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The flourishing development of additive manufacturing (AM) technologies calls for
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in the AM value chain. The purpose of this paper is to propose a principled knowledge-
based model for AM in the form of a computational ontology. As corpus of formally
represented knowledge, the ontology constitutes the backbone structure to organize AM
data and automatically reason over experts’ knowledge for data validation, ultimately
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1 Introduction

The development and industrial adoption of additive manufacturing (AM) technologies
is bringing about a situation where the entire product development chain is digitalized,
from the initial design of products to the simulation of processes for the optimization of
fabrication, or the maintenance of products via online service systems [31, 35]. Additionally,
since AM machines are fully equipped with sensors, a plethora of data about AM processes
is nowadays available to companies, which need methodologies and technologies to manage
the data and capitalize the experience thereby stored [4, 52].1

One of the challenges brought about by the organization of the AM value chain is the
development of computer systems able to aid decision making but also to support data man-
agement in a homogeneous and consistent way [5]. Computer Decision Aid systems play an
important role for AM to assist experts in selecting fabrication parameters (among other
relevant decisions), whose dependencies and inter-relations need to be carefully evaluated
and analyzed to gain full control over fabrication [12, 18]. Concerning data organization,

1Under the pressure of AM, the discipline of AM Informatics is born as “the science of managing AM
data across its lifecycle with full maintenance of the complex relationship between the part geometry,
material, and individual processes used to create the final part” [35].
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different working groups rely on their own models to store and manage data [35]. A conse-
quence is that when multiple communities need to share and possibly integrate data, there
is no guarantee for the data to be manipulated in an interoperable manner [6, 37].

A way to both support decision making and tackle data management issues is by means
of knowledge-based systems, where experts’ knowledge is encoded in formal languages
whose semantic is processable by computer systems. Ontologies [22] have proven useful to
both exchange data across applications and automatically reason over knowledge and data
for knowledge discovery, constraints validation or decision making (see, e.g., [15, 57]).

The purpose of this research work is to propose an ontology for AM that is application
and vendor independent to be reused across computer systems to support knowledge and
data management in an interoperable manner. Also, since the model formally represents
experts’ knowledge in a computer amenable way, it can constitute the knowledge base for
decision making algorithms to be exploited in AM applications.

The remaining of the paper is structured as follows. The next section introduces the
context of our research and addresses the need for an ontology-based modeling approach.
The state of art relevant to our work is presented in Section 3. The ontology is presented
throughout Section 4, whereas Section 5 exemplifies the use of the ontology in a prototype
Web application. Section 6 concludes the paper by addressing some challenges for future
research work. Finally, the Appendix shows some queries and reasoning expressed over the
knowledge base.

2 Research context

From both the academic literature [21, 54, 59] and real-world industrial practices,2 it
emerges that the data manipulated in AM tasks is highly heterogeneous in terms of both
their originating sources and intended meaning. Figure 1 provides an overall view on the
entities involved in the AM value chain. The idea is that an AM machine, which lies
at the centre of the figure for its importance, requires and produces a plethora of data,
which need to be accessed by different parties and computer applications. In order to
make it possible, a knowledge base shared by all applications in the loop is necessary.
Since data have to be managed in an integrated way, knowledge models able to deal with
the representation of entities like processes, products, materials, and machines, including
the relations among them, are needed [4, 32, 56]. These models have to be (i) general
enough to encompass multiple entities and points of view, (ii) easily extendable according
to application requirements, and (iii) vendors-independent to be easily reused and shared.
Differently, companies manage data through proprietary legacy systems, which are devel-
oped to match very specific requirements [35]. It is not surprising that when multiple
stakeholders need to interact by mutually exchanging data, the intended meaning of the
data is often lost [37, 38]. Additionally, models for AM need to take into account the

2The reader can refer to [16, 28, 35] for an overview of industrial experiences in AM.
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representation of (process, product, machine, etc.) parameters to explicitly analyze and
specify their inter-relations and dependencies, as well as to aid experts during decision
making procedures [4, 59].

Figure 1: Broad view on the entities involved in the AM value chain

To deal with knowledge representation, data management, and computer aided deci-
sion making, we propose the development of computer applications based on knowledge
engineering modeling techniques. In particular, the proposal explored in the paper is the
development of a knowledge base as reference model to manage AM data and knowledge in
a homogeneous and consistent way. Figure 2 exemplifies our approach. By looking at the
figure, the knowledge base is the ground element to guarantee the seamless organization of
data in a common repository, but also to aid decision making on, e.g., the selection of the
parameters that are better suited to fabricate products.

As mentioned in the Introduction, the proposed knowledge base takes the form of a
(populated) ontology, i.e., a vocabulary of terms which are formally characterized to be
accessible by both computer systems and human agents [22]. When multiple systems rely
on the same ontology, the data they handle is semantically described in the same way.
Also, since ontologies encode experts’ knowledge in formal or even computational logics,
they can be used to automatically reason over knowledge and data.

