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ASYMPTOTIC DOMINATION OF SAMPLE MAXIMA

ENKELEJD HASHORVA AND DIDIER RULLIÈRE

Abstract: For a given random sample from some underlying multivariate distribution F we consider the domination

of the component-wise maxima by some independent random vector W with underlying distribution function G.

We show that the probability that certain components of the sample maxima are dominated by the corresponding

components of W can be approximated under the assumptions that both F and G are in the max-domain of

attraction of some max-stable distribution function F and G, respectively. We study further some basic properties

of the dominated components of sample maxima by W .

Key Words: Max-stable distributions; domination of sample maxima; extremal dependence; inf-argmax formula;

de Haan representation; records.

AMS Classification: Primary 60G15; secondary 60G70

1. Introduction

Let Zi, i ≤ n be independent d-dimensional random vectors with common continuous distribution function (df) F

and denote by Mn their component-wise maxima, i.e., Mnj = max1≤k≤n Zkj , j ≤ d. If W is another d-dimensional

random vector with continuous df G being further independent of Mn the approximation of the probability that

at least one component of W dominates the corresponding component of Mn is of interest since it is related to

the dependence of the components of Mn, see e.g., [1]. In the special case that W has a max-stable df with unit

Fréchet marginal df’s Φ(x) = e−1/x, x > 0 and Mn has almost surely positive components, then we simply have

P{∃i ≤ d : Wi > Mni} = 1− P{∀i, 1 ≤ i ≤ d : Mni ≥Wi} = 1− EMn

{
exp
(
−EW

{
max

1≤i≤d

Wi

Mni

})}
,

where W = (W1, . . . ,Wd) being independent of Mn is a spectral random vector of G which exists in view of

the well-known de Haan representation, see e.g., [2] and (2.1) below. Note that the assumption that Wi has unit

Fréchet df implies that E{Wi} = 1.

The above probability is referred to as the marginal domination probability of the sample maxima. If F is also a

max-stable df with unit Fréchet marginals, then by definition Mn/n has for any n > 0 df F and since consequently

n[1− P{∀i, 1 ≤ i ≤ d : Mni ≥Wi}] = n
[
1− EZ

{
exp
(
− 1

n
EW

{
max

1≤i≤d

Wi

Zi

})}]
∼ E

{
max

1≤i≤d

Wi

Zi

}
,(1.1)
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where ∼ means asymptotic equivalence as n→∞ and Z = (Z1, . . . ,Zd) has df F being further independent of W .

Under the above assumptions, we have (set below Fn = Fn)

pn,T (Fn, G) = P{∀i, 1 ≤ i ≤ d : Wi > Mni} ∼
1

n
E
{

min
1≤i≤d

Wi

Zi

}
, T = {1, . . . , d}(1.2)

as n→∞, which follows by (1.1) and the inclusion-exclusion formula or directly by [1][Thm 2.5 and Prop 4.2].

Here pn,T (Fn, G) is referred to as the probability of the complete domination of sample maxima by W . In the

particular case that F = G it is related to the probability of observing a multiple maxima, see [3–8].

Between these to extreme cases of interest is also to consider the partial domination of the sample maxima. Let

therefore let below T ⊂ {1, . . . , d} be non-empty and consider the probability that only the components of W with

indices in T dominate Mn, i.e.,

P{∀i ∈ T : Wi > Mni,∀i ∈ T̄ : Wi ≤Mni} =: pn,T (Fn, G),

where T̄ = {1, . . . , d} \ T . Note that pn,T (Fn, F ) relates to the probability of observing a T -record, see [9]. By the

continuity of F and G we simply have

pn,T (Fn, G) =

∫
Rd

P{∀i ∈ T : Wi > yi,∀i ∈ T̄ : Wi ≤ yi} dFn(y),

which cannot be evaluated without knowledge of both F and G. In the particular case that F and G are max-stable

df’s as above, using (1.1) and the inclusion-exclusion formula we have

lim
n→+∞

npn,T (Fn, G) = E
{(

min
i∈T

Wi

Zi
−max

i∈T̄

Wi

Zi

)
+

}
.(1.3)

