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Introduction

Large-scale genomics projects, including for instance The Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga), are currently providing an overwhelming amount of omics data. The available data offer the opportunity to better understand biological systems and cancer in particular, but their high dimensionality poses considerable challenges typical of "Big Data" [START_REF] Bell | COMPUTER SCIENCE: Beyond the Data Deluge[END_REF].

A powerful approach to this problem is represented by Matrix Factorization (MF), a class of unsupervised methods that reduces high-dimensional data into low dimensional subspaces, while preserving as much information as possible [START_REF] Stein-O'brien | Enter the Matrix: Factorization Uncovers Knowledge from Omics[END_REF][START_REF] Devarajan | Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology[END_REF][START_REF] Meng | Dimension reduction techniques for the integrative analysis of multi-omics data[END_REF]. Given a data matrix X, MF learns two sets of low-dimensional representations: "metagenes", encoding molecular relationships, and "metasamples", encoding sample-level relationships. Up to now, MF has been successfully used in a broad spectrum of applications: unsupervised clustering, especially in the context of cancer subtyping [START_REF] Sousa E Melo | Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions[END_REF][START_REF] Sadanandam | A colorectal cancer classification system that associates cellular phenotype and responses to therapy[END_REF], molecular pattern discovery [START_REF] Kong | Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data[END_REF][START_REF] Brunet | Metagenes and molecular pattern discovery using matrix factorization[END_REF], mutational signatures definition [START_REF] Alexandrov | Mutational signatures associated with tobacco smoking in human cancer[END_REF][START_REF]Australian Pancreatic Cancer Genome Initiative[END_REF] and tumour sample immune infiltration quantification [START_REF] Hackl | Computational genomics tools for dissecting tumour-immune cell interactions[END_REF]. Such results have been obtained by mining with MF single large-scale datasets, such as transcriptome or methylome. Recently, we designed a metric to infer univocal correspondences between the metagenes obtained by an MF algorithm on multiple independent datasets profiled from the same biological condition (e.g. same cancer tissue), and used this metric to design a methodological framework that revealed relevant pathways characteristic of colorectal cancer [START_REF] Cantini | Assessing reproducibility of matrix factorization methods in independent transcriptomes[END_REF].

We are here interested in investigating the molecular bases of previously documented Disease-Disease (DD) relationships. Indeed, several computational studies have inferred DD relationships, starting from the "Human Disease Network" where diseases were connected when sharing disease genes [START_REF] Goh | The human disease network[END_REF], to the "multiplex network of human diseases" composed by genotypeand phenotype-based layers that propose new disease-associations [START_REF] Halu | The multiplex network of human diseases[END_REF]. More importantly, DD relationships have also been systematically identified by epidemiological studies, working at the level of populations and looking for the co-occurrence of different diseases in the same patients by using medical claims [START_REF] Hidalgo | A dynamic network approach for the study of human phenotypes[END_REF], medical records [START_REF] Beck | Diagnosis trajectories of prior multi-morbidity predict sepsis mortality[END_REF] and insurance claims [START_REF] Wang | Classification of common human diseases derived from shared genetic and environmental determinants[END_REF]. The higher than expected risk of developing pancreatic cancer in patients suffering for type II diabetes [START_REF] Eibl | Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer[END_REF] and of developing lung cancer in asthma patients [START_REF] Qu | Asthma and the risk of lung cancer: a meta-analysis[END_REF] are among the most renown examples of cancer-related comorbidities. Interestingly, it has also been described that patients suffering from certain diseases have a lower than expected risk of developing cancer, known as inverse comorbidity [START_REF] Musicco | Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study[END_REF][START_REF] Freedman | Associations between cancer and Alzheimer's disease in a U.S. Medicare population[END_REF][START_REF] Driver | Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study[END_REF]. An example of these protective effects of one disease on the other is represented by the documented inverse comorbidity between Alzheimer's Disease (AD) and Lung Cancer (LC) [START_REF] Driver | Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study[END_REF][START_REF] Tavares | Cancer linked to Alzheimer disease but not vascular dementia[END_REF][START_REF] Ganguli | A reduced risk of Alzheimer's disease in those who survive cancer[END_REF]. Molecular and non-molecular factors (e.g. the environment, lifestyle or drug treatments) can be responsible for such DD relationships. The molecular mechanisms underlying these DD relationships are poorly understood and investigating them offers unprecedented opportunities to better understand the etiology and pathogenesis of diseases, with the hope of identifying opportunities for repositioning of pre-existing treatments.

Recently, transcriptomic meta-analyses revealed sets of significantly up and down regulated genes that are shared across diseases displaying different patterns of direct and inverse comorbidities [START_REF] Ibáñez | Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses[END_REF][START_REF] Sánchez-Valle | A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer's Disease, Glioblastoma and Lung cancer[END_REF]. However, differential expression analysis only focuses on the predominant signals present in the data, failing to capture alternative signals and local behaviors [START_REF] Devarajan | Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology[END_REF]. These limitations are overcome by MF that learns metagenes, i.e. ranking of genes, without focusing on single sets of predominant genes. Moreover, contrarily to differential expression analysis, MF jointly provides metagenes and metasamples, i.e. also grouping samples together with their biological characterization. We hereby propose to use an MF approach to study the molecular bases of DD relationships. This, however, requires innovative adaptations. We thus propose to extend our previously defined MF framework for the particular study of DD relationships [START_REF] Cantini | Assessing reproducibility of matrix factorization methods in independent transcriptomes[END_REF]. Moreover, given the existence of positive and negative DD connections, we also adapt the framework to distinguish molecular relationships concordantly and discordantly altered in datasets coming from different diseases.