Ontologies are broadly used in the engineering domain, and international activities led
by both academia and industry currently aim at creating libraries of reference ontologies
for reuse.3 However, because of the novelty of approaches dealing with the organization
of the AM value chain, the literature on ontologies for AM is poor in comparison with
domains like machining or assembly (see, e.g.,[29, 37, 51]). The next section provides a

3The reader can refer to the Industrial Ontology Foundry (IOF) at: https://www.

industrialontologies.org, last accessed March 2019.
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Figure 2: Knowledge-based approach

review of the state of art relevant to our purposes; by identifying the limits of current
works, we introduce the ontology in Section 4.

3 Ontologies for additive manufacturing

Researchers at the U.S. NIST have pioneered the use of ontologies for AM applications.
In [42, 55] the authors propose an ontology primarily targeted to the data management of
powder bed fusion processes. The ontology builds on classes to represent materials, prod-
ucts’ components, process parameters, and processes’ parts. Unfortunately, the ontology
blurs basic ontological modeling principles like the distinction between subsumption and
parthood relations, or between contextual and non-contextual knowledge. For instance, the
class for parameters subsumes lasers and sensors. It should be clear that the latter count
as parameters only within specific application contexts; e.g., a laser is not a parameter
for its manufacturer. Modeling pitfalls concerning the erroneous use of subsumption and
parthood occur in [13, 32], too, preventing the reuse of the ontologies.

Eddy and colleagues [14] propose an ontology targeted to AM process planning. The
ontology covers the ASTM classification of AM processes (cf. [18]), as well as various classes
for processes’ participants. The ontology has been recently re-engineered [25] according
to the upper-level ontology called Basic Formal Ontology (BFO) [2] and BFO-compliant
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ontologies like the Relation Ontology4 and the Information Artifact Ontology (IAO).5 It
goes in the same direction the work presented in [1], where an ontology for AM based on
the BFO, the IAO, and the Common Core Ontology (CCO)6, among others, is introduced.
The comparison and possibly interoperability with the ontology in [25] is however left by
the authors to future work.

Although the better quality of the ontologies in [1, 14, 25] in comparison with the
ontologies previously discussed in this section (e.g., [1, 14, 25] properly distinguish between
different relation types), we refrain from reusing them because of the ambiguous nature of
some modeling elements imported from BFO-compliant ontologies. In particular, the class
InformationContentEntity, which lays at the heart of the IAO, has instances things
like design specifications or process plans, which are meant to be about some entities in
reality [11]. This is not necessarily true in domains like product design or manufacturing;
e.g., in a common planning scenario, at the time in which a process plan is created, there
is not the corresponding process, which may never occur if the plan is never realized.7

Finally, Qi and colleagues [40] present a preliminary study based on category theory
to model the inter-relations between AM parameters, e.g., between layer thickness and
particle size distribution. However, because of the adopted formalism, it remains unclear
how the ontology can be exploited for application purposes, e.g., to manage or validate
stakeholders’ data against formally encoded knowledge.

Table 1 provides a summarizing comparison of the state of art in order to better frame
the scope of our research. The columns Product, Process, Resource, and Parameters are
used to assess whether the ontologies cover modeling elements about those entities. As it
can be seen from the table, the ASTM classification of AM processes is covered only by
some ontologies. Also, the representation of parameters greatly varies across the papers
depending on application requirements. The Reused ontologies and Modeling language
columns are self-explicatory; Semantic Web languages like the Web Ontology Language
(OWL) [19] and SWRL [27] are mostly used.8

The last row of the table introduces the work presented in the following sections. Sim-
ilarly to (some of the) existing works, the ontology covers the representation of products,
processes, and resources. Also, to support a wide modeling of parameters, we rely on
the scientific literature on AM, the expertise of academics and industrial stakeholders, as
well as AM machines, products, and software vendors’ catalogues. From an ontology engi-
neering perspective, on the one hand, differently from [14, 32, 40, 42, 55], the ontology is
founded on rigorous modeling principles like the ones discussed in [23, 24]. On the other

4http://www.obofoundry.org/ontology/ro.html, last accessed March 2019.
5http://www.obofoundry.org/ontology/iao.html, last accessed March 2019.
6https://www.cubrc.org/index.php/data-science-and-information-fusion/ontology, last ac-

cessed March 2019.
7Similar concerns about the IAO have been raised at least in [46, 48].
8Since most of the OWL ontologies presented in this section are not available for review or reuse, the

table is mainly based on the materials presented in the papers.
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Paper Product Process Resource Parameters Reused
ontologies

Modeling
language

[1] Yes Yes
(ASTM)

Yes Yes BFO, IAO,
CCO

OWL

[13] Yes Yes (no
ASTM)

Yes Yes None OWL,
SWRL

[14] Yes Yes
(ASTM)

Yes Yes MSDL [43] OWL,
SWRL

[25] Yes Yes (no
ASTM)

Yes Yes BFO,
RO, IAO,
FBO [17],
[14]

OWL,
SWRL

[32] Yes Yes (no
ASTM)

Yes Yes None IDEF0,
UML

[40] No No Yes Yes None Category
theory

[42, 55] Yes Yes (no
ASTM)

Yes Yes None OWL

Our work Yes Yes
(ASTM)

