Leonardo F R Ribeiro

Claire Gardent
email: claire.gardent@loria.fr

Iryna Gurevych

Enhancing AMR-to-Text Generation with Dual Graph Representations

Generating text from graph-based data, such as Abstract Meaning Representation (AMR), is a challenging task due to the inherent difficulty in how to properly encode the structure of a graph with labeled edges. To address this difficulty, we propose a novel graph-to-sequence model that encodes different but complementary perspectives of the structural information contained in the AMR graph. The model learns parallel top-down and bottom-up representations of nodes capturing contrasting views of the graph. We also investigate the use of different node message passing strategies, employing different state-of-the-art graph encoders to compute node representations based on incoming and outgoing perspectives. In our experiments, we demonstrate that the dual graph representation leads to improvements in AMR-to-text generation, achieving state-ofthe-art results on two AMR datasets 1 .

Introduction

Abstract Meaning Representation (AMR; [START_REF] Banarescu | Abstract meaning representation for sembanking[END_REF]) is a linguistically-grounded semantic formalism that represents the meaning of a sentence as a rooted directed graph, where nodes are concepts and edges are semantic relations. As AMR abstracts away from surface word strings and syntactic structure producing a language neutral representation of meaning, its usage is beneficial in many semantic related NLP tasks, including text summarization [START_REF] Liao | Abstract meaning representation for multi-document summarization[END_REF] and machine translation [START_REF] Song | Semantic neural machine translation using AMR[END_REF].

The purpose of AMR-to-text generation is to produce a text which verbalises the meaning encoded by an input AMR graph. This is a challenging task as capturing the complex structural information stored in graph-based data is not trivial, as these are non-Euclidean structures, which implies that properties such as global parametrization, vector space structure, or shift-invariance do not hold [START_REF] Michael | Geometric deep learning: Going beyond euclidean data[END_REF]. Recently, Graph Neural Networks (GNNs) have emerged as a powerful class of methods for learning effective graph latent representations [START_REF] Xu | How powerful are graph neural networks?[END_REF] and graph-to-sequence models have been applied to the task of AMR-to-text generation [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF][START_REF] Beck | Graph-to-sequence learning using gated graph neural networks[END_REF][START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF][START_REF] Guo | Densely connected graph convolutional networks for graph-to-sequence learning[END_REF].

In this paper, we propose a novel graph-tosequence approach to AMR-to-text generation, which is inspired by pre-neural generation algorithms. These approaches explored alternative (top-down, bottom-up and mixed) traversals of the input graph and showed that a hybrid traversal combining both top-down (TD) and bottom-up (BU) information was best as this permits integrating both global constraints top-down from the input and local constraints bottom-up from the semantic heads [START_REF] Stuart | Semantichead-driven generation[END_REF][START_REF] Narayan | Structuredriven lexicalist generation[END_REF].

Similarly, we present an approach where the input graph is represented by two separate structures, each representing a different view of the graph. The nodes of these two structures are encoded using separate graph encoders so that each concept and relation in the input graph is assigned both a TD and a BU representation.

Our approach markedly differs from existing graph-to-sequence models for MR-to-Text generation [START_REF] Marcheggiani | Deep graph convolutional encoders for structured data to text generation[END_REF][START_REF] Beck | Graph-to-sequence learning using gated graph neural networks[END_REF][START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF] in that these approaches aggregate all the immediate neighborhood information of a node in a single representation. By exploiting parallel and complementary vector representations of the AMR graph, our approach eases the burden on the neural model in encoding nodes (concepts) and edges (relations) in a single vector representation. It also elimi-nates the need for additional positional information [START_REF] Beck | Graph-to-sequence learning using gated graph neural networks[END_REF] which is required when the same graph is used to encode both TD and BU information, thereby making the edges undirected.

Our main contributions are the following:

• We present a novel architecture for AMR-to-text generation which explicitly encodes two separate TD and BU views of the input graph.

• We show that our approach outperforms recent AMR-to-text generation models on two datasets, including a model that leverages additional syntactic information [START_REF] Cao | Factorising AMR generation through syntax[END_REF].

• We compare the performance of three graph encoders, which have not been studied so far for AMR-to-text generation.

Related Work

Early works on AMR-to-text generation employ statistical methods (Flanigan et al., 2016b;[START_REF] Pourdamghani | Generating English from abstract meaning representations[END_REF][START_REF] Castro Ferreira | Linguistic realisation as machine translation: Comparing different MT models for AMR-to-text generation[END_REF] and apply linearization of the graph by means of a depth-first traversal.