In case H = Q the above result is known from [9][Prop 2.2]. Moreover, in the special case that T consist of one

element, then the right-hand side of (1.3) is equal to P{C(T ) ⊂ T̄}, where C(T ) is the tessellation as determined in

[10]. If we are not interested on a particular index set T where the domination of sample maxima by W occurs but

simply on the number of components being dominated, i.e., on the random variable (rv)

Nn =

d∑
i=1

1{Wi>Mni}

again a question of interest is if Nn can be approximated as n→∞. We have that Nn has the same distribution as

d∑
i=1

1{Wi/n>Zi},

provided that F is max-stable as above and Z has df F being further independent of W . Hence if Wi’s are unit

Fréchet rv’s, then

lim
n→+∞

nE{Nn} =

d∑
i=1

lim
n→+∞

nP{Wi > nZi} =

d∑
i=1

lim
n→+∞

n

[
1− e−E

{
1
nZi

}]
= d.

Consequently, the expected number of components of sample maxima being dominated by the components of W

decreases as d/n when n goes to infinity. Moreover, the dependence of both W and Mn does not play any role.

This is however not the case for the expectation of f(Nn) where f is some real-valued function, since the dependence

of both Mn and W influence the approximation as we shall show in the next section.

From our discussion above the assumptions that F and G are max-stable df’s with unit Fréchet marginals lead

to tractable asymptotic formulas for the approximation of various quantities related to the domination of sample
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maxima Mn by W .

In view of [1] we know that both (1.1) and (1.2) are valid in the more general setup that both F and G are in the

max-domain of attraction of some max-stable df’s (see next section for details). We shall show in this paper that

the same assumptions lead to tractable approximations of both pn,T (Fn, G) and E {f(Nn)} as n→∞.

Brief organisation of the paper: Section 2 gives the main results concerning the approximations of the marginal

domination probabilities and the expectation of f(Nn). Section 3 is dedicated to properties of W/Z which we call

the domination spectral vector, whereas in Section 4 we give some combinatorial results. All the proofs are relegated

to Section 5.

2. Main Results

We shall recall first some basic properties of max-stable df’s, see [2, 11–13] for details. A d.dimensional df G is

max-stable with unit Fréchet marginals if

Gt(tx1, . . . , txd) = G(x1, . . . , xd)

for any t > 0, xi ∈ (0,∞), 1 ≤ i ≤ d. In the light of the well-known De Haan representation

(2.1) G(x) = exp
(
−E{ max

1≤j≤d
Wj/xj}

)
, x = (x1, . . . , xd) ∈ (0,∞)d,

where Wj ’s are non-negative rv’s with E{Wj} = 1, j ≤ d and W = (W1, . . . ,Wd) is a spectral vector for G (which

is not unique).

In view of multivariate extreme value theory, see e.g., [13] d-dimensional max-stable df’s F are limiting df’s of the

component-wise maxima of d-dimensional iid random vectors with some df F . In that case, F is said to be in the

max-domain of attraction (MDA) of F , abbreviated F ∈ MDA(F). For simplicity we shall assume throughout in

the following that F has marginal df’s Fi’s such that

lim
n→+∞

Fni (nx) = Φ(x), x ∈ R(2.2)

for all i ≤ d, where we set Φ(x) = 0 if x ≤ 0. We have thus that F ∈MDA(F) if further

lim
n→+∞

sup
xi∈R,1≤i≤d

∣∣∣∣Fn(nx1, . . . , nxd)−F(x1, . . . , xd)

∣∣∣∣ = 0.(2.3)

In the following F is a d-dimensional max-stable df of some random vector Z with unit Fréchet marginals and G is

another max-stable df with unit Fréchet marginals and spectral random vector W independent of Z. Further both

F and G are as in the Introduction. Since our limiting result depends only on the ratio of W and Z we shall set

below

Vi =
Wi

Zi
, 1 ≤ i ≤ d.