Yes Yes DOLCE OWL,
SWRL

Table 1: Comparison of ontologies for additive manufacturing
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hand, the ontology trades-off generality with domain-specificity in such a way to cover a
broad range of concepts to deal with the heterogeneity of AM knowledge and data, as
well as to be easily extended to specific application scenarios. For this purpose, differently
from [1, 25], the ontology is based on the Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) [9, 34] as core methodology for knowledge organization, classifica-
tion, and conceptual analysis. We rely on DOLCE, first, because it covers (high-level)
modeling elements which are needed for knowledge representation in manufacturing, e.g.,
the distinction between objects, processes, and qualities (see Section 4), but also relations
like parthood or participation that are necessary to model the structure of complex items
like assemblies and the links between objects and processes, respectively. Second, because
DOLCE has been already used for modeling engineering design and manufacturing knowl-
edge (e.g., [7, 8, 50]). Third, because DOLCE is one of the upper-level ontologies guiding
the development of a knowledge-based architecture for the Industrial Ontology Foundry
(IOF) (cf. Section 2). Therefore, by relying on DOLCE, we support and facilitate the
comparison and interoperability with IOF modeling efforts. Since DOLCE is formalized
in first-order (modal) logic, we use it as reference framework, whereas the OWL ontol-
ogy presented in Section 4 simplifies and adapts it to the expressivity of Semantic Web
languages.

4 The proposed ontology for additive manufacturing

For limits of space the following sections introduce only some modeling elements of the
ontology; the reader can refer to the ontology file for an insightful overview of the ontology’s
structure.9 Section 4.1 presents the upper-level branch of the ontology, whereas the AM
branch is introduced in Section 4.2.

The ontology is developed in OWL by means of Protégé10. For the sake of readability,
we use the syntax of Description Logics [3] throughout the paper. The languages SWRL
and SPARQL are used for expressing rules and queries, respectively.11

4.1 The upper-level branch of the ontology

One of the core purposes of upper-level ontologies is to facilitate the grouping of classes
sharing common high-level characteristics, e.g., entities that are primarily extended in space
like machines, materials, or manufacturing tools, and entities that unfold through time such
as manufacturing or maintenance processes. Therefore, by using upper-level classes and
relations one avoids the duplication of axioms across a domain-specific ontology. Also,

9The ontology is available at [link to be added after review is finalized].
10https://protege.stanford.edu/, last accessed February 2019.
11We prefix axioms with Ax, definitions with Def , formulas for examples with f , rules with R, and

queries with Q. Also, we omit question marks from SWRL variables and PREFIX statements from SPARQL
queries.
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when multiple application systems are aligned to the same upper-level, they have a higher
chance of interoperating for the fact of sharing the same core elements [30].

The most general classes of our ontology, which are all disjoint from each other, are
shown in Figure 3.

Figure 3: Upper-level taxonomy

Following DOLCE, objects12 are entities that can change through time while retaining
their identities, e.g., a manufacturing tool which remains the same entity (indeed, it keeps
the same product ID) although the changes it undergoes due to wear. Examples of objects
are AM machines and tools, but also entire factories, simple and assembled products,
persons, design specifications, and manufacturing plans.

In order to organize the spectrum of entities classified by Object, this class is special-
ized in PhysicalObject and Description (see Figure 3). The first class models objects
having a spatial location, e.g., persons, tools, or products. Physical objects are particu-
larly relevant for manufacturing modeling; hence, PhysicalObject is further specialized
in various classes (cf. Section 4.2). The second class groups entities like plans and design
specifications from the perspective of their ‘content’. For example, when one creates a CAD
model saved in a STL file and duplicates the file, the result is two copies of exactly the same
model. It is this latter entity that we call description (cf. [36] for a similar approach).13

Process is the most general class for entities that unfold through time.14 Following
DOLCE, objects can take part in processes in various ways; participation is the most
general link holding between objects and processes. We will see in the next section how
both Process and participation are extended.

12We use ‘object’ to replace DOLCE ‘endurant’ in order to use a terminology closer to manufacturing.
13In order to distinguish a description from its (possibly multiple) supports (e.g., digital files), Phys-

icalObject covers the class DescriptionSupport. According to the ontology engineering literature
(e.g., [53]) digital files are physical objects since they are stored in the physical memory cells of hardwares,
hence they have spatial locations. The ontology we present can be consistently extended to model the
distinction between digital and non-digital physical objects, if needed by application requirements.

14DOLCE uses the term ‘perdurant’ whereas we use ‘process’ because this is a more common term in
manufacturing [50].
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The class Material15 is the most general classifier for amounts of matter, e.g., the
materials used to fabricate products by AM processes. With this class one can easily model
the distinction between material and immaterial objects. Example of the latter are hole or
pocket features [45].