Recent neural approaches have exhibited success by linearising the input graph and using a sequence-to-sequence architecture. [START_REF] Konstas | Neural amr: Sequence-to-sequence models for parsing and generation[END_REF] achieve promising results on this task. However, they strongly rely on named entities anonymisation. Anonymisation requires an ad hoc procedure for each new corpus. The matching procedure needs to match a rare input item correctly (e.g., "United States of America") with the corresponding part in the output text (e.g., "USA") which may be challenging and may result in incorrect or incomplete delexicalisations. In contrast, our approach omits anonymisation. Instead, we use a copy mechanism [START_REF] See | Get to the point: Summarization with pointergenerator networks[END_REF], a generic technique which is easy to integrate in the encoder-decoder framework and can be used independently of the particular domain and application. Our approach further differs from [START_REF] Konstas | Neural amr: Sequence-to-sequence models for parsing and generation[END_REF] in that we build a dual TD/BU graph representation and use graph encoders to represent nodes. [START_REF] Cao | Factorising AMR generation through syntax[END_REF] factor the generation process leveraging syntactic information to improve the performance. However, they linearize both AMR and constituency graphs, which implies that important parts of the graphs cannot well be represented (e.g., coreference).

Several graph-to-sequence models have been proposed. [START_REF] Marcheggiani | Deep graph convolutional encoders for structured data to text generation[END_REF] show that explicitly encoding the structure of the graph is beneficial with respect to sequential encoding. They evaluate their model on two tasks, WebNLG [START_REF] Gardent | The WebNLG challenge: Generating text from RDF data[END_REF] and SR11Deep [START_REF] Belz | The first surface realisation shared task: Overview and evaluation results[END_REF], but do not apply it to AMR benchmarks. [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF] and [START_REF] Beck | Graph-to-sequence learning using gated graph neural networks[END_REF] apply recurrent neural networks to directly encode AMR graphs. [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF] 2018) use Graph Convolutional Networks (GCNs) to tackle the tasks of link prediction and entity classification on knowledge graphs. [START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF] show that off-theshelf GCNs cannot achieve good performance for AMR-to-text generation. To tackle this issue, [START_REF] Guo | Densely connected graph convolutional networks for graph-to-sequence learning[END_REF] introduce dense connectivity to GNNs in order to integrate both local and global features, achieving good results on the task. Our work is related to [START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF], that use stacking of GCN and LSTM layers to improve the model capacity and employ anonymization. However, our model is substantially different: (i) we learn dual representations capturing top-down and bottom-up adjuvant views of the graph, (ii) we employ more effective graph encoders (with different neighborhood aggregations) than GCNs and (iii) we employ copy and coverage mechanisms and do not resort to entity anonymization.

Graph-to-Sequence Model

In this section, we describe (i) the representations of the graph adopted as inputs, (ii) the model architecture, including the Dual Graph Encoder and (iii) the GNNs employed as graph encoders.

Graph Preparation

Let G = (V, E, R) denote a rooted and directed AMR graph with nodes v i ∈ V and labeled edges (v i , r, v j) ∈ E, where r ∈ R is a relation type. We convert each AMR graph into an unlabeled and connected bipartite graph G t = (V t , E t), transforming each labeled edge (v i , r, v j) ∈ E into two unlabeled edges (v i , r), (r, v j) ∈ E t , with |V t | = n + m and |E t | = 2m. This process, called Levi Transformation [START_REF] Beck | Graph-to-sequence learning using gated graph neural networks[END_REF], turns original edges into nodes creating an unlabeled graph. For instance, the edge between semester and that with label :mod in Figure 1(b) is replaced by two edges and one node in 1(c): an edge between semester, and the new node :mod and another one between :mod and that. The new graph allows us to directly represent the relationships between nodes using embeddings. This enables us to encode label edge information using distinct message passing schemes employing different GNNs.

G t captures a TD view of the graph. We also create a BU view of the graph G b = (V t , E b), where each directed edge e k = (v i , v j) ∈ E t becomes e k = (v j , v i) ∈ E b , that is, we reverse the direction of original edges. An example of a sentence, its AMR graph and the two new graphs G t and G b is shown in Figure 1.

Dual Graph Encoder

We represent each node v i ∈ V t with a node embedding e i ∈ R d , generated from the node label. In order to explicitly encode structural information, our encoder starts with two graph encoders, denoted by GE t and GE b , that compute representations for nodes in G t and G b , respectively.