Below we extend [14][Prop 1] which considers the case F = G.

Proposition 2.1. If F ∈MDA(F) and G ∈MDA(G), then for any non-empty T ⊂ {1, . . . , d} we have

lim
n→+∞

npn,T (Fn, G) = E
{(

min
i∈T
Vi −max

i∈T̄
Vi
)

+

}
=: λT (F ,G).(2.4)
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Remark 2.2. Define for a non-emtpy index set T the rv Kn =
∑n
j=1 1{∀i∈T :Wi>Mji,∀i∈T̄ :Wi≤Mji}. Under the

assumptions of Proposition 2.1 we have (see also [15][Corr 3.2]) that

lim
n→+∞

E{Kn}
lnn

= λT (F ,G).(2.5)

Example 2.3 (F comonotonic and G a product df). Suppose that F is comonotonic, i.e., Z1 = · · · = Zd almost

surely and let G be a product df with unit Fréchet marginals df ’s and let N be rv on {1, . . . , d} with P{N = i} =

1/d, i ≤ d. A spectral vector W for G can be defined as follows

(W1, . . . ,Wd) = (d1{N=1}, . . . , d1{N=d}).

Indeed E{Yk} = dP{N = k} = 1 for any k ≤ d and

E{max
1≤i≤d

Wi/xi} = d

d∑
k=1

E{max
1≤i≤d

Wi/xi1{N=k}} = d

d∑
k=1

E{1{N=k}/xk} =

d∑
k=1

1/xk

for any x1, . . . , xd positive. In particular, for a non-empty index set K ⊂ {1, . . . , d} with m elements we have

E{max
i∈K
Wi} = d

∑
k∈K

E{1{N=k}} = m.

Consequently, using further that (see the proof of Proposition 2.1)

λT (F ,G) =

k∑
j=0

(−1)j+1
∑

J⊂T :|J|=j

E
{

max
i∈J∪T̄

Wi

Zi

}

we have

λT (F ,G) =

k∑
j=0

(−1)j+1
∑

J⊂T :|J|=j

E
{

max
i∈J∪T̄

Wi

}
=

k∑
j=0

(−1)j+1
∑

J⊂T :|J|=j

(j + d− k).

If k = d, then from above e

λT (F ,G) =

d∑
j=0

(−1)j+1
∑

J⊂T :|J|=j

j = d(1− 1)d−1 = 0.(2.6)

A direct probabilistic proof of (2.6) follows by the properties of Wi’s, namely when k = d ≥ 2

λT (F ,G) = E{ min
1≤i≤d

Wi/Zi} = E{ min
1≤i≤d

Wi} = dE{ min
1≤i≤d

1{N=i})} = 0.

Now, let us investigate the number Nn of dominations defined as in Introduction by
∑d
i=1 1{Wi/n>Zi}. For a given

function f : {0, . . . , d} → R we shall be concerned with the behaviour of

E {f(Nn)} =

d∑
k=0

f(k)P {Nn = k}

when n tends to +∞. Throughout in the sequel we set

D = {1, . . . , d}.

In Proposition 2.4 below, we first express this expectation as a function of minima or maxima of Vi’s.
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Proposition 2.4 (Limit law of Nn). If F ∈MDA(F), G ∈MDA(G) and en,f := E {f(Nn)} − f(0), then we have

(2.7) lim
n→+∞

nen,f =

d∑
k=1

∆kf(0)
∑

K⊂D,|K|=k

E
{

min
i∈K
Vi
}

or alternatively

(2.8) lim
n→+∞

nen,f =

d∑
k=1

(−1)k+1∆kf(d− k)
∑

K⊂D,|K|=k

E
{

max
i∈K
Vi
}
,

where ∆ is the difference operator, ∆f(x) = f(x+ 1)− f(x).