The use of the class NonQuantitativeValueSpace has to be contextualized within
a global approach to model what DOLCE calls qualities, i.e., the characteristics of ob-
jects, processes, or materials, e.g., weight, height, diameter, speed, material state, etc. In
ontology engineering, various approaches have been proposed for representing qualities,
e.g., [24, 33, 41]. For our purposes, we trade-off conceptual expressivity with applica-
tion concerns; hence, in order to distinguish between qualities and their values, to make
sense that qualities’ values can be provided according to (different) measurement units,
but also to facilitate the creation of data models, we model qualities via relationships
rather than classes. In particular, by taking benefit of the OWL distinction between data
properties and object properties, we distinguish between quantitative and non-quantitative
quality-relations, namely, (i) relations linking instances of Object, Process, Material,
or Type (see below) to numerical values (e.g., being 30kg heavy or being 3mm height), and
(ii) relations linking instances of these classes to non-numerical values (e.g., being light,
being flake-shaped, being small, etc.). The class NonQuantitativeValueSpace is used
to collect the latter values. E.g., the data property hasThicknessInMillimetre can
be used to model the numerical value of a product’s layer thickness, whereas the object
property hasShapeValue can be used to model, e.g., the flake shape of metal powders.16

Finally, the class Type is used when quantification over properties is needed within the
expressivity of languages based on first-order logic like OWL [9, 47].17 For manufacturing
knowledge representation, this approach is common, e.g., for process planning, when one
needs to model the type of machine that is required to be used without however specifying
the individual machine that will be possibly used [44].18 Similarly, in the context of design,
reference to types is necessary to talk about the product types under design, whose physical
realizations do not necessary exist at the designing time [47]. In the ontology, the relation
isOftype binds an instance of Material, Object, or Process to a type; e.g., one can
say that the material constituting a certain product is of type NickelAlloy718 (cf. next
section).

Table 2 reports the relations used in the upper-level branch of the ontology.

15In DOLCE this class is called ‘amount of matter’.
16Quantitative and non-quantitative values can be easily related. E.g., one may formally establish that

layers qualify as small when their thickness is less than 0.2mm.
17There exists various theories of types in ontology engineering (e.g., [26]). Types with a cognitive

dimension can be represented in DOLCE (Core) through the Concept class [9].
18In the context of process modeling, the reader can refer to the distinction between Activity (type)

and ActivityOccurrence in the Process Specification Language (ISO 18629) [20].
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Relation Domain Range Example

after (inverse,
before)

Process Process Process p1 occurs
after process p2

encodes
(encodedIn)

PhysicalObject Description Description sup-
port d encodes
CAD model c

hasNon Quanti-
tativeValue

Object, Mate-
rial, Process

NonQuantitative-
ValueSpace

Material m has
non-quantitative
value solid

madeOf PhysicalObject Material Physical object
pob is made of
material m

participatesIn
(hasParticipant)

Object, Mate-
rial, Type

Process Object o partic-
ipates in process
p1

partOf
(hasPart)

Object, Ma-
terial, Process,
Type,Qualitative-
ValueSpace

Object, Ma-
terial, Process,
Type, NonQuanti-
tativeValueSpace

Object o1 has
parts objects o2
and o2

isOftype Object, Mate-
rial, Process

Type Material m is of
type NickelAl-
loy718

Table 2: Upper-level relations
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4.2 The additive manufacturing branch of the ontology

This section shows the extension of the upper-level branch to additive manufacturing.
The ontology includes broad classes and relations, which can be easily specialized to meet
specific modeling scenarios and requirements.

Machines, products, and features. The class PhysicalObject is extended in two
main classes, namely, Person and PhysicalArtefact. The first one is useful to model
human agents, e.g., taking part in manufacturing processes, whereas the second one is the
most general classifier for physical objects that are created to satisfy market requirements.
The two classes are therefore disjoint, since they cannot have common instances.

Person is specialized to cover roles that human agents may play in engineering con-
texts. Examples are MachineOperator and MfgEngineer,19 among others.

PhysicalArtefact covers various classes, among which MfgDevice, Product, and
Feature are particularly interesting from a manufacturing modeling stance. MfgDevice
is a general classifier to better organize subclasses of PhysicalArtefact, e.g., to explicitly
state disjointness axioms with other classes. Its instances are made of material and may be
adopted in manufacturing processes; examples are machines and their components (e.g.,
sensors, tools, engines, energy sources, etc.). Product – as the label suggests – models
physical goods that are fabricated to bring economical value to manufacturing companies.
Feature refers to things like holes, steps, bumps or protrusions, among others [45]. This
class is disjoint from both MfgDevice and Product.

MfgDevice is specialized in various classes, the most important one being MfgMa-
chine for manufacturing machines. AmMachine specializes the latter class for the ex-
plicit modeling of additive manufacturing machines, see (Ax1) and (Ax2). The relationship
mechanismOf used in (Ax1)–(Ax2) is taken from previous work based on both DOLCE
and IDEF [44]. It specializes the relationship of participation (cf. Table 2) and grasps the
link between manufacturing processes and their ‘active’ participants.20 By axioms (Ax1)–
(Ax2), machines do not necessarily participate in manufacturing processes. The reason is
that an individual machine may be never employed in any manufacturing process.

Ax1 MfgMachine vMfgDevice u ∀mechanismOf.MfgProcess

Ax2 AmMachine vMfgMachine u ∀mechanismOf.AmProcess

Classes like EnergySource (e.g., lasers), BuildPlatform or BuildChamber are
included in the taxonomy of PhysicalArtefact and are useful to model (some of) the
components making up whole AM machines.21

19We use the acronyms Mfg and Am to label some classes, the former standing for manufacturing, the
latter for additive manufacturing. Also, the modeling of roles is based on [23, 24].