Each GE learns node representations based on the specific view of its particular graph, G t or G b . Since G t and G b capture distinct perspectives of the graph structure, the information flow is prop-agated throughout TD and BU directions, respectively. In particular, for each node v i , the GE receives the node embeddings of v i and its neighbors, and computes its node representation:

h t i = GE t ({e i , e j : j ∈ N t (i)}), h b i = GE b ({e i , e j : j ∈ N b (i)}),
where

N t (i) and N b (i) are the immediate incom- ing neighborhoods of v i in G t and G b , respec- tively.
Each node v i is represented by two different hidden states, h t i and h b i . Note that we learn two representations per relation and node of the original AMR graph. The hidden states h t i and h b i , and embedding e i contain different information regarding v i . We concatenate them building a final node representation:

r i = h t i h b i e i .
This approach is similar to bidirectional RNNs [START_REF] Schuster | Bidirectional recurrent neural networks[END_REF]. Bidirectional RNNs benefit from left-to-right and right-to-left propagation. They learn the hidden representations separately and concatenate them at the end. We perform a similar encoding: first we learn TD and BU representations independently, and lastly, we concatenate them.

The final representation r i is employed in a sequence input of a bidirectional LSTM. For each AMR graph, we generate a node sequence by depth-first traversal order. In particular, given a representation sequence from r 1 to r n , the hidden forward and backward states of r i are defined as: where LSTM f is a forward LSTM and LSTM b is a backward LSTM. Note that, for the backward LSTM, we feed the reversed input as the order from r n to r 1 . Lastly, we obtain the final hidden state by concatenating them as:

- → h i = LSTM f (r i , - → h i-1), ← - h i = LSTM b (r i , ← - h i-1),
h i = [- → h i ← - h i].
The resulting hidden state h i encodes the information of both preceding and following nodes.

Stacking layers was demonstrated to be effective in graph-to-sequence approaches [START_REF] Marcheggiani | Deep graph convolutional encoders for structured data to text generation[END_REF][START_REF] Koncel-Kedziorski | Text Generation from Knowledge Graphs with Graph Transformers[END_REF][START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF] and allows us to test for their contributions to the system performance more easily. We employ different GNNs for both graph encoders (Section 3.3). Figure 2 shows the proposed encoder architecture.

Graph Neural Networks

The GEs incorporate, in each node representation, structural information based on both views of the graph. We explore distinct strategies for neighborhood aggregation, adopting three GNNs: Gated Graph Neural Networks (GGNN, [START_REF] Li | Gated graph sequence neural networks[END_REF]), Graph Attention Networks (GAT, [START_REF] Veličković | Graph Attention Networks[END_REF]) and Graph Isomorphic Networks (GIN, [START_REF] Xu | How powerful are graph neural networks?[END_REF]). Each GNN employs a specific message passing scheme which allows capturing different nuances of structural information.

Gated Graph Neural Networks GGNNs employ gated recurrent units to encode node representations, reducing the recurrence to a fixed number of steps. In particular, the l-th layer of a GGNN is calculated as:

h (l) i = GRU h (l-1) i , j∈N (i) W 1 h (l-1) j ,
where N (i) is the immediate neighborhood of v i , W 1 is a parameter and GRU is a gated recurrent unit [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF]. Different from other GNNs, GGNNs use back-propagation through time (BPTT) to learn the parameters. GGNNs also do not require to constrain parameters to ensure convergence.

Graph Attention Networks GATs apply attentive mechanisms to improve the exploitation of non-trivial graph structure. They encode node representations by attending over their neighbors, following a self-attention strategy:

h (l) i = α i,i W 2 h (l-1) i + j∈N (i) α i,j W 2 h (l-1) j ,
where attention coefficients α i,j are computed as:

αi,j = softmax σ a [W2h (l-1) i W2h (l-1) j] ,
where σ is the activation function and denotes concatenation. W 2 and a are model parameters. The virtue of the attention mechanism is its ability to focus on the most important parts of the node neighborhood. In order to learn attention weights in different perspectives, GATs can employ multihead attentions.

Graph Isomorphic Networks GIN is a GNN as powerful as the Weisfeiler-Lehman (WL) graph isomorphism test [START_REF] Weisfeiler | A reduction of a graph to a canonical form and an algebra arising during this reduction[END_REF] in representing isomorphic and non-isomorphic graphs with discrete attributes. Its l-th layer is defined as:

h (l) i = h W h (l-1) i + j∈N (i) h (l-1) j
, where h W is a multi-layer perceptron (MLP). In contrast to other GNNs, which combine node feature with its aggregated neighborhood feature, GINs do not apply the combination step and simply aggregate the node along with its neighbors.