Considering the inverse comorbidity between Alzheimer's disease (AD) and lung cancer (LC) as a case study [START_REF] Driver | Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study[END_REF][START_REF] Tavares | Cancer linked to Alzheimer disease but not vascular dementia[END_REF][START_REF] Ganguli | A reduced risk of Alzheimer's disease in those who survive cancer[END_REF], we applied our MF framework to 17 transcriptomic datasets, including both LC and AD samples (total of 1367 samples), and we highlighted multiple molecular mechanisms possibly underlying the inverse comorbidity pattern. Through a pancancer analysis we categorized the processes here suggested to be involved in the AD-LC inverse comorbidity based on their presence in other cancers. The previously identified role of the immune system and mitochondrial metabolism in AD-LC inverse comorbidity is confirmed by our analysis. Additionally, new candidate molecular players, such as Estrogen Receptor (ER), CDH1 and Histone Deacetylase (HDAC), are identified as potentially involved in the inverse comorbidity considered. Finally, some lung cancer subtype-specific alterations are also detected suggesting the existence of heterogeneity across patients also in the context of inverse comorbidity.

Results

A new MF framework to study disease-disease relationships

We previously defined the Reciprocal Best Hit (RBH) metric to infer univocal correspondences between the MF metagenes obtained on independent datasets measured from the same biological condition (e.g. same cancer tissue) [START_REF] Cantini | Assessing reproducibility of matrix factorization methods in independent transcriptomes[END_REF]. Based on this metric we designed an RBH-based framework, structured in three sequential steps: (1) each transcriptomic dataset is independently decomposed in metagenes and metasamples with MF; (2) using the RBH metric, relationships between metagenes are inferred and a RBH network is constructed; (3) communities are detected in the RBH network. These communities of genes are then analyzed for functional relatedness and provide a biological interpretation of the principal factors that shape the transcriptomes. Here, we adapted the framework to the study of the molecular mechanisms underlying DD relationships, in order to infer univocal positive/negative correspondences between MF metagenes independently obtained on datasets measured from different diseases. Briefly, the main methodological novelties are: (i) the investigation of a methodology for the orientation of the metagenes (i.e. assign a sign to the metagenes, in order to express either direct or inverse similarity between them); (ii) a novel definition of Reciprocal Best Hit (RBH) network taking into account the orientation of the metagenes and (iii) the restriction of the community detection phase to the subnetwork of interest (e.g. subnetwork of negative links connecting metagenes of LC and AD in our case). The structure of the framework together with its novelties is summarized in Figure 1.

Setp1: data decomposition and orientation of the components

Each transcriptomic datasets is separately decomposed using MF. The framework here proposed can be combined with the MF algorithm of interest. In this work, we chose stabilized Independent Component Analysis (sICA) [START_REF] Cantini | Assessing reproducibility of matrix factorization methods in independent transcriptomes[END_REF][START_REF] Biton | Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes[END_REF][START_REF] Kairov | Determining the optimal number of independent components for reproducible transcriptomic data analysis[END_REF], a stabilized version of ICA [START_REF] Kairov | Determining the optimal number of independent components for reproducible transcriptomic data analysis[END_REF][START_REF] Engreitz | Independent component analysis: Mining microarray data for fundamental human gene expression modules[END_REF][START_REF] Hyvärinen | Independent component analysis: algorithms and applications[END_REF]. SICA was indeed previously shown to outperform alternative MFs in the extraction of relevant biological knowledge from collections of transcriptomic datasets derived from the same biological condition (e.g. the same cancer type) [START_REF] Cantini | Assessing reproducibility of matrix factorization methods in independent transcriptomes[END_REF]. Moreover, the ability of sICA to separate the various overlapping biological factors present in transcriptomic data, such as those linked to the tumor cells, the tumor microenvironment and non biological factors, linked to sample processing or data generation, makes this approach particularly promising for extracting relevant molecular factors from the numerous confounding factors involved in DD relationships.

By applying sICA to a transcriptomic matrix X (n x m), with n genes in the rows and m samples in the columns, we reduce it to the product of an unknown mixing matrix A (n x k), whose columns are here denoted as "metagenes" and an unknown matrix of source signals S (k x m), whose rows are here denoted as "metasamples". The metagene/metasample associated to the component i will thus provide the contribution of each gene/sample present in the matrix X to component i. Metasamples and metagenes are learned based upon the assumption that the number k of components occurring in the input matrix X is smaller than either its rows or columns. We here selected the number k of components equal to 100 for those datasets having more than 100 samples and equal to half of the samples for smaller datasets. These chosen values are higher than the estimation of the optimal transcriptomic dimension, due to the fact that overdecomposition in sICA was proven not detrimental for the interpretability of the resulting components [START_REF] Kairov | Determining the optimal number of independent components for reproducible transcriptomic data analysis[END_REF].

