert to add information about new fabrication 

processes (i.e. manufacturing sequences, certificates, material, resources) and the link to some 

formal rules and procedures to be followed when realizing these processes.  

 Simulation tab allows the administrator or authorized experts to add new simulation files and 

to connect the simulation parameters defined in the simulation model to the parameters meta-

data to be used by the operator in the mobile application.  

 Technical documents section allows the administrator (or authorized experts) to update/modify 

technical documents (like notices, procedure, component data sheet, etc.) and linked these 

documents to the related products or manufacturing according to the knowledge model. 

 Best practices section allows experts to capitalize their experience and their suggestion to 

perform the daily activities or to resolve some current problems. This kind of knowledge is 
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informal and not imposed by the company like formal procedures. However, only experimented 

actors are authorized to populate this knowledge repository and this requires strong validation 

steps before making it available for all actors.   

 User’s profile administration is used by the administrator to define user profiles and the related 

data access strategies. Three levels are distinguished: novice, intermediate and expert. 

 

Figure 5. Main GUI for knowledge management administration 

The blue interfaces are dedicated to the exploitation of stored knowledge and information. 

When the operator connects to his interface he can get directly access to the recent tasks assigned to 

him with the reference of the related part. He is also informed by new procedures and standards in 

relation with the scope of his work. A set of key words is coupled with every procedure to help the 

operator rapid understanding of its content (Figure 6).  
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Figure 6. Listing of appropriate procedures and best practices 

At any moment, the operator can access to the details of the procedures and technical data through 

a simple query with the good key words. He/she can download the related technical documents, 

adapted to his /her competency level and profile (Figure 7). 

Figure 7. Simple access to the procedure data and technical documents 

Similarly, when the operator is concerned by a new task, he can access via his mobile device to 

the detailed operations (left side of Figure 8). The data about the current operation is provided in the 

central section where the operator can inform about the status of the produced part and any 

additional remarks. He/she can access to the best practices related to this operation and notify any 

problem on his current activity. Actors concerned with similar problems are directly informed and 

can help the operator if possible.  At the right side, the history of operations gives the operator useful 
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knowledge so as he/she can avoid useless operations and take care about existing defaults resulting 

from previous operations. 

Figure 8. production monitoring interface 

5. Key function: high speed numerical simulation for real time assistance

One of the important applications of the DFA is to provide useful knowledge inferred from offline 

simulation models. This section describes how the PGD method is integrated in the DFAto perform 

high speed simulation as a key function of the DFA. An application scenario from an industrial use 

case is conducted to illustrate the efficiency of the proposed solution. 

5.1. Integration of PGD–based simulation in the DFA 

The simulation function aims to support contextual accessing to simulation numerical models for 

various workstations in the production line as shown in Figure 9. The simulation models are realized 

in offline and stored in a specific PXDMF file format to be exploited in real time through a PXDMF 

reader deployed on the client side. 
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Figure 9. Illustration of the contextual access to simulation use case. 

5.1.1. Proposed contextual workflow for simulation data access 

PGD-based simulation files depend on the simulated process itself, the product reference and 

the value of simulation parameters chosen by the user. Figure 10 describes the context-aware 

extraction process of simulation data using BPMN [OMG, 2006] formalism that is the most adapted 

standard for process modelling. The role of the context management module is to provide a 

mechanism to manage all parameters impacting the process of simulation data extraction. It serves 

as a hub between what is happening in a real working environment and the information and 

knowledge sets that fulfill the DFA user requests.  
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Figure 10. Proposed workflow for simulation data extraction (BPMN). 

The process starts when the user sends a request to simulate the manufacturing process before 

acting with the real machine. The context management module begins with the process of contextual 

information acquisition. This process includes automatic context sensing from the ERP system and 

physical sensors in addition to other contextual information that can be filled in by the user (e.g. 

working order, process parameters). The next step is to apply inferring rules to the information set in 

order to derive additional information to clarify the situation. This inferred information is then 

compared to other information already stored in the context database in order to extract the 

reference of the current situation of the user. 

In case that there is no simulation model satisfying the worker’s needs, an interactive process is 

started to support the creation of new simulation models tailored to the specific problem. As it is 

shown in Figure 11, the worker starts simulation by introducing the references of part and the 

manufacturing process (definitions are already available in the knowledge base). When starting the 
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simulation module, the system will search for existing simulation models. If no adequate simulation 

model is found, the system notifies the problem to the experts who will define the new case and the 

related simulation models. After validation of this model, it will be proposed in the knowledge base.  

 

Figure 11. Scenario of creation new simulation models (UML Activity Diagram). 

5.1.2. Simulation data model 

In coherence with the exploitation workflow proposed above, the model structuring the data 

manipulated by simulation function is illustrated in the UML class diagram of Figure 12. This model is 

implemented as part of the knowledge base dedicated to supports the simulation management 

module. The integration with the context meta-model is achieved through the class “Process”. For 

each simulation file, a Meta-document is created to link the file with other meta-data in the 

knowledge base. In addition, the “Simulation details” class is linked to all used simulation Meta-docs 

to manage the whole list of simulation parameters and properties.    
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Figure 12. PGD-based simulation data model (UML Class Diagram). 

Each process or part type is linked to a set of categories according to the desired simulation 

purposes. Part and process categories are defined by the process engineering expert following a set 

of potential properties (e.g. Medium length, high temperature, etc.). The simulation file is defined as 

a combination of one process category and a set of simulation parameters to be instantiated 

dynamically according to the real values of process parameters. These values are defined by the 

worker during his/her problem solving request.    