Each of these GNNs applies different approaches to learn structural features from graph data and has achieved impressive results on many graph-based tasks [START_REF] Li | Gated graph sequence neural networks[END_REF][START_REF] Veličković | Graph Attention Networks[END_REF][START_REF] Xu | How powerful are graph neural networks?[END_REF]

e t i = v • tanh(W h h i + W s s t + w c s c + b), a t = softmax(e t),
where s c is the coverage vector and v, W h , W s , w c and b are learnable parameters. The coverage vector is the accumulation of all attention distributions so far.

Copy and Coverage Mechanisms Previous works [START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF][START_REF] Cao | Factorising AMR generation through syntax[END_REF] use anonymization to handle names and rare words, alleviating the data sparsity. In contrast, we employ copy and coverage mechanisms to address out-of-vocabulary issues for rare target words and to avoid repetition [START_REF] See | Get to the point: Summarization with pointergenerator networks[END_REF].

The model is trained to optimize the negative log-likelihood:

L = - |Y | t=1 log p(y t |y 1:t-1 , X; θ),
where Y = y 1 , . . . , y |Y | is the sentence, X is the AMR graph and θ represents the model parameters.

Data

We use two AMR corpora, LDC2015E86 and LDC2017T10 2 . In these datasets, each instance 2 The datasets can be found at https://amr.isi.edu/download.html contains an AMR graph and a sentence. Table 1 shows the statistics for both datasets. Figure 3 shows the distribution of the AMR graph diameters and node degrees for both datasets. The AMR graph structures are similar for most examples. Note that 90% of AMR graphs in both datasets have the diameter less than or equal to 11 and 90% of nodes have the degree of 4 or less. Very structurally similar graphs pose difficulty for the graph encoder by making it harder to learn the differences between their similar structures. Therefore, the word embeddings used as additional input play an important role in helping the model to deal with language information. That is one of the reasons why we concatenate this information in the node representation r i .

Experiments and Discussion

Implementation Details We extract vocabularies (size of 20,000) from the training sets and initialize the node embeddings from GloVe word embeddings [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] larize the model, during training we apply dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] to the graph layers with a rate of 0.3. The graph encoder hidden vector sizes are set to 300 and hidden vector sizes for LSTMs are set to 900. The models are trained for 30 epochs with early stopping based on the development BLEU score. For our models and the baseline, we used a twolayer LSTM decoder. We use Adam optimization [START_REF] Diederick | Adam: A method for stochastic optimization[END_REF] as the optimizer with an initial learning rate of 0.001 and 20 as the batch size. Beam search with the beam size of 5 is used for decoding.

Results

We call the models G2S-GIN (isomorphic encoder), G2S-GAT (graph-attention encoder), and G2S-GGNN (gated-graph encoder), according to the graph encoder utilized. As a baseline (S2S), we train an attention-based encoderdecoder model with copy and coverage mechanisms, and use a linearized version of the graph generated by depth-first traversal order as input. We compare our models against several state-ofthe-art results reported on the two datasets [START_REF] Konstas | Neural amr: Sequence-to-sequence models for parsing and generation[END_REF][START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF][START_REF] Beck | Graph-to-sequence learning using gated graph neural networks[END_REF][START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF][START_REF] Cao | Factorising AMR generation through syntax[END_REF][START_REF] Guo | Densely connected graph convolutional networks for graph-to-sequence learning[END_REF].

Model

External BLEU We use both BLEU [START_REF] Papineni | Bleu: A method for automatic evaluation of machine translation[END_REF] and METEOR [START_REF] Denkowski | Meteor universal: Language specific translation evaluation for any target language[END_REF] as evaluation metrics 3 . In order to mitigate the effects of random seeds, we report the averages for 4 training runs of each model along with their standard deviation. Table 2 shows the comparison between the proposed models, the baseline and other neural models on the test set of the two datasets.