20The representation of manufacturing processes is discussed at the end of the section.
21Our purpose is not to dig into the representation of AM machines. The reason for having classes like

EnergySource or BuildPlatform is to show how they can be accommodated within the ontology.
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In order to express the link between an assembled physical artefact and its components,
the hasComponent relation is introduced. It specializes hasPart and holds only between
physical artefacts. The class MfgMachineComponent is introduced in (Def1).

Def1 MfgMachineComponent ≡MfgDevice u ∃componentOf.MfgMachine

Classes like BuildChamber or BuildPlatform are not subclasses of MfgMachine-
Component, since it is not necessarily the case that their instances are components of
machines. Consider, e.g., an instance of BuildPlatform, call it bp, which at a time t is not
related to any machine and cannot be therefore classified as machine component. However,
when bp relates at time t′ different from t to an individual machine via hasComponent, it
is automatically classified as machine component; cf. the (simplified) example in formulas
(f1)–(f4), where the latter formula is the result of the reasoning.

f1 BuildPlatform(bp)

f2 MfgMachine(mch)

f3 hasComponent(mch, bp)

f4 MfgMachineComponent(bp)

Product is extended in AmProduct to explicitly cover products resulting from AM
processes (Ax3). In axiom (Ax3), the relationship outputOf, based on DOLCE and
IDEF [44], specializes participation to grasp the outcomes of manufacturing processes.

Ax3 AmProduct v Product u ∃outputOf.AmProcess

Following AM experts’ knowledge [18], it is relevant to characterize the distinction
between products and AM products, since only the latter are fabricated by the addition of
multiple layers of material. An AM product is therefore understood as the (ordered) sum
of layers fabricated during an AM process. In the ontology this is (partially) grasped by
(Ax4), where hasLayer captures the link between AM products and layers.

Ax4 AmProduct v ∃hasLayer.AmLayer

Note that, first, layers are physical artefacts resulting from AM processes; they are part
of AM products but are not products on their own. Hence, AMProduct and AMLayer
are disjoint classes. Second, layers are not components of AM products, hence the relation
hasComponent cannot be used to link a layer to a product.

As mentioned at the beginning of the section, the representation of physical artefacts
includes a taxonomy of feature classes, which are of key relevance for knowledge repre-
sentation and data management in AM [49, 58]. Recall that there is no exhaustive list of
features [45], hence the ontology covers only some common feature classes, which can be
extended to meet specific application requirements.
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The relationship featureOf is used to relate instances of Feature to instances of
either Product or AMLayer. Also, (R1) establishes that when a feature is made of
material and is related via featureOf to a product, then it is (proper) part of the product.
For example, a rib is part of the product to which it is related. Clearly, this does not imply
that features are products’ components, which is formally excluded in the ontology.

R1 featureOf(x, y) ∧madeOf(x, z)→ madeOf(y, z) ∧ partOf(x, y)

Figure 4 shows a partial view on the taxonomy of PhysicalArtefact. The reader
can refer to the OWL file for a detailed view on the ontology.

Figure 4: Taxonomy of PhysicalArtefact (partial view)

Manufacturing types. The Type class is extended to cover various classes, including
MaterialType, MachineType, and ProcessType (see below). With respect to what
said in the previous section, the reader should pay attention in distinguishing types from
the spatio-temporal individuals that possibly satisfy them, e.g., Material vs Material-
Type: instances of the former are the specific amounts of matter that constitute individual
objects, whereas instances of the latter are used to model the types they exemplify (e.g.,
maraging steel 18 Ni 300, protogen 18420).

As previously said, modeling types in manufacturing ontologies is useful, especially in
design or planning contexts, when experts need to refer to certain entities without refer-
ence to their physical counterparts, e.g., because the latter do not exist at the designing (or
planning) time. E.g., machine types are the sorts of entities described in machines vendors’
catalogues. Indeed, when one reads that a machine is compatible with certain materials,
it is clear that reference is not done to specific physical machines (or materials) but to
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non-physical entities that are only possibly realized in physical machines. In the proposed
ontology this non-physical entity corresponds to a machine type defined by multiple prop-
erties such as building volume, building capabilities, etc. (cf. [10] for a similar approach).
For our purposes, types are particularly useful to model properties related to the com-
pliance of machine types with material types, a restriction that affects the participation
of both (physical) machines and materials in individual processes. Rule (R2) guarantees,
indeed, that when a material is the input of a process, which uses a certain machine as
mechanism, the machine type exemplified by the machine has to be compatible with the
material type exemplified by the material (inputOf is a further extension of participation
based on DOLCE and IDEF [44]).22

R2 Machine(x) ∧ isOftype(x, y) ∧Process(z) ∧Material(v) ∧ isOfType(v, w) ∧
mechanismOf(x, z) ∧ inputOf(v, z)→ compatibleWithMaterialType(y, w)

For example, consider the AM machine type called FormUpType, which – according
to its vendor’s catalogue – is compatible only with the metal types specified by (f5).

f5 FormUpType vMachineType u
∀compatibleWithMaterialType.(AluminiumAlloyAlSi10Mg t

TitaniumAlloyTi6A4V tMaragingSteel18Ni300Type t
NickelAlloy625Type tNickelAlloy718Type t StainlessSteel316LType)

Assume that an individual physical machine of type FormUp is used as mechanism in
a process having input a material of polymer type. Stating this fact in the ontology raises
an inconsistency because of (R2) and (f5). The next section shows how these sorts of con-
straints can be useful to validate additive manufacturing data against experts’ knowledge.