To determine the orientation of the sICA metagenes two alternative approaches are considered: "Long tail-pointing" and "disease-pointing". The long tail-pointing approach, previously used for other sICA applications [START_REF] Kairov | Determining the optimal number of independent components for reproducible transcriptomic data analysis[END_REF], orients the metagenes such that the longest tail of their distribution corresponds to their positive side. Indeed the sICA factors are identified by maximizing non-gaussianity of the data point projection distributions. As a consequence, the longest-tails of such distributions are those containing most of the biological information. We here introduce the "disease-pointing" approach, which exploits the availability of cases and control samples to orient the components. More specifically, the differential association of each metasample to case vs. control is tested based on a Wilcoxon test and the couple metagene-metasample is oriented so that the cases in the metasample are on the positive side. 
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Each metagene will thus find a maximum of two associated metagenes in another independent transcriptomic dataset, corresponding to +RBH (1) and -RBH [START_REF] Stein-O'brien | Enter the Matrix: Factorization Uncovers Knowledge from Omics[END_REF]. Repeating the same procedure for the metagenes of all the available transcriptomes we obtain a network whose nodes are the metagenes computed in all the transcriptomic datasets and whose links correspond to their +RBH and -RBH computed as in (1,2).

Step3: subnetwork isolation and community detection

In step 3, given our interest for the processes that are differentially altered between two diseases, such as AD and LC, we delineate the relevant subnetwork of RBHs. For example, if we want to study the inverse comorbidity between AD and LC, we restrict the analysis to the negative RBHs (-RBHs) connecting metagenes of AD with metagenes of LC. Once selected the subnetwork of interest, we detect communities with the MCL algorithm [START_REF] Van Dongen | Using MCL to extract clusters from networks[END_REF][START_REF] Enright | An efficient algorithm for large-scale detection of protein families[END_REF]. Such communities correspond to highly reproduced biological components involved in DD relationship. Moreover, having previously isolated the subnetwork of interest (such as negative RBHs between AD and LC) we are sure to only identify communities that are altered in the same direction of the comorbidity under analysis (oppositely regulated in case of inverse comorbidity and concordantly regulated in case of positive comorbidities). The obtained communities are then biologically annotated and interpreted as described in Methods.

Investigation of the orientation methodology for the sICA components

Among the various modifications apported to the framework, of particular importance is the choice of the procedure for the orientation of the metagenes. As described previously, two alternative approaches were considered: "Long tail-pointing" and "disease-pointing". We tested how such choice impacts the following steps of the framework and, in particular, the structure of the obtained RBH network. To do this, we selected a specific DD relationship, i.e., the inverse comorbidity between Alzheimer's disease (AD) and lung cancer (LC) as a case study [START_REF] Driver | Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study[END_REF][START_REF] Tavares | Cancer linked to Alzheimer disease but not vascular dementia[END_REF][START_REF] Ganguli | A reduced risk of Alzheimer's disease in those who survive cancer[END_REF]. 17 transcriptomic datasets, spanning AD and LC patients and containing case and control samples, were employed (see Methods for further details). Following our framework (Figure 1), each dataset was decomposed separately through sICA (see Supp Table 1 for the number of components) and the orientation of the components was established both with the long-tail-pointing and the disease-pointing approaches. The resulting metagenes were then compared according to multiple criteria (see Figure 2).

First, the correlation between the obtained metagenes and the case vs. control fold-change of expression was considered. In fact, to associate a metagene to a specific biological function or pathway, we need to perform enrichment tests using databases of functional annotations (e.g. Reactome, GO). Generally this interpretation step is just aimed at associating a function to each metagene, without taking into account the sign of activity of the identified pathways/processes. However, when dealing with comorbidities it is important to not only associate a function to each metagene, but also to infer the sign of activity of such pathways/functions. This task can be easily achieved once the metagenes are positively correlated with the gene fold-change. As shown in Figure 2A, the disease-pointing orientation produces metagenes that are significantly more correlated with the genes fold-change than the long tail-pointing one (significance tested with Wilcoxon test, resulting P-values available in Supp Table 1).

We have then applied the Step 2 of the framework and independently constructed an RBH network for "long-tail-pointing" and "disease-pointing" oriented metagenes. In both cases, the nodes of the network correspond to the metagenes independently identified in the 17 datasets (369 total nodes) and their links are +/-RBHs, defined as in equations [START_REF] Bell | COMPUTER SCIENCE: Beyond the Data Deluge[END_REF][START_REF] Stein-O'brien | Enter the Matrix: Factorization Uncovers Knowledge from Omics[END_REF]. Changes in the orientation of the metagenes alter the sign of the correlations giving rise to different RBH networks. We have thus compared the "long-tail-pointing" vs. "disease-pointing" RBH networks based on their number of links (Figure 2B). The "disease-pointing" method returns 1616 RBHs vs. the 1574 returned by the "long-tail-pointing" method. Such result is due to the higher number of -RBHs identified with the "disease-pointing" orientation (802 vs. 705).

In Step 3 we focused on the subnetwork composed of -RBHs and linking AD components with LC ones and vice-versa, which in the following we call "-RBH AD/LC subnetwork". These are in fact the metagenes and RBHs of interest for the study of AD-LC inverse comorbidity. We studied the topology of this subnetwork starting from its number of nodes and links (Figure 2C). The -RBH AD/LC subnetwork based on the "disease-pointing" orientation includes a higher number of metagenes (167 vs. 127 of "long-tail-pointing") and a higher number of links (268 vs. 194 of "long-tail-pointing"). Moreover, among the RBHs present in the subnetwork, those of the "disease-pointing" tend to be more frequently connecting factors that are significantly differential between case and control (112 vs. 70 of "long-tail-pointing"). Communities were then detected in the "long-tail-pointing" and "disease-pointing" -RBH AD/LC subnetworks. As shown in Figure 2D, the "disease-pointing" -RBH AD/LC subnetwork has a higher modularity (0.49 vs. 0.43) and higher clustering coefficient (0.49 vs. 0.39). Moreover 20 communities of size higher or equal to 4 are detected in the "disease-pointing" -RBH AD/LC subnetwork vs. the 12 of the alternative approach and the average size of the "disease-pointing" communities is 4.3 vs. the 4.2 of the alternative approach (Figure 2E).