For both datasets, our approach substantially outperforms the baselines. In LDC2015E86, G2S-GGNN achieves a BLEU score of 24.32, 4.46% higher than [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF], who also use the copy mechanism. This indicates that our architecture can learn to generate better signals for text generation. On the same dataset, we have competitive results to [START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF]. However, we do not rely on preprocessing anonymisation not to lose semantic signals. In LDC2017T10, G2S-GGNN achieves a BLEU score of 27.87, which is 3.33 points higher than [START_REF] Damonte | Structural neural encoders for AMR-to-text generation[END_REF], a state-of-the-art model that does not employ external information. We also have competitive results to [START_REF] Guo | Densely connected graph convolutional networks for graph-to-sequence learning[END_REF], a very recent state-of-the-art model.

We also outperform [START_REF] Cao | Factorising AMR generation through syntax[END_REF] improving BLEU scores by 3.48% and 4.00%, in LDC2015E86 and LDC2017T10, respectively. In contrast to their work, we do not rely on (i) leveraging supplementary syntactic information and (ii) we do not require an anonymization preprocessing step. G2S-GIN and G2S-GAT have comparable performance on both datasets. Interestingly, G2S-GGNN has better performance among our models. This suggests that graph encoders based on gating mechanisms are very effective in text generation models. We hypothesize that the gating mechanism can better capture longdistance dependencies between nodes far apart in the graph. 3 For BLEU, we use the multi-BLEU script from the MOSES decoder suite [START_REF] Koehn | Moses: Open source toolkit for statistical machine translation[END_REF]. For ME-TEOR, we use the original meteor-1.5.jar script (https://github.com/cmu-mtlab/meteor). Additional Training Data Following previous works [START_REF] Konstas | Neural amr: Sequence-to-sequence models for parsing and generation[END_REF][START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF][START_REF] Guo | Densely connected graph convolutional networks for graph-to-sequence learning[END_REF], we also evaluate our models employing additional data from English Gigaword corpus [START_REF] Napoles | Annotated gigaword[END_REF]. We sample 200K Gigaword sentences and use JAMR4 (Flanigan et al., 2016a) to parse them. We follow the method of [START_REF] Konstas | Neural amr: Sequence-to-sequence models for parsing and generation[END_REF], which is fine-tuning the model on the LDC2015E86 training set after every epoch of pretraining on the Gigaword data. G2S-GGNN outperforms others with the same amount of Gigaword sentences (200K), achieving a 32.23 BLEU score, as shown in Table 3. The results demonstrate that pretraining on automatically generated AMR graphs enhances the performance of our model.

Model

Ablation Study

In Table 4, we report the results of an ablation study on the impact of each component of our model on the development set of LDC2017T10 dataset by removing the graph encoders. We also report the number of parameters (including embeddings) used in each model. The first thing we notice is the huge increase in metric scores (17% in BLEU) when applying the graph encoder layer, as the neural model receives signals regarding the graph structure of the input. The dual representation helps the model with a different view of the graph, increasing BLEU and METEOR scores by 1.04 and 0.68 points, respectively. The complete model has slightly more parameters than the model without graph encoders (57.6M vs 61.7M).

Impact of Graph Size, Arity and Sentence

Length The good overall performance on the datasets shows the superiority of using graph encoders and dual representations over the sequential encoder. However, we are also interested in estimating the performance of the models concerning different data properties. In order to evaluate how the models handle graph and sentence features, we

Model

Graph Diameter 0-7 ∆ 7-13 ∆ 14-20 ∆ S2S 33.2 29.7 28.8 G2S-GIN 35.2 +6.0% 31.8 +7.4% 31.5 +9.2% G2S-GAT 35.1 +5.9% 32.0 +7.8% 31.5 +9.51% G2S-GGNN 36.2 +9.0% 33.0 +11.4% 30.7 +6.7%

Sentence Length 0-20 ∆ 20-50 ∆ 50-240 ∆ S2S 34.9 29.9 25.1 G2S-GIN 36.7 +5.2% 32.2 +7.8% 26.5 +5.8% G2S-GAT 36.9 +5.7% 32.3 +7.9% 26.6 +6.1% G2S-GGNN 37.9 +8.5% 33.3 +11.2% 26.9 +6.8%

Max Node Out-degree

0-3 ∆ 4-8 ∆ 9-18 ∆ S2S
31.7 30.0 23.9 G2S-GIN 33.9 +6.9% 32.1 +6.9% 25.4 +6.2% G2S-GAT 34.3 +8.0% 32.0 +6.7% 22.5 -6.0% G2S-GGNN 35.0 +10.3% 33.1 +10.4% 22.2 -7.3% Table 5: METEOR scores and differences to the S2S, in the LDC2017T10 test set, with respect to the graph diameter, sentence length and max node out-degree.

perform an inspection based on different sizes of graph diameter, sentence length, and max node out-degree. Table 5 shows METEOR5 scores for the LDC2017T10 dataset.