AM processes. The general class for the representation of processes (Process) is ex-
tended in MfgProcess and AmProcess to cover manufacturing and AM processes, re-
spectively; a similar distinction is done at the type level. Coherently with the overall
approach to represent types, the class AmProcessType is specialized according to the
ASTM classification (see [18]) into seven main subclasses, namely, BinderJettingPro-
cessType, DirectedEnergyDepositionProcessType, MaterialExtrusionProcess-
Type, MaterialJettingProcessType, SheetLaminationProcessType, VATPho-
topolymerisationProcessType, and PowderBedFusionProcessType. For the sake
of the example, the latter class is specialized into DirectMetalLaserSinteringType,
ElectronBeamMeltingType, SelectiveHeatSinteringType, SelectiveLaserMelt-
ingType, and SelectiveLaserSinteringType.23

22Differently from mechanismOf, inputOf expresses a form of ‘passive’ participation in a process, e.g.,
a material ‘undergoing’ (transformed by) a manufacturing process.

23We already introduced various relationships to link objects or materials to processes.
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Finally, the ontology covers various parameters, mostly modeled as OWL data prop-
erties, to represent, e.g., the maximum power value of lasers, the velocity of scanning
processes, hatch distances, the building volume capabilities of machines, and so on. The
reader can refer to the OWL file for an insightful overview of these relations.

Figure 5 shows some of the classes introduced across Section 4.2.

Figure 5: The AM ontology branch (partial view)

5 A prototypical ontology-based Web application for addi-
tive manufacturing

This section shows the use of the ontology in a Web application, which is developed in
tandem with industrial partners involved in a research project as prototype module within
a larger information system. The application is currently used in experimental settings to
populate the ontology and guarantee that it matches with both experts’ knowledge and
stakeholders’ requirements.

The main purposes of the application are (i) to support the specification of what the
domain experts involved in the project call templates; (ii) to (re-)use the templates for the
definition of cases, (iii) to validate both templates and cases, and (iv) to facilitate their
reuse in new AM projects. Figure 6 provides a schematic view of the application, which is
formed by a user interface mainly used to take users’ inputs, and a server-side module that,
among other things, allows to manipulate data inputs, validate them against the formal
constraints of the knowledge base, store and retrieve them for reuse.

A template is a collection of AM data; for instance, a product template is used to
specify the nominal characteristics of a desired product like its dimensions, material type or
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Figure 6: Schema of the Web application

features; or, a machine template is used to introduce in the knowledge base a machine type
along with its characterizing properties, e.g., building volume capabilities, compatibility
with material types, energy source’s power, the capability to produce features of certain
dimensions, etc. Along with product and machine templates, the application covers process,
material, and feature templates. A case is a collection of templates which are needed for
the additive manufacturing of a product. It should be clear that the core motivation
to distinguish templates from cases is that the former can be reused and customized for
multiple cases.

From the perspective of the ontology, product, process, feature templates, and cases
are modeled through two main classes, Template and Case, respectively, both of which
specialize the more general Description class (see Figure 3). The relation hasTemplate
specializes hasPart and links cases to templates. Material and machine templates are
modeled through the classes MaterialType and MachineType, the reason being that
these templates are used to insert new types in the ontology, e.g., a new machine type
and the material types that it is able to process. As we will see in the example below,
the relationships specifiesMaterialType and specifiesMachineType can be used to
relate a template (or case) to material and machine types, respectively.24

The content of each template in the Web application is structured according to manufac-
turing knowledge provided by the academic literature, by machines and materials vendors’
catalogs, and by the domain experts involved in the project. Since the ontology formally
specifies the overall body of knowledge, all data field entries in the application are modeled
through the elements and constraints of the ontology. For instance, a process template al-
lows to define machine and fabrication parameters such as build orientation, layer thickness,
hatch distance, scanning speed, laser mode, laser power, laser beam spot diameter, and

24Relations starting with the term specifies have Description as domain.
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laser pulse duration, among others, where each parameter is mapped to an element of the
ontology. E.g., assuming that scanning speed is measured in millimetres per second (mm/s),
the ontology covers the data property relations specifiesMinScanSpeedInMillimetres-
PerSecond and specifiesMaxScanSpeedInMillimetresPerSecond for the minima
and maxima scanning speed values, respectively.25

For the sake of the example, assume we need to specify a case for manufacturing solid
coupons made of nickel alloy 625 with dimensions of 16x16x15 mm by using a machine
of type FormUp.26 According to our application pipeline, we first define the required
templates, which are then reused in a single case. Figure 7 shows the machine and product
templates; as it can be seen from the figure, users can specify various data fields, but
they also have the possibility of customizing templates by adding new fields. Templates
may be fully or only partially filled; e.g., by looking at Figure 7, the fields about features
are not filled, because they are not necessary for the scenario at hand. Once a template
is saved, the data is pushed into the knowledge base to populate the ontology; Figure 8
shows the product template inserted into the knowledge base. As said, each data field
in the Web application corresponds to a modeling element of the ontology; e.g., from
Figure 8 it can be seen the use of the relations specifiesMinHeightInMillimetre and
specifiesMaxHeightInMillimetre to instantiate the product’s height values provided
through the data fields Product length (in mm) in the application.