Overall our analysis indicates that the "disease-pointing" orientation tends to identify a higher number of candidate molecular processes/pathways involved in AD-LC inverse comorbidity. For all these reasons, "disease-pointing" is the orientation approach that we selected for the following analysis.

New biological insights on the inverse comorbidity between AD and LC

We hypothesize that the communities of the -RBH AD/LC subnetwork, obtained with the "disease-pointing" orientation, could be related to the AD-LC inverse comorbidity. We thus annotated the communities of the -RBH AD/LC subnetwork by using MsigDB signatures [START_REF] Liberzon | Molecular signatures database (MSigDB) 3.0[END_REF], Microenvironment Cell Populations-counter (MCP-counter) signatures [START_REF] Becht | Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression[END_REF], predefined lung cancer subtypes [START_REF]Cancer Genome Atlas Research Network Comprehensive molecular profiling of lung adenocarcinoma[END_REF] and the metagenes computed in [START_REF] Biton | Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes[END_REF], here referred to as CIT, as described in Methods. The obtained -RBH AD/LC subnetwork with the main biological information is illustrated in Figure 3 and Supp Table 2.

The majority of the communities present in the network are associated to the immune system and mitochondrial functioning, confirming the results of previous transcriptomics meta-analyses on the inverse comorbidity between AD and LC [START_REF] Ibáñez | Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses[END_REF][START_REF] Sánchez-Valle | A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer's Disease, Glioblastoma and Lung cancer[END_REF]. Interestingly, these processes are here deeply partitioned into multiple communities, suggesting that we can detect more detailed aspects of their involvement. Fibroblasts, Neutrophils, Monocytes, B and T cells are the immune cells showing an inverse activity in LC and AD according to our analysis. Moreover, communities involved in the regulation of two immune-system related drugs (fenretinide and corticosteroids) are identified. Interestingly, corticosteroids are associated with less Alzheimer neuropathology [START_REF] Beeri | Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology[END_REF], while their use in LC patients is associated with lower overall survival [START_REF] Scott | Early Use of Systemic Corticosteroids in Patients with Advanced NSCLC Treated with Nivolumab[END_REF]. At the same time, fenretinide has been shown to inhibit growth in lung cancer cell lines [START_REF] Ohlmann | Is growth inhibition and induction of apoptosis in lung cancer cell lines by fenretinide [N-(4-hydroxyphenyl)retinamide] sufficient for cancer therapy?[END_REF] and it has been proposed as a potential adjuvant for late onset Alzheimer's disease [START_REF] Goodman | Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease[END_REF]. Moreover, the fenretinide community is tightly linked with the monocytes one, in agreement with its mechanisms of action involving the regulation of the secretion of pro-inflammatory cytokines in human monocytes [START_REF] Lin | Fenretinide inhibits macrophage inflammatory mediators and controls hypertension in spontaneously hypertensive rats via the peroxisome proliferator-activated receptor gamma pathway[END_REF].

The communities associated to mitochondria span different processes related to their activity: oxidation-reduction process (communities [START_REF] Beck | Diagnosis trajectories of prior multi-morbidity predict sepsis mortality[END_REF][START_REF] Tavares | Cancer linked to Alzheimer disease but not vascular dementia[END_REF][START_REF] Lin | Fenretinide inhibits macrophage inflammatory mediators and controls hypertension in spontaneously hypertensive rats via the peroxisome proliferator-activated receptor gamma pathway[END_REF], hypoxia (community 10) and phosphate metabolic process (community 38). Enrichment in hypoxia could correspond to a confounding factor linked to the state of the profiled tissues (post-mortem for AD and fresh tissue biopsy for LC). However, patients suffering from systemic or prenatal hypoxia have a higher risk of developing Alzheimer's disease [START_REF] Peers | Hypoxia and Alzheimer's disease[END_REF][START_REF] Nalivaeva | Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration[END_REF] and targeting hypoxia seems to Improve lung cancer outcome [START_REF] Salem | Targeting Hypoxia to Improve Non-Small Cell Lung Cancer Outcome[END_REF], indicating that such hypoxia-related community could also contain non-trivial information.

Additionally to mitochondria and immune system, community 36 has been associated to gender, in line with the higher risk of females to develop Alzheimer's disease, in opposition to lung cancer, which is more frequent in men [START_REF] Mazure | Sex differences in Alzheimer's disease and other dementias[END_REF][START_REF] Zang | Differences in Lung Cancer Risk Between Men and Women: Examination of the Evidence[END_REF]. Histone Deacetylase (HDAC), associated to community 22, confirms the known involvement of HDAC1 in both cancer and Alzheimer's disease [START_REF] Patra | Dysregulation of histone deacetylases in carcinogenesis and tumor progression: a possible link to apoptosis and autophagy[END_REF][START_REF] Janczura | Inhibition of HDAC3 reverses Alzheimer's disease-related pathologies in vitro and in the 3xTg-AD mouse model[END_REF]. Community 30 is enriched in focal adhesion. The inhibition of focal adhesion kinase, which is overexpressed in several cancers, decreases cell viability [START_REF] Zhang | Efficacy of focal adhesion kinase inhibition in non-small cell lung cancer with oncogenically activated MAPK pathways[END_REF], while, in the case of Alzheimer's disease, amyloid-ß induces the inactivation of focal adhesion kinase [START_REF] Lachén-Montes | An early dysregulation of FAK and MEK/ERK signaling pathways precedes the β-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease[END_REF]. Cell cycle and CDH1 targets are associated to community 24.