The performances of all models decrease as the diameters of the graphs increase. G2S-GGNN has a 17.9% higher METEOR score in graphs with a diameter of at most 7 compared to graphs with diameters higher than 13. This is expected as encoding a bigger graph (containing more information) is harder than encoding smaller graphs. Moreover, 71% of the graphs in the training set have a diameter less than or equal to 7 and only 2% have a diameter bigger than 13 (see Figure 3). Since the models have fewer examples of bigger graphs to learn from, this also leads to worse performance when handling graphs with higher diameters. We also investigate the performance with respect to the sentence length. The models have better results when handling sentences with 20 or fewer tokens. Longer sentences pose additional challenges to the models.

G2S-GIN has a better performance in handling graphs with node out-degrees higher than 9. This indicates that GINs can be employed in tasks where the distribution of node degrees has a long tail. Surprisingly, S2S has a better performance than G2S-GGNN and G2S-GAT when handling graphs that contain high degree nodes.

Semantic Equivalence

We perform an entailment experiment using BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] fine-tuned on the MultiNLI dataset [START_REF] Williams | A broad-coverage challenge corpus for sentence understanding through inference[END_REF] as a NLI model. We are interested in exploring whether a generated sentence (hypothesis) is semantically entailed by the reference sentence (premise). In a related text generation task, [START_REF] Falke | Ranking generated summaries by correctness: An interesting but challenging application for natural language inference[END_REF] employ NLI models to rerank alternative predicted abstractive summaries. Nevertheless, uniquely verifying whether the reference (REF) entails the generated sentence (GEN) or vice-versa (GEN entails REF) is not sufficient. For example, suppose that "Today Jon walks" is the REF and "Jon walks" is the GEN. Even though REF entails GEN, GEN does not entail REF, that is, GEN is too general (missing information). Furthermore, suppose that "Jon walks" is the REF and "Today Jon walks" is the GEN, GEN entails REF but REF does not entail GEN, that is, GEN is too specific (added information). Therefore, in addition to verify whether the reference entails the generated sentence, we also verify whether the generated sentence entails the reference.

Table 6 shows the average probabilities for entailment, contradiction and neutral classes on the LDC2017T10 test set. All G2S models have higher entailment compared to S2S. G2S-GGNN has 33.5% and 5.2% better entailment performances than S2S, when REF entails GEN and GEN entails REF, respectively. G2S models also generate sentences that contradict the reference sentences less. This suggests that our models are capable of capturing better semantic information from the graph generating outputs semantically related to the reference sentences.

Human Evaluation To further assess the quality of the generated sentences, we conduct a human evaluation. We employ the Direct Assessment (DA) method [START_REF] Graham | Can machine translation systems be evaluated by the crowd alone[END_REF] via Amazon Mechanical Turk. Using the DA method inspired by [START_REF] Mille | The first multilingual surface realisation shared task (SR'18): Overview and evaluation results[END_REF], we assess two quality criteria: (i) meaning similarity: how close in meaning the generated text is to the gold sentence; and (ii) readability: how well the generated sentence reads (Is it good fluent English?). We randomly select 100 sentences generated by S2S and G2S-GGNN and randomly assign them to HITs (following Mechanical Turk terminology). Human workers rate the sentences according to meaning similarity and readability on a 0-100 rating scale. The tasks are executed separately and workers were first given brief instructions. For each sentence, we collect scores from 5 workers and average them. Models are ranked according to the mean of sentence-level scores. We apply a quality control step filtering workers who do not score some faked and known sentences properly.

Figure 4 shows the results. In both metrics, G2S-GGNN has better human scores for meaning similarity and readability, suggesting a higher (a / agree :ARG0 (a2 / and :op1 (c / country :wiki China :name (n / name :op1 China)) :op2 (c2 / country :wiki Kyrgyzstan :name (n2 / name :op1 Kyrgyzstan))) :ARG1 (t / threaten-01 :ARG0 (a3 / and :op1 (t2 / terrorism) :op2 (s / separatism) :op3 (e / extremism)) :ARG2 (a4 / and :op1 (s3 / security :mod (r / region)) :op2 (s4 / stability :mod r)) :time (s2 / still) :ARG1-of (m / major-02)) :medium (c3 / communique :mod (j / joint)))

GOLD

China and Kyrgyzstan agreed in a joint communique that terrorism, separatism and extremism still pose major threats to regional security and stability.