Assuming that we have already inserted a process template in the knowledge base
(see Figure 9), a case can be specified to organize together the templates, refine them
– when needed – and validate their dependencies. As an example, consider a modeling
situation in which the user, when specifying the case, changes the material type previously
selected in the product template from nickel alloy 625 to stainless steel CX. Once the
user tries to submit the case to the knowledge base, the application triggers an error
message, since FormUp machines cannot be used with this material type (recall formula
(f5)); therefore the user has to revise the inserted data in order to proceed. Similar
constraints are implemented, e.g., to guarantee that the range of selected parameters such
as laser power or scanning speed are configurable on machines of the selected type, or that
cases and templates have to consistently model the inter-relations between machine and
material types. For instance, (R3) establishes that a machine type cannot be configured
with a laser power greater than a predefined maximum value. Should the rule be triggered,
the knowledge base becomes inconsistent and the user needs to revise the specified data.27

In this way we guarantee that the data specified through the Web application is consistent
with the knowledge formalized in the ontology (see the Appendix section for examples of
reasonings for constraints checks). Also, the formal constraints in the ontology can be used
in tandem with scenario-based rules to support experts’ decisions making. For the sake of

25All data properties for parameters with numerical values cover both minima and maxima values.
26The example is based on the data provided in [12], which have been adapted to our purposes.
27In order to avoid making the knowledge base inconsistent, an alternative approach can be adopted to

infer that the selected machine type cannot be used for that specific purpose.
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Figure 7: Machine and product templates

example, by rule (R4) a reasoner is able to infer the laser power parameter to be configured
on the machine of the preselected FormUp type. It should be clear that, on the one hand,
these sorts of rules for decision making can be useful to (semi-) automatise decision making
processes especially when multiple dependencies between data have to be checked. On the
other hand, these rules are context-dependent and efforts are required to formalize experts’
knowledge in computational terms.

R3 Description(x) ∧ specifiesMachineType(x, y) ∧
hasMaxLaserPowerInWatt(y, v)∧ specifiesMaxLaserPowerInWatt(x, z)∧

greaterThan(z, v)→ owl : Nothing(x)
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Figure 8: Example of product template added to the knowledge base

R4 Description(x) ∧
specifiesMachineType(x, formUpType) ∧
specifiesMaterialType(x, nickelAlloy625Type) ∧
specifiesMaxScanSpeedInMillimetrePerSecond(x, 875) ∧
specifiesHatchDistanceInMillimetre(x, 0.10) ∧
specifiesLayerThicknessInMicrometre(x, 20)→

specifiesMaxLaserPowerInWatts(x, 169)

Figure 9: Example of process template added to the knowledge base

Once the knowledge base is populated with users inputs, queries can be formulated to
retrieve data for reuse. In the prototype of the application, SPARQL [39] queries can be
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expressed by filling out forms similar to the ones showed in Figure 7. For instance, let us
assume that the user wishes to retrieve data concerning the compatibility between machine
and material types. By using the Web application, the user selects the desired values; the
selection is converted in a SPARQL query, like the one showed in (Q1), and data – if found
– is showed (see Table 3). The reader can refer to the Appendix for further query examples.

Q1 For each machine type in the KB, retrieve the compatible material types.

SELECT ?machineType ?materialType WHERE
{?machineType a MachineType;

compatibleWithMaterialType ?materialType.}

machineType materialType

proXDMP200Type stainlessSteel174PHType

aluminiumAlloyAlSi12Type

eosIntM290Type nickelAlloy718Type

nickelAlloy625Type

aluminiumAlloyAlSi10MgType

formUpType aluminiumAlloyAlSi10MgType

nickelAlloy718Type

nickelAlloy625Type

titaniumAlloyTi6A4VType

stainlessSteel316LType

maragingSteel18Ni300Type

Table 3: Result of (Q1)

6 Conclusion

The paper presents a computational ontology to represent and reason over AM knowledge
and data. The development of the ontology has been motivated with respect to the need
for a reference knowledge model to harmonize data management, support data sharing,
and validate data against experts’ knowledge. Also, the ontology constitutes the semantic
backbone of the information system architecture developed within a research project. As
part of this architecture, we presented a prototype Web application which is used to create,
validate, and reuse AM data and knowledge. By relying on the ontology, the data man-
aged through the application is indeed semantically characterized to facilitate their sharing
across multiple stakeholders. Additionally, by reasoning over the ontology, the data can be
checked against possible pitfall.
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With respect to the state of art about ontologies for AM, our approach relies on both
experts’ knowledge and well-known modeling principles. The purpose is, first, to rely on
rigorous modeling criteria; second, to facilitate the reuse of the ontology and its extension
for specific application requirements. As discussed throughout Section 3, existing AM
ontologies are not directly reused mainly because the modeling patterns upon which they
rely are either mistaken or not well suited for manufacturing knowledge representation.
Our research work is therefore a contribution towards a principled knowledge base for AM.