Interestingly, growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases, potentially as a consequence of amyloid-ß driven proteasome-dependent degradation of CDH1 [START_REF] Fuchsberger | Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival[END_REF]. On the other hand, significantly higher methylation level of CDH1, inducing its inactivation, plays an important role in lung cancer [START_REF] Yu | Clinicopathological significance and potential drug targeting of CDH1 in lung cancer: a meta-analysis and literature review[END_REF]. Community 20 is associated to protein processing and chaperone-mediated protein folding. Protein misfolding is a known marker of AD [START_REF] Ashraf | Protein misfolding and aggregation in Alzheimer's disease and type 2 diabetes mellitus[END_REF][START_REF] Selkoe | Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases[END_REF]. At the same time, cell division, migration, and invasion rely on microtubules and actin filament components and thus chaperone-mediated protein folding activity is tightly linked to cancer [START_REF] Vallin | The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology[END_REF]. Similar arguments support the involvement of microtubules (community 6) to AD-LC inverse comorbidity. Moreover, response to Estrogene Receptor (ER) ("ESR1 targets") has been found enriched in 20 communities, even if without clear association to a specific one. Interestingly, an inverse association has been shown between the use of estrogen and early onset of Alzheimer's disease, suggesting that it might be beneficial for the disease [START_REF] Slooter | Estrogen use and early onset Alzheimer's disease: a population-based study[END_REF], potentially due to its inhibitory activity on neuroinflammation [START_REF] Vegeto | Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases[END_REF]. On the other hand, the use of hormonal replacement therapy significantly increases LC mortality, supporting a role of estrogen in lung cancer [START_REF] Rodriguez-Lara | Influence of estrogen in non-small cell lung cancer and its clinical implications[END_REF]. These inverse effects of regulation of focal adhesion, CDH1 and estrogen receptor in cancer and AD are consistent with a possible association of these pathways to the inverse comorbidity patterns observed.

We then explored if also lung cancer subtype-specific molecular mechanisms could be involved into the AD-LC inverse comorbidity [START_REF]Cancer Genome Atlas Research Network Comprehensive molecular profiling of lung adenocarcinoma[END_REF]. The main biologically-annotated network communities resulted to be general of LC with no association to a specific subtype. At the same time, three communities in our network (27, 14 and 3) mapped to the three predefined LC subtypes (proximal proliferative, proximal inflammatory and terminal respiratory unit, respectively). Therefore, some lung cancer subtype-specific regulatory programs seem to also be involved, suggesting the existence of an across-patients heterogeneity, even if such phenomenon is not a predominant one.

Finally, AD has been shown to have comorbidity relationships at the epidemiological level not only with LC, but also with other cancer types, with most of them being inverse comorbidities [START_REF] Goh | The human disease network[END_REF]. We thus tested if some of the candidate biological processes that we here identified to be possibly involved into AD-LC inverse comorbidity could be generalized to the comorbidity relationship between AD and other cancers. With this aim, we considered metagenes previously computed on TCGA transcriptomes for 32 different cancer types (pancancer metagenes) [START_REF] Kairov | Determining the optimal number of independent components for reproducible transcriptomic data analysis[END_REF] and inferred their RBHs with the metagenes of the -RBH AD/LC subnetwork. The presence of pancancer metagenes in the communities of the -RBH AD/LC subnetwork has then been tested. If a community in the -RBH AD/LC subnetwork is found to be correlated with some pancancer metagenes we can infer that such process could also have a role into the relationship between AD and other cancers. We thus quantified for each community of the -RBH AD/LC subnetwork the number of their connected pancancer metagenes (see Supposed Table 2 for results). Of note, the orientation of the TCGA pancancer metagenes has not been defined in [START_REF] Kairov | Determining the optimal number of independent components for reproducible transcriptomic data analysis[END_REF], we thus cannot infer here if the activity of the pancancer metagenes is concordant with that of the LC metagenes or of the AD ones.

As reported in Supp Table 2, the majority of the identified communities, corresponding to the immune system-related signals, gender, chr X and mitochondrial activity, matches metagenes obtained from other cancers, indicating a possible role of such processes in the co-morbidity of AD with other cancers. On the opposite five communities (19%), corresponding to LC subtypes, INF-Gamma and phosphate metabolism, are found to be specific to AD-LC inverse comorbidity.

Discussion

Matrix Factorization (MF) is a prominent solution for high-dimensional omics data analysis with a vast range of applications in computational biology.

We were here interested in investigating disease-disease relationships, representing an unprecedented opportunity to exploit mechanistic knowledge and repurpose treatments from one disease to the other. We thus proposed a computational framework for the application of MF to the study of disease-disease relationships. Considering the inverse comorbidity between Lung Cancer (LC) and Alzheimer's Disease (AD) as a case study, different methodologies for the orientation of the metagenes were tested and the "Disease-pointing" one, orientating metagenes based on the case vs. control behavior of metasamples, proved to give better performance.