S2S

In the joint communique, China and Kyrgyzstan still agreed to threaten terrorism, separatism, extremism and regional stability. [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF] In a joint communique, China and Kyrgyzstan have agreed to still be a major threat to regional security, and regional stability.

G2S-GGNN

At a joint communique, China and Kyrgyzstan agreed that terrorism, separatism and extremism are still a major threat to region security and stability. quality of the generated sentences regarding S2S.

The Pearson correlations between meaning similarity and readability scores, and METEOR 6 scores are 0.50 and 0.22, respectively.

Semantic Adequacy We also evaluate the semantic adequacy of our model (how well does the generated output match the input?) by comparing the number of added and missing tokens that occur in the generated versus reference sentences (GOLD). An added token is one that appears in the generated sentence but not in the input graph. Conversely, a missing token is one that occurs in the input but not in the output. In GOLD, added tokens are mostly function words while missing tokens are typically input concepts that differ from the output lemma. For instance, in Figure 1, there and of are added tokens while person is a missing token. As shown in Table 8, G2S approaches outperform the S2S baseline. G2S-GIN is closest to GOLD with respect to both metrics suggesting that this model is better able to generate novel words to construct the sentence and captures a larger range of concepts from the input AMR graph, covering 6 METEOR score is used as it is a sentence-level metric. more information.

Manual Inspection Table 7 shows sentences generated by S2S, [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF], G2S-GAT, and the reference sentence. The example shows that our approach correctly verbalises the subject of the embedded clause "China and ... agreed that terrorism, separatism and extremism SU BJ ... pose major threats to ...", while S2S and [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF] are fooled by the fact that agree frequently takes an infinitival argument which shares its subject ("China ... SU BJ agreed to threaten / have agreed to be a major threat"). While this is a single example, it suggests that dual encoding enhances the model ability to take into account the dependencies and the graph structure information, rather than the frequency of n-grams.

Conclusion

We have studied the problem of generating text from AMR graphs. We introduced a novel architecture that explicitly encodes two parallel and adjuvant representations of the graph (top-down and bottom-up). We showed that our approach outperforms state-of-the-art results in AMR-to-text generation. We provided an extensive evaluation of our models and demonstrated that they are able to achieve the best performance. In the future, we will consider integrating deep generative graph models to express probabilistic dependencies among AMR nodes and edges.

Figure 1 :

 1 Figure 1: (a) an example sentence, (b) its original AMR graph (G) and different graph perspectives: (c) top-down (G t) and (d) bottom-up (G b).

Figure 2 :

 2 Figure 2: Dual Graph Encoder. The encoder receives the two graph views and generates structural node representations that are used by the decoder. Representations in blue, yellow and orange are e i , h t i and h b i , respectively.

Figure 3 :

 3 Figure 3: Distribution of the AMR graph diameter (left) and node degree (right) in the training set for LDC2015E86 (red) and LDC2017T10 (blue) datasets.

Figure 4 :

 4 Figure 4: Human evaluation of the sentences generated by S2S and G2S-GGNN models. Results are statistically significant with p < 0.05, using Wilcoxon ranksum test.

Table 1 :

 1). Data statistics of LDC2015E86 and LDC2017T10 datasets. The values are calculated for all splits (train, development and test sets). DAG stands for directed acyclic graph.An attention-based unidirectional LSTM decoder is used to generate sentences, attending to the hidden representations of edges and nodes. In each step t, the decoder receives the word embedding of the previous word (during training, this is the previous word of the reference sentence; at test time it is the previously generated word), and has the decoder state s t . The attention distribution a t is calculated as in[START_REF] See | Get to the point: Summarization with pointergenerator networks[END_REF]

	LDC2015E86	LDC2017T10

Table 2 :