Proposition 2.5 (Link with order statistics). Under the assumptions and the notation of Proposition 2.4 we have

(2.9) lim
n→+∞

nen,f =

d∑
k=1

g(k)E
{
V(k)

}
,

where V(1) ≤ . . . ≤ V(d) are the order statistics of V1, . . . ,Vd and g(k) = f(d− k + 1)− f(d− k).

Remark 2.6 (retrieving simple cases). For particular cases of f we have:

• From Proposition 2.4, setting f(x) = 1{x=d}, one can check that ∆kf(0) = 0 when k < d and ∆df(0) = 1,

so that Equation (2.7) implies (1.2). Alternatively, by Proposition 2.5 since g(1) = f(d)− f(d− 1) = 1 and

g(k) = f(d− k + 1)− f(d− k) = 0− 0 = 0 if k > 1 we have that limn→+∞ nen,f = E
{
V(1)

}
.

• In view of Proposition 2.4, setting f(x) = 1{x≥1}, ∆kf(d − k) =
∑k
i=0

(
k
i

)
(−1)k−if(d − k + i). Thus

∆kf(d− k) = 0 if k < d. If k = d, then

∆kf(d− k) = ∆df(0) = (1− 1)d − (−1)d = (−1)d+1

and Equation (2.8) implies (1.1). Alternatively, by Proposition 2.5 since if k < d, g(k) = f(d − k + 1) −

f(d− k) = 1− 1 = 0 and g(d) = f(1)− f(0) = 1 we obtain limn→+∞ nen,f = E
{
V(d)

}
.

Remark 2.7 (Interpretation of V(j)). Let f(k) = 1{k≥d−j+1}, for any j, k ∈ D. Then g(k) = f(d−k+1)−f(d−k) =

1{k=j}. In this case, f(0) = 0 and en,f = P {N ≥ d− j + 1}, thus

E
{
V(j)

}
= lim

n→+∞
nP {Nn ≥ d− j + 1} .

3. Domination spectrum

In the previous results, we have considered a particular setting, and we have expressed the domination probability

and some expectations relying on number of dominations (see Section 2). We have seen that all these results were

expressed as a function of

V =

(
Wi

Zi

)
i∈D

.

By the definition all components Vi = Wi/Zi are nonnegative, and are such that, by independence, E {Vi} =

E {Wi}E
{

1
Zi

}
= 1. Thus in view of the De Haan representation V can be viewed as the spectral random vector of

some max-stable d-dimensional distribution. Since V is related to the domination of Mn by W , we will refer to it

by the term domination spectrum. In this section we shall explore some basic properties of W .
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Next, assume that W has a copula CW and suppose further that Z has a copula CZ . Note in passing that the

latter copula is unique since the marginals of Z have continuous df. As each Vi is a ratio between Wi and Zi, we

first study the link between the diagonal sections of both copulas CW and CZ , defined for all u ∈ [0, 1] by

δW(u) = CW(u, . . . , u) and δZ(u) = CZ(u, . . . , u).

We recall that the diagonal section characterizes uniquely many Archimedean copulas (under a condition that is

called Frank’s condition, see e.g., [16]), some non-parametric estimators of the generator of an Archimedean copulas

directly rely on this diagonal section. We consider here the case where the df of Z has spectral random vector W .

Notice that the upper tail dependence coefficients can be deduced from the regular variation properties of δZ and

δW , which is straightforward for δZ in the following result.

Proposition 3.1 (Limit diagonal section of Z). Consider a d-dimensional random vector Z having max-stable df

with Fréchet unit marginals and with copula CZ . If the random vector Z has df H(y) = exp(−E{ max
1≤j≤d

Wj

yj
}), where

all Wj are nonnegative rv’s with mean 1, then

δZ(u) = urW with rW = E
{

max
j∈D
Wj

}
.

In particular, when rW > 1, this diagonal section δZ(u) is the one of a Gumbel copula with parameter

(3.1) θ =
ln d

ln rW
.