Since the additive manufacturing domain is constantly evolving under the pressure
of both academia and industry, it is not surprising that further work on our proposal is
required. In the next future we expect to use the ontology to develop algorithms and
softwares to support data sharing and data tracing along the entire AM value chain, as
well as to aid experts’ decision making. Concerning this latter application scenario, at
the current state of the Web application, data are either manually inserted or reused by
retrieving them from existing templates or cases. In the future version of the application,
templates and cases will be (semi-) automatically filled by algorithmically matching users’
requirements and Key Performance Indicators (KPI) to both experts’ knowledge and the
past experience stored in the knowledge base. As shown in Section 5, formal rules can be
already used to support decision making processes but in order to foster the use of the
application in real-world settings, the presented approach needs to be complemented with
techniques such as multi-attributes case-based reasoning or concepts similarity measures,
among others. To achieve these results, the ontology will be continuously maintained
by populating it with research and stakeholders data but also by updating its structure
whenever this will be needed. Finally, in order to share our research results with the
ontology engineering community active in the manufacturing domain, the ontology will be
presented to the Industrial Foundry Ontology (IOF) initiative in such a way to facilitate
its reuse and adoption.
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Appendix

The knowledge base used in the examples contains various individuals, among which two
cases, cs 1 and cs 2, such that cs 1 specifies information about a product made of nickel
alloy 625 by a FormUp machine, see (f6)–(f10), whereas cs 2 specifies information about
a product made of titanium alloy Ti6A4V by a EOSINT M290 machine, see (f12)–(f16).
Also, by (f11), the process template ptl 1 specifies a maximum scan speed value of 750
mm/s, whereas the scan speed value established by ptl 2 is of 875 mm/s by (f17).

f6 Case(cs 1)

f7 hasProductTemplate(cs 1, ptl 1)

f8 hasProcessTemplate(cs 1, pstl 1)

f9 specifiesMaterialType(ptl 1, nickelAlloy625Type)

f10 specifiesMachineType(pstl 1, formUpType)

f11 specifiesMaxScanSpeedInMillimetrePerSecond(pstl 1, 750)

f12 Case(cs 2)

f13 hasProductTemplate(cs 2, ptl 2)

f14 hasProcessTemplate(cs 2, pstl 2)

f15 specifiesMaterialType(ptl 2, titaniumAlloyT i6A4V Type)

f16 specifiesMachineType(pstl 2, eosintm290Type)

f17 specifiesMaxScanSpeedInMillimetrePerSecond(pstl 2, 875)

A1. Examples of queries

The queries are expressed in SPARQL [39]. For the sake of the examples, PREFIX state-
ments to specify the namespaces of the ontology and other relevant documents, e.g., the
RDF standard specification, are omitted.

Q2 Retrieve process templates that specify a maximum speed value comprised
within 800 and 900 mm/s. Result: only pstl 2.

SELECT ?processTemplate ?speedValue WHERE
{?processTemplate a ProcessTemplate;

specifiesMaxScanSpeedInMillimetrePerSecond ?speedValue.
FILTER (?speedValue >= 800 && ?speedValue <= 900) }

Q3 Retrieve cases which specify information about products that are made of
either nickel alloy type 625 or titanium alloy type Ti6AV and that have
been produced by machines of type FormUp. Result: only case cs 1.
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SELECT ?case WHERE
{ ?case a Case;

hasProductTemplate ?productTemplate;
hasProcessTemplate ?processTemplate.

{?productTemplate specifiesMaterialType nickelAlloy625Type.}
UNION

{?productTemplate specifiesMaterialType titaniumAlloyTi6A4VType.}
?processTemplate specifiesMachineType formUpType. }

Q4 For each machine type in the KB, retrieve the maximum laser power value.

SELECT ?machineType ?powerValue WHERE
{?machineType a MachineType;

hasMaxLaserPowerInWatt ?power.}
ORDER BY (?powerValue)

machineType maxPowerValue

proXDMP200Type 300

eosIntM290Type 400

formUpType 500

Table 4: Result of (Q4)

A2. Examples of reasoning for constraints checks

Assume that formula (f18) substitutes (f9), so that the product template ptl 1 specifies
now information about a product made of material type stainless steel CX.

f18 specifiesMaterialType(ptl 1, stainlessSteelCXType)

By reasoning over the knowledge base, (f18) generates an inconsistency in tandem with
(f6)–(f8) and (f10), because they violate (f5).

By formula (f19), the process template pstl 1 sets the maximum laser power value to
600 W. By (f10), pstl 1 specifies the usage of a machine of type FormUp, which by (f20)
has maximum laser power of 500 W (recall (Q4)).

f19 specifiesMaxLaserPowerInWatt(pstl 1, 600)

f20 hasMaxLaserPowerInWatt(formUpType, 500)

The formulas trigger therefore rule (R3) and the user needs to revise the inserted data.
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