The association class “Mapping” contains all mapping rules linking each process parameter and 

its related simulation parameter. Every parameter can has one or many instances according to the 

problem to solve. The values of the part parameters are stored in the simulation database manually 

by the worker or automatically from the parsing of the material certificate of the related part batch.   
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5.2. Application of the PGD-based simulation 

5.2.1. Method configuration and implementation 

The scope of the proposed solution is to analyze the mechanical transformations behavior of the 

product during the forming process. The physics involved in most of Material Forming Processes are 

classic and well understood but still difficult to simulate numerically. 

To resolve such kind of problems with the PGD method, a Newtonian description of the 

mechanics of an elastic solid is considered. The equation governing the mechanical behavior can be 

written in terms of a partial differential equation that is not reproduced here for the sake of 

simplicity. Solving such a differential model implies solving the displacement field for which the 

internal forces (stresses) and external forces (loads, reactions on the supports) are in equilibrium. The 

displacement field, denoted by  , depends on many Physical Variables, denoted by        , that 

may represent boundary conditions, initial conditions, geometrical parameters, material parameters, 

among others. These Physical Variables are directly related to Process Variables through a conversion 

table. PGD computes the displacement field using the following format: 

                   

 

   

          

Where         are functions depending on each variable separately and “ ” denotes the 

tensor product.  

We refer to [Chinesta et al., 2013] for a review on the PGD algorithm to construct this kind of 

separated representation. PGD has also been successfully applied for stochastic modeling and for 

solving multidimensional models. As part of the DFA, PGD simulation models are deployed on 

handheld devices through mobile interfaces (Figure 13) [Aguado et al., 2017]. 
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Figure 13. Exploring a PGD Computational Vademecum on a smartphone (left) and on a tablet (right). 

5.2.2. Illustrative use case application 

In order to validate the utility of the proposed framework, experimentation has been realized on 

one manufacturing process from aeronautic industry. This process, stretching frames of aircraft 

fuselage component, is delicate and requires high precision on its parameters. For instance, the 

position of the frame on the machine, the types and the positions of the grippers attaching the frame 

as well as the stretching power and direction applied by the hydraulic cylinder impact the final 

deformation of the frame. Also, the process is sensitive to the materialcharacteristics of the part.  

Regarding this case study, the main difficulties concern the need of accounting for large 

displacements and extreme deformations, inelastic material behavior, material transformations (e.g. 

metallurgical phase changes) and thermomechanical interactions. Although classic methods in 

Computational Mechanics can perform these kinds of simulations, they may need several days to 

complete. Days might be shortened to hours by combining specific, optimized implementations, and 

by increasing the computational power. 
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Several simulations with various combinations of parameters are realized offline for few part 

references, including variations on the material characteristics. The results are stored as PXDMF files 

in the simulation database. When selecting the reference of the part and range of parameters to test, 

the suitable PXDMF file is extracted and sent to the reader deployed on the client machine (following 

the mobile interface shown in Figure 13). Once the PXDMF simulation file extracted, the user can 

change the values of the process parameters: the yield strength, the curvature, the stretching and 

auxiliary tools geometry. As shown in Figure 14, the user can see directly the impact of his/her 

manipulation on the form of the frame (i.e. deformation from the nominal mold).  

 

Figure 14. Simulation results as delivered to the assistant user. 

6. Conclusions and perspectives 

This paper attempts to set a clear vision about the different components and features of a 

decision-making assistant system and mainly how it can provides context-aware support for workers 

at the workstation level. The proposed system highlights the uses of ubiquitous computing 

techniques and high speed simulation as key enablers to implement original smart applications for 

various working situations in the industry of the future.  
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The contribution of this paper is described in three phases; the idea phase clarified through a 

conceptual view of the assistant, the design phase presents the DFA architecture and the usage 

phase that outlines the maturation of a solution related to contextually accessing simulation models. 

An application scenario was conducted on a real industrial case from aeronautic domain. The aim 

was to validate the principle of solution and evaluate the interest of such solution for industrial 

company. The solution is still at the prototype level because of all technical and security constraints 

linked to the implementation in a factory. Future work on interoperability and knowledge base 

population are under planning to fix these issues. 

Indeed, interaction between the human being and the machines, (more generally the 

environment) is still underestimated by developers. Designing an assistant system that must interact 

with various users and support their daily works is a tough task and the problem of knowledge 

capitalization and acceptability should be studied further. Also, the use of this framework requires 

effort from experts to add the useful knowledge. This can increase user workload and require a new 

organization. The validation process is defined to accompany the deployment of such process. The 

main constraint encountered in the ubiquitous decision-making assistant system development 

resides in capturing and understanding the current situation of the user. 

 In the future, other application case studies have to be tested in order to build a sufficiently 

reliable proof of concept that can handle the scalability of the industrial environment. Actually, the 

simulation use case has been applied on aeronautical field. The extension to other industrial areas 

requests new simulation models with adequate parameters. 

Other disciplines and research fields may take benefit from the work presented in this paper. For 

example, the ARTUR framework can be implied to build contextual recommending systems. Research 

works on context-awareness has made a good progress on other fields like medicine, transportation, 
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tourism, etc. This work gives useful vision on how these advancements can be translated into the 

industrial field. This of course requests a huge effort that opens several interesting research 

perspectives and industrial applications. 
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