Furthermore, if the components of W are identically distributed and if FW is invertible, then we have

rW =

∫ 1

0

F−1
W1

(s)dδW(s) .

Example 3.2 (From independence to comonotonicity). Let Wj = Bd1{I=j}+ (1−B)δ1, for all j ∈ D, where I is a

uniformely distributed rv’s on D, B is a Bernoulli rv with E{B} = α ∈ (0, 1] and δ1 is a Dirac mass at 1, all these

rv’s being mutually independent. In this case

rW = E
{

max
j∈D
Wj

}
= αd+ 1− α, θ =

ln d

ln (1 + α(d− 1))
.

Proposition 3.3 (Distribution of maxj∈K Vj or minj∈K Vj). Under the assumption that W ′ is a spectral vector of

Z, with Z max-stable with unit Fréchet margins and Z, W, W ′ are mutually independent, then for any t > 0

P
{

max
i∈D
Vi ≤ t

}
= 1−

d∑
k=1

(−1)k+1
∑

K⊂D,|K|=k

P
{

min
i∈K
Vi > t

}
,

and

P
{

min
i∈K
Vi > t

}
= EW

{
1{mini∈KWi>0} exp

(
−tEW′

{
max
i∈K

W ′i
Wi

})}
.

Example 3.4 (From independence to comonotonicity, continued). Under the settings of Example 3.2 we have when

all tj > 0

E
{

max
j∈K

Wj

tj

}
= α

∑
j∈K

1

tj
+ (1− α)

1

minj∈K tj
.

Let t > 0 and suppose that K has m > 1 elements. By conditioning over B, we get

P {∀i ∈ K,Vi > t} = (1− α)P
{
∀i ∈ K,Zi < 1/t

∣∣∣ B = 0
}
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since P
{
∀i ∈ K,Vi > t

∣∣∣ B = 1
}

= 0 when m > 1, because at least one component Wi, i ∈ K, is zero when B = 1

and m > 1. Recall that Z is independent from W and B, thus for t > 0 and |K| > 1

P {∀i ∈ K,Vi > t} = (1− α) exp

(
E
{
−max

j∈K

W ′j
(1/t)

})
= (1− α) exp (−t(1 + α(m− 1))) .

This can be retrieved directly from Proposition 3.3, using the fact that mini∈KWi > 0 implies B = 0 when |K| > 1.

A consequence of this is that one can write
min
i∈K
Vi = (1−B)ε1+α(|K|−1) +B1{|K|=1}1{I=1}δd

E
{

min
i∈K
Vi
}

= 1−α
1+α(|K|−1) + 1{|K|=1}α,

where B is a Bernoulli r.v. of parameter α, ε1+α(|K|−1) is an exponentially distributed r.v. with parameter 1 +

α(|K| − 1), I an uniformly distributed r.v. over D, and δd a Dirac mass at d, all being mutually independent (for

simplicity, we denote 1{|K|=1} the variable whose value is 1 if |K| = 1 or 0 otherwise). Then all results about the

limit law of Nn derive immediately, using Equation (2.7) in Proposition 2.4. Notice that one could also determine

rV from this, and by application of Proposition 3.1, assess the dependence structure of the random vector whose

spectrum is V.

4. Combinatorial results

We give hereafter some combinatoric results that show how quantities depending on a number of events can be

related to quantities involving only intersections or unions of events. This generalizes inclusion-exclusion formulas

that will correspond to very specific functions f and g.

Lemma 4.1 (Inclusion-exclusion relations). Let D = {1, . . . , d} and let Bi, i ∈ D be events. Consider the number

of realized events N =
∑
i∈D 1{Bi}. Then for any function f : {0, . . . , d} → R

(4.1)

d∑
k=0

f(k)P {N = k} = f(0) +

d∑
j=1

Sj∆
jf(0) = f(0) +

d∑
j=1

S̄j(−1)j+1∆jf(d− j) ,

and similarly for any function g : D → R

(4.2)

d∑
k=0

g(k)P {N ≥ k} =

d∑
j=1

Sj∆
j−1g(1) =

d∑
j=1

S̄j(−1)j+1∆j−1g(d− j + 1) ,

where Sj =
∑

J⊂D,|J|=j
P
{ ⋂
i∈J

Bi

}
and S̄j =

∑
J⊂D,|J|=j

P
{ ⋃
i∈J

Bi

}
.