The framework here proposed and applied to the study of the inverse comorbidity between LC and AD, can be used to investigate direct/inverse comorbidity relations among other combinations of diseases. More complex patterns of direct and/or inverse comorbidities, involving more than two diseases, could also be studied. Moreover, we here chose sICA as MF algorithm and we employed transcriptomic data. However, the framework here proposed can also be implemented with other MF approaches (e.g. NMF, PCA) or different omics data types (e.g. methylome, proteome). More generally, also multi-omics factors, obtained with approaches such as Multi-Omics Factor Analysis (MOFA) or tensorial ICA (tICA), could also be considered as input of our analysis [START_REF] Argelaguet | Multi-Omics Factor Analysis-a framework for unsupervised integration of multiomics data sets[END_REF][START_REF] Teschendorff | Tensorial blind source separation for improved analysis of multi-omic data[END_REF].

Finally, we performed a functional analysis of the genes involved in the subnetwork containing negative links between AD and LC factors. Our results confirmed previously identified molecular mechanisms underlying this inverse comorbidity, such as the involvement of the immune system and mitochondrial processes, plus new candidate factors have been identified. Overall, our results suggest that the MF RBH-based extended approach can be of biological and medical relevance once investigating the molecular bases of DD relationships.

Materials and Methods

Data collection

3 microarray datasets from NCBI Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) were collected for Alzheimer's disease: GSE4757; GSE48350 obtained from 4 brain regions: hippocampus, entorhinal cortex, superior frontal cortex, post-central gyrus and GSE5281 obtained from six brain regions: entorhinal cortex, hippocampus, medial temporal gyrus, posterior cingulate, superior frontal gyrus and primary visual cortex. The last two datasets were split based on the region of the brain in which the samples were collected, obtaining a total of 11 AD datasets composed of both case and control samples. Concerning lung cancer, 3 microarray datasets from NCBI GEO were collected: GSE19188, GSE19804 and GSE33532. The last one, involving 4 biopsies from the same sample, was split in 4 datasets. We thus obtained a total of 6 LC datasets composed of case and control samples. Additionally, the RNA-seq Lung dataset downloaded from The Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/) was added to the analysis.

Biological characterization of the communities

We characterized the communities obtained in the -RBH AD/LC subnetwork using the following annotations: MSigDB signatures [START_REF] Liberzon | Molecular signatures database (MSigDB) 3.0[END_REF], Microenvironment Cell Populations-counter (MCP-counter) signatures [START_REF] Becht | Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression[END_REF], predefined TCGA lung cancer subtypes [START_REF]Cancer Genome Atlas Research Network Comprehensive molecular profiling of lung adenocarcinoma[END_REF] and the metagenes computed in [START_REF] Biton | Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes[END_REF], here referred to as CIT. Concerning subtypes association we employed the metasamples obtained from the TCGA lung cancer data. We tested the significance of the association with the predefined LC subtypes by performing a two-sided Wilcoxon test (cancer subtype vs. all other samples) and corrected for multiple testing using Bonferroni. For all the other biological annotations involving genes we employed the metagenes contained in each community. We associated to each community of the -RBH AD/LC subnetwork a "consensus metagene" corresponding to the average of all the metagenes contained in the community, paying attention to first concordantly orientate all the metagenes of the community based on the signs of their correlations (all the metagenes in the community were oriented based on the direction of LC). We then defined as top-contributing genes of a community those genes having a weight in the consensus metagene higher than 3 standard deviations in absolute value. The top-contributing genes were then divided into up and down based on their sign in the consensus metagene and tested for their intersection with the various collections of signatures. For cell types specific signatures we used a Fisher's exact test with Bonferroni correction, for MsigDB we employed its default enrichment test [START_REF] Liberzon | Molecular signatures database (MSigDB) 3.0[END_REF].

After testing the association of each community with all the considered annotations (MSigDB signatures, MCP counter cell types signatures, the lung cancer subtypes available for TCGA data and the CIT metagenes), we associate to each community the annotation that is more consistently 3. Colours are linked to the diseases: red for AD and blue for LC. In AD datasets obtained from the same region of the brain are denoted with different shades of red (normal and light red). The nodes are organized into communities. Each community is denoted with a number corresponding to its ID and the main biological annotation associated to them (see Supp 
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 12 Step 2: Construction of the signed Reciprocal Best Hits (sRBHs) At Step 2, the Reciprocal Best Hit (RBH) network is constructed. A positive/negative RBH is defined as follows: given two sets of metagenes ! ! . . . . ! ! and ! ! . . . . ! ! obtained from the transcriptomic datasets ! ! and ! ! , respectively, we define ! ! and ! ! a positive Reciprocal Best Hit (+RBH) iff
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 1 Figures

  Figure 1. Schematic view of the framework and the novelties introduced with respect to [12].

Figure 2 .

 2 Figure 2. "Long-tail-pointing" (red) vs. "disease-pointing" (blue) orientation of the sICA factors. (A) The two methods of factors orientation are compared based on the correlation of the obtained metagenes with the case vs. control genes' fold change. (B) The two methods are compared based on the number of links present in their RBH network. Total RBHs (RBH), positive RBHs (+RBH), negative RBHs (-RBH). (C,D,E) The two methods are compared based on the

Figure 3 .