 2 BLEU and METEOR scores on the test set of LDC2015E86 and LDC2017T10 datasets.

	Model	BLEU	METEOR
	LDC2015E86	
	Konstas et al. (2017) 22.00	-
	Song et al. (2018)	23.28	30.10
	Cao et al. (2019)	23.50	-
	Damonte et al.(2019) 24.40	23.60
	Guo et al. (2019)	25.70	-
	S2S	22.55 ± 0.17 29.90 ± 0.31
	G2S-GIN	22.93 ± 0.20 29.72 ± 0.09
	G2S-GAT	23.42 ± 0.16 29.87 ± 0.14
	G2S-GGNN	24.32 ± 0.16 30.53 ± 0.30
	LDC2017T10	
	Back et al. (2018)	23.30	-
	Song et al. (2018)	24.86	31.56
	Damonte et al.(2019) 24.54	24.07
	Cao et al. (2019)	26.80	-
	Guo et al. (2019)	27.60	-
	S2S	22.73 ± 0.18 30.15 ± 0.14
	G2S-GIN	26.90 ± 0.19 32.62 ± 0.04
	G2S-GAT	26.72 ± 0.20 32.52 ± 0.02
	G2S-GGNN	27.87 ± 0.15 33.21 ± 0.15

on Common Crawl. Hyperparameters are tuned on the development set of the LDC2015E86 dataset. For GIN, GAT, and GGNN graph encoders, we set the number of layers to 2, 5 and 5, respectively. To regu-

Table 3 :

 3 Results on LDC2015E86 test set when models are trained with additional Gigaword data.

	Konstas et al. (2017)	200K	27.40
	Song et al. (2018)	200K	28.20
	Guo et al. (2019)	200K	31.60
	G2S-GGNN	200K	32.23

 GE b + biLSTM 27.37 33.30 61.7M

		BLEU METEOR Size
	biLSTM	22.50 30.42 57.6M
	GE t + biLSTM	26.33 32.62 59.6M
	GE b + biLSTM	26.12 32.49 59.6M
	GE t +	

Table 4 :

 4 Results of the ablation study on the LDC2017T10 development set.

Table 7 :

 7 An example of an AMR graph and generated sentences. GOLD refers to the reference sentence.

	Model	ADDED	MISS
	S2S	47.34	37.14
	G2S-GIN	48.67	33.64
	G2S-GAT	48.24	33.73
	G2S-GGNN	48.66	34.06
	GOLD	50.77	28.35

Table 8 :

 8 Fraction of elements in the output that are not present in the input (ADDED) and the fraction of elements in the input graph that are missing in the generated sentence (MISS), for the test set of LDC2017T10. The token lemmas are used in the comparison. GOLD refers to the reference sentences.

https://github.com/jflanigan/jamr

METEOR score is used as it is a sentence-level metric.

Acknowledgments

This work has been supported by the German Research Foundation as part of the Research Training Group Adaptive Preparation of Information from Heterogeneous Sources (AIPHES) under grant No. GRK 1994/1.

//github.com/UKPLab/emnlp2019-dualgraph

A Generated Sentences

Table 9 shows three examples with sentences generated by S2S, [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF], G2S-GGNN, and the reference sentence (GOLD).

B Human Evaluation Setup

• For each quality evaluation task (meaning similarity and readability), we independently sampled 100 generated sentences for each model.

• We created separate HITs for meaning similarity and readability evaluations. Each HIT contains 10 sentences.

• We paid $0.15 per HIT, employing five workers on each. For qualification, workers were required to have over 1000 approved HITs.

• We applied a quality control step. We removed workers who do not achieve a minimum threshold in sentences with known scores.

GOLD

I don't want to be miserable anymore and the longer he is around the more miserable I will be.

S2S

If he was in longer longer, I don't want to miserable and more miserable. [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF] I don't want to be miserable anymore, and when he is around longer, I'm a miserable miserable.

G2S-GGNN

I don't want to be miserable anymore, and would be more miserable if he was around longer.

GOLD

Colombia is the source of much of the cocaine and heroin sold in the United States.

S2S

Colombia is a source of cocaine, much of cocaine and heroin sales in the United States. [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF] Colombia is a source of much of much of cocaine and heroin in the United States.

G2S-GGNN

Colombia is a source of much cocaine and heroin and heroin sold in the United States.

GOLD

Discussions between Lula da Silva and Thabo Mbeki would also address new threats to international security such as terrorism, drugs, illegal weapons trafficking and aids.

S2S

Thabo da Silva has also addressed Thabo Mbeki to discuss new threats such as terrorism, drugs, illegal weapons trafficking and aids in international security. [START_REF] Song | A graph-to-sequence model for AMR-to-text generation[END_REF] Lula da Silva's discussion with Thabo also addressed a new threat against Thabo Mbeki and aids, drugs, illegal weapons and illegal weapons of weapon.

G2S-GGNN

Lula da Silva's discussion with Thabo da Silva also addressed new threat such as terrorism, drugs, illegal weapons trafficking and aids.