Proof of Lemma 4.1. Let us denote pJ = P {∩i∈JBi} and p̄J = P {∪i∈JBi}. By inclusion-exclusion principle, we

get

(4.3) Sk =
∑

K⊂D,|K|=k

k∑
j=1

(−1)j+1
∑

J⊂K,|J|=j

p̄J =

k∑
j=1

(−1)j+1

(
d− j
k − j

)
S̄j .

The first equality in Equation (4.1) is known in actuarial sciences under the name of Schuette-Nesbitt formula,

see [17, section 8.5]. This formula does not require any independence assumption, it is a simple development of

f(N) = (I +1{B1}∆) · · · (I +1{Bd}∆)f(0) where I and ∆ are the identity and the difference operators respectively.
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This formula generalizes a very old formula of Waring and generalizes also the inclusion exclusion formula which

can be retrieved by setting f(k) = 1 if k ≥ 1, and f(k) = 0 otherwise. Now using Equation (4.3)

d∑
k=1

∆kf(0)Sk =

d∑
k=1

∆kf(0)

k∑
j=1

(−1)j+1

(
d− j
k − j

)
S̄j =

d∑
j=1

S̄j(−1)j+1∆j(I + ∆)d−jf(0)

and since (I + ∆)d−jf(0) = f(d − j), the second equality in Equation (4.1) holds. Similarly, the first equality in

Equation (4.2) is a known Schuette-Nesbitt formula, see [17, Section 8.5], and one can retrieve the second equality by

using Equation (4.3). Alternatively, one can also deduce (4.2) from (4.1) by setting f(0) = 0 and g(k) = ∆f(k − 1)

for all k ∈ D. �

5. Proofs

Proof of Proposition 2.1. By inclusion-exclusion formula for a given index set T ⊂ {1, . . . , d} with k = |T |

elements we have

P{∀i ∈ T̄ : Wi ≤ yi,∃i ∈ T : Wi ≤ yi} =

k∑
j=1

(−1)j+1
∑

J⊂T :|J|=j

P{∀i ∈ (J ∪ T̄ ) : Wi ≤ Wi}

=

k∑
j=1

(−1)j+1
∑

J⊂T :|J|=j

GJ∪T̄ (y),

where GL(y) = P{∀i ∈ L : Wi ≤ yi} is the L-th marginal df of G. In particular, letting Wi →∞, i ≤ d we have

1 =

k∑
j=1

(−1)j+1
∑

J⊂T :|J|=j

1.

Consequently, for all n > 1

pn,T (Fn, G) =

∫
Rd

P{∀i ∈ T : Wi ≥ yi,∀i ∈ T̄ : Wi < yi} dFn(y)

=

∫
Rd

P{∀i ∈ T̄ : Wi ≤ yi}dFn(y)−
∫
Rd

P{∀i ∈ T̄ : Wi ≤ yi,∃i ∈ T : Wi ≤ yi}dFn(y)

= 1−
∫
Rd

k∑
j=1

(−1)j+1
∑

J⊂K:|J|=j

GJ∪T̄ (y)dFn(y)−
(

1−
∫
Rd
GT̄ (y)dFn(y)

)

=

k∑
j=0

(−1)j+1
∑

J⊂T :|J|=i

∫
Rd

[1−GJ∪T̄ (y)]dFn(y)

=

k∑
j=0

(−1)j+1
∑

J⊂T :|J|=j

∫
Rm+i

[1−GJ∪T̄ (y)]dFn,J∪T̄ (y).