 3 Figure 3. -RBH AD/LC subnetwork with biological annotations. Each node in the network corresponds to a metagene, the list of metagenes associated to each community ID is reported in Supp Table3. Colours are linked to the diseases: red for AD and blue for LC. In AD datasets obtained from the same region of the brain are denoted with different shades of red (normal and light red). The nodes are organized into communities. Each community is denoted with a number corresponding to its ID and the main biological annotation associated to them (see Supp Table2for an extensive report).

Table 2

 2 for an extensive report).

	Supp.	
	dataset	Wilcoxon P-value
	GSE4757	0.003
	EC_GSE48350	0.001
	EC_GSE5281	4.11E-05
	HC_GSE48350	0.007
	HC_GSE5281	5.05E-04
	MTG_GSE5281	0.007
	PC_GSE5281	0.029
	PCG_GSE48350	5.83E-04
	SFG_GSE48350	0.007
	SFG_GSE5281	1.55E-04
	VCX_GSE5281	0.024
	GSE19188	3.11E-04
	GSE19804	1.48E-06
	GSE33532_A	0.161
	GSE33532_B	0.003
	GSE33532_C	0.0207
	GSE33532_D	0.002

Table 1 . Comparison of correlation values between fold change of expression and metagenes oriented with long-tail vs disease- pointing approach.

 1 

	Supp.						
	Community ID	Associated annotation	CIT	MsigDB signatures (FDR q-value)	Number of other cancers	LC subtype/clinical annotation (Wilcoxon P-value)	MCP counter cell type with P-value
	3	Proximal Inflammatory		"GO_INNATE_IMMUNE_RESPONSE" (3.18E-35)	0	Proximal Inflammatory 0.034	
	4	INF-Gamma	CIT-8	"GO_INFLAMMATORY_RESPONSE" (6.32E-49), "HALLMARK_INTERFERON_GAMMA_RESPONSE" (1.05E-45)	0		
	5	Fenretinide response		"FERRARI_RESPONSE_TO_FENRETINIDE_DN" (2.05E-03), ""	3		
				"GO_CILIUM" (4.75E-38),			
	6	Microtubules		"GO_MICROTUBULE_BUNDLE_FORMATION" (6.48E-23),	3		
				"GO_MICROTUBULE_BASED_PROCESS" (3.55E-17)			
				"GO_IMMUNE_RESPONSE" (2.68E-23),			
	7	Monocytes	CIT-8	"GSE29618_BCELL_VS_MONOCYTE_DAY7_FLU_VACCINE_UP	3		Monocytes 0.002
				" (6.37E-08)			
	10	Hypoxia		"ELVIDGE_HYPOXIA_UP" (3.17E-05), "HALLMARK_HYPOXIA" (4.10E-04)	2		
				"GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION" (5.38E-			
	13	Fibroblasts	CIT-8	99), "GO_POSITIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCE	6		Fibroblasts 2.71e-08
				SS" (1.36E-03)			
				"GO_MICROVILLUS" (3.79E-09),			
	15	Microvilli		"GO_REGULATION_OF_MICROVILLUS_ORGANIZATION"	2		
				(5.63E-08)			
	19	Neuro endocrine tumors	CIT-18		1		
				"GSE34156_TLR1_TLR2_LIGAND_VS_NOD2_AND_TLR1_TLR2			
	21	Monocytes	CIT-8	_LIGAND_24H_TREATED_MONOCYTE_UP" (7.43E-58),	10		Monocytes 2.04 e-6
				"GO_IMMUNE_SYSTEM_PROCESS" (6.86E-132)			
				"GSE22886_NAIVE_CD8_TCELL_VS_MONOCYTE_DN" (7.96E-			
				30), "GSE22886_NAIVE_CD4_TCELL_VS_MONOCYTE_DN"			
	25	B and T cells	CIT-8	(2.96E-28), "GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_DN"	6		B cells 0.03
				(1.72E-23), "GSE22886_NAIVE_BCELL_VS_MONOCYTE_DN"			
				(2.15E-20)			
	28	Neutrophils	CIT-8	"GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_DN" (6.29E-52), "HALLMARK_INFLAMMATORY_RESPONSE" (3.25E-67)	7		Neutrophilis 0.006
				"KEGG_FOCAL_ADHESION" (1.64E-03),			
	30	Focal adhesion		"GO_CELL_JUNCTION_ORGANIZATION" (1.34E-03),	2		
				"GO_ANCHORING_JUNCTION" (8.14E-04)			
	31	Phagocytosis		"GO_PHAGOCYTOSIS_RECOGNITION" (3.80E-09), "GO_PHAGOCYTOSIS" (3.80E-09)	5		
	32	chr X		"DISTECHE_ESCAPED_FROM_X_INACTIVATION" (1.56E-06), "RUNNE_GENDER_EFFECT_UP" (2.50E-20)	8		
	33	Corticosteroids response		"GO_RESPONSE_TO_CORTICOSTEROID" (1.69E-04), "GO_IMMUNE_SYSTEM_PROCESS" (6.22E-44)	7		
	36	Gender			6	Gender 10^-37	
	38	Phosphate metabolism		"GO_REGULATION_OF_PHOSPHORUS_METABOLIC_PROCES S" (7.81E-03),	0		
	14 and 41	Terminal Respiratory unit			0	Terminal Respiratory unit 2.92e-6; 0.021	
	20	protein processing		"GO_CHAPERONE_MEDIATED_PROTEIN_FOLDIN" (8.225E-5), "GO_PROTEIN_TRANSPORT" (1.625E-3)	1		
	22 and 9	HDAC		"HELLER_HDAC_TARGETS_UP" (4.21E-12), ""	6		
				"GO_OXIDATION_REDUCTION_PROCESS" (2.00E-06),			
				"GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NAD_P_H_Q			
	23, 16 and 40 Redox/Mithocondria	CIT-4	UINONE_OR_SIMILAR_COMPOUND_AS_ACCEPTOR" (2.65E-	2		
				06), "GO_SMALL_MOLECULE_METABOLIC_PROCESS" (2.77E-			
				14)			
				"FISCHER_G2_M_CELL_CYCLE" (5.04E-08),			
	24 and 1	Cell Cycle	CIT-7	"GO_MITOTIC_CELL_CYCLE" (9.59E-08),	10		
				"ONDER_CDH1_TARGETS_2_UP" (1.34E-07)			
				"GO_EXTRACELLULAR_MATRIX" (1.37E-85),			
	26 and 12	Smooth muscle	CIT-3	"GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION" (5.48E-	5		
				70)			
	27 and 17	Proximal Proliferative			0	Proximal Proliferative 0.016; 0.035	