In view of [1][Prop 4.2] we have

lim
n→+∞

n

∫
Rm+|J|

[1−GJ∪T̄ (y)]dFn,J∪T̄ (y) = −
∫
Rm+|J|

lnQJ∪T̄ (y)dHJ∪T̄ (y).

Further by [1][Thm 2.5 and Prop 4.2]

−
∫
Rm+|J|

lnQJ∪T̄ (y)dHJ∪T̄ (y) = E
{

max
i∈J∪T̄

Wi

Zi

}
.
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Consequently, we have

lim
n→+∞

npn,T (Fn, G) =

k∑
j=0

(−1)j+1
∑

J⊂T :|J|=j

E
{

max
i∈J∪T̄

Wi

Zi

}
.

In view of [9][Lem 1] for given constants c1, . . . , cd

k∑
j=0

(−1)j+1
∑

J⊂T :|J|=i

max
i∈J∪T̄

ci = max
(

max
i∈T̄

ci,min
i∈T

ci

)
−max

i∈T̄
ci =

(
min
i∈T

ci −max
i∈T̄

ci

)
+

implying the claim.

Alternatively, we have using again inclusion-exclusion formula

pn,T (Fn, G) =

∫
Rd

P{wi ≥Mi, i ∈ T, wi < Mi, i ∈ T̄} dG(w)

=

∫
Rd

P{Mi ≤ wi, i ∈ T}dG(w)−
∫
Rd

P{Mi ≤ wi, i ∈ T, ∃i ∈ T̄ : Mi ≤ wi}dG(w)

=

∫
Rd
Fn,T (w)dGT (w)−

∫
Rd

m∑
j=1

(−1)j+1
∑

J⊂T̄ :|J|=j

FnJ∪T (w)dG(w)

=

d−k∑
j=0

(−1)j
∑

J⊂T̄ :|J|=j

∫
Rk+j

Fn,J∪T (w)dGJ∪T (w).

Applying [1][Thm 2.5 and Prop 4.2] we obtain

lim
n→+∞

n

∫
Rk+i

Fn,J∪T (y)dGJ∪T (y) = E
{

min
i∈J∪T

Wi

Zi

}
and thus

µT (H,Q) =

d−k∑
j=0

(−1)i
∑

J⊂T̄ :|J|=j

E
{

min
i∈J∪T

Wi

Zi

}
.(5.1)

By [9][Lem 1] we obtain further

µT (H,Q) = E
{

min
i∈T

Wi

Zi
−min(min

i∈T

Wi

Zi
,max
i∈T̄

Wi

Zi
)

}
,

hence the proof is complete. �

Proof of Proposition 2.4. By combinatorial arguments or utilising the classical actuarial Schuette-Nesbitt for-

mula, see first equality in (4.1) and [17, Section 8.5], we get

E {f(Nn)} = f(0) +

d∑
k=1

∆kf(0)
∑

K⊂D,|K|=k

P {∀i ∈ K,Wi ≥Mni} .

Alternatively, using Equation (4.1) in Lemma 4.1 below,

E {f(Nn)} = f(0) +

d∑
k=1

(−1)k+1∆kf(d− k)
∑

K⊂D,|K|=k

P {∃i ∈ K,Wi ≥Mni} .

Thus, using Equation (1.1), the result holds. �
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Proof of Proposition 2.5. Let us consider P
{
V(k) ≤ x

}
= P {at least k events [Vi ≤ x] are realized, i ∈ D}. Us-

ing the first equality in Equation (4.2), we get for any function g : {1, . . . , d} → R

d∑
k=1

g(k)P
{
V(k) ≤ x

}
=

d∑
k=1

∆k−1g(1)
∑

K⊂D,|K|=k

P {∀i ∈ K,Vi ≤ x}

and hence letting x→∞ we have

d∑
k=1

g(k) =

d∑
k=1

∆k−1g(1)
∑

K⊂D,|K|=k

1.

Consequently, for any real x

d∑
k=1

g(k)P
{
V(k) > x

}
=

d∑
k=1

∆k−1g(1)
∑

K⊂D,|K|=k

P
{

max
i∈K
Vi > x

}
.

By the assumptions

E{max
1≤i≤d

Vi} ≤
d∑
i=1

E{Vi} = d,

hence since Vi’s are non-negative it follows that

d∑
k=1

g(k)E
{
V(k)

}
=

d∑
k=1

∆k−1g(1)
∑

K⊂D,|K|=k

E
{

max
i∈K
Vi
}
.

Finally, in order to retrieve Equation (2.8), we must have for any k ∈ {1, . . . , d}

∆k−1g(1) = (−1)k+1∆kf(d− k) .

Now, assuming that for all k ∈ {1, . . . , d}, g(k) = f(d− k+ 1)− f(d− k) = ∆f(d− k), then denoting by T = ∆ + I

the translation operator

∆k−1g(1) =

k−1∑
i=0

(
k − 1

i

)
(−1)k−1−iT−i∆f(d− 1).

This implies

∆k−1g(1) = (−I + T−1)k−1∆f(d− 1) = (−1)k−1(T−1(T − I))k−1∆f(d− 1) .

Thus, for all k ∈ {1, . . . , d} we have

∆k−1g(1) = (−1)k+1∆kf(d− k)

and hence the claim follows. �

Proof of Proposition 3.1. For the first equality, since Z has unit Fréchet marginals for any u > 0 we have

CZ(u, . . . , u) = H

(
1

− lnu
, . . . ,

1

− lnu

)
= exp

(
E
{

max
1≤j≤d

ln(u)Wj

})
= u

E
{

max
j∈D
Wj

}

and thus δZ(u) = urY . Since the diagonal section of a d-dimensional Archimedean copula with parameter θ is ud
1/θ

we obtain the formula for θ. This is consistent with the fact that the Gumbel copula is an Extreme Value Copula

(the only Archimedean one, see [18]).
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For the last equality, setting Wj = F−1
W1

(Uj), we get max
j∈D
Wj = max

j∈D
F−1
W1

(Uj). Assuming further that all Wi’s have

a common df FW1
, then max

j∈D
F−1
W1

(Uj) = F−1
W1

(max
j∈D

(Uj). Using

P
{

max
j∈D

Uj ≤ u
}

= P {U1 ≤ u, . . . Ud ≤ u} = CY (u, . . . , u) = δY (u)

we get E {maxj∈DWj} =
∫ 1

0
F−1
W1

(s)dδY (s). �

Proof of Proposition 3.3. This derives from inclusion-exclusion formula, as P {∀i ∈ D,Vi ≤ t} = 1−P {∪i∈DVi > t}

for any t > 0 and from

P {∀i ∈ K,Vi > t} = P {∀i ∈ K,Wi/Zi > t}

= EW

{
PZ

{
∀i ∈ K,Zi <Wi/t,min

i∈K
Wi > 0

}}
= EW

{
1{mini∈KWi>0} exp

(
−tEW′

{
max
i∈K

W ′i
Wi

})}
establishing the proof. �
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[16] A. Erdely, J. M. González-Barrios, and M. M. Hernández-Cedillo, “Frank’s condition for multivariate

archimedean copulas,” Fuzzy Sets and Systems, vol. 240, pp. 131–136, 2014.

[17] H. U. Gerber, Life insurance mathematics. Springer Science & Business Media, 2013.

[18] C. Genest and L.-P. Rivest, “A characterization of gumbel’s family of extreme value distributions,” Statistics

& Probability Letters, vol. 8, no. 3, pp. 207–211, 1989.

Enkelejd Hashorva, Department of Actuarial Science University of Lausanne,, UNIL-Dorigny, 1015 Lausanne, Switzerland

E-mail address: Enkelejd.Hashorva@unil.ch

Didier Rullière, Ecole ISFA, LSAF, université Lyon 1, 69366 Lyon, France
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