Table 2 . Annotations of the communities in the -RBH AD-LC subnetwork.

 2 For each community the table reports the ID, the associated annotation reported in the Figure, the correlated CIT metagene, the MsigDB enriched signatures with the associated FDR q-values, the number of TCGA cancer having a metagene correlated with them, the lung cancer subtype/clinical annotation with the Bonferroni corrected Wilcoxon P-value and the MCP counter based cell type with the Bonferroni corrected Fisher's exact test P-value.

	Supp.		
	Community ID	metagene number	Dataset
	1	12	AD_4757
	1	11	LC_33532_D
	3	6	AD_EC_5281
	3	25	LC_LUAD
	4	12	AD_EC_48350
	4	2	AD_EC_5281
	4	5	AD_HC_48350
	4	17	AD_PCG_48350
	4	13	AD_SFG_48350
	5	4	AD_EC_48350
	5	8	AD_HC_48350
	5	8	AD_PCG_48350
	5	11	LC_33532_A
	6	3	AD_EC_48350
	6	12	AD_HC_48350
	6	1	LC_19188
	6	5	LC_33532_A
	6	3	LC_33532_B
	6	11	LC_33532_C
	6	2	LC_33532_D
	6	9	LC_LUAD
	6	10	LC_19804
	7	2	AD_HC_48350
	7	9	LC_33532_A
	7	16	LC_33532_B
	9	1	AD_PC_5281
	9	4	LC_19804
	10	3	AD_PC_5281
	10	17	LC_33532_D
	12	7	AD_PCG_48350
	12	18	LC_33532_B
	13	2	AD_SFG_48350
	13	9	LC_19804
	13	2	LC_33532_A
	13	8	LC_33532_B
	13	7	LC_LUAD
	14	2	AD_MTG_5281
	14	8	AD_SFG_48350

Table 3 . Annotation of the nodes present in the network of Figure 3. For each community ID reported in the figure, the components and associated datasets of its nodes are here reported corresponding to the
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	14	94	LC_LUAD
	15	14	AD_EC_48350
	15	12	AD_SFG_48350
	15	14	AD_SFG_5281
	15	7	AD_VCX_5281
	15	13	LC_19804
	15	41	LC_LUAD
	16	12	AD_SFG_5281
	16	12	LC_33532_B
	17	5	AD_SFG_5281
	17	16	LC_19804
	19	6	AD_EC_48350
	19	14	AD_HC_48350
	19	1	AD_MTG_5281
	19	6	AD_SFG_48350
	19	10	AD_SFG_5281
	19	1	AD_VCX_5281
	19	4	LC_19188
	20	11	AD_4757
	20	8	AD_EC_48350
	20	10	AD_EC_5281
	20	13	AD_HC_5281
	20	12	AD_MTG_5281
	20	3	AD_PCG_48350
	20	5	AD_SFG_48350
	20	14	AD_VCX_5281
	20	9	LC_19188
	20	3	LC_19804
	20	16	LC_33532_A
	20	9	LC_33532_B
	20	13	LC_33532_D
	21	16	AD_4757
	21	7	AD_SFG_48350
	21	12	LC_19188
	21	8	LC_19804
	22	17	AD_4757
	22	9	AD_HC_48350
	22	13	AD_PCG_48350
	22	9	AD_VCX_5281
	22	13	LC_19188
	23	3	AD_4757
	23	11	AD_MTG_5281
	23	15	AD_PCG_48350
	23	6	LC_19804
	23	10	LC_33532_C
	23	15	LC_33532_A
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found across the different tests. In Supp Table 2 the annotations associated to each community together with their associated P-values are more extensively described.

Finally, to test the reproducibility of the identified consensus metagenes in other cancers, we used the metagenes computed with sICA on TCGA transcriptomics data from 32 different cancer types [START_REF] Kairov | Determining the optimal number of independent components for reproducible transcriptomic data analysis[END_REF]. Then, for each community in the -RBH AD/LC subnetwork, we computed the number of cancers having at least one correlated metagene. The resulting values are reported in Supp Table 